7-3 & 7-6 Logarithmic Functions as Inverses

In general, the inverse of $y=b^x$ is $x=b^y$. In $x=b^y$, y is called the <u>logarithm</u>, base b, of x. Usually written as $y=\log_b x$ and is read "y equals log base b of x".

<u>Logarithm with base b</u>: Suppose b > 0 and $b \neq 0$. For x > 0, there is a number y such that $\log_b x = y$ if and only if $b^y = x$.

Exponential Form	Logarithmic Form
$b^{y} = x$ "If you don't know what to do, do the cance"	$\log_b x = y$ (but $b \neq 1$ and $b > 0$)

Common Log \rightarrow has base _____

Natural Log → has base ___ e ≈ 2.718...

log x = lnx

Examples

Using a calculator, evaluate the logarithmic expression.

"Round to 3 decemal places"

1. log 4

2. ln 2

3. log₂ 5

0.602

0.693

2,322

blc = because

Properties of Logs/Natural Logs

$$\log_b 1 = 0$$

۷c ln 1 = 0

$$\log_b b = 1$$

ble $\ln e = 1$

$$\log_b b^y = y$$

 $\ln e^{y} = \underline{y}$

$$b^{\log_b y} = \frac{1}{\sqrt{1 - \log_b y}}$$

$$e^{\ln y} = \underline{y}$$

Logarithmic to Exponential Form

Write each equation in exponential form.

1.
$$\log_8 1 = 0$$
 (=) $8^\circ = 1$

3.
$$\log_3 9 = 2$$
 (=) $3^2 = 9$

(" Do the Canoe" ... if you don't know? what toda ... (")

2.
$$\log_2 \frac{1}{16} = -4$$
 \iff $2^{-4} = \frac{1}{16}$

4.
$$\log \frac{1}{100} = -2$$
 \iff $\log \frac{1}{100} = -2$ \iff $\log \frac{1}{100} = -2$

Exponential to Logarithmic Form

Write each equation in logarithmic form.

5.
$$10^3 = 1000$$
 $\angle = > \log_{10} 1000 = 3$ $\angle = > \log_{10} 1000 = 3$

7.
$$5^3 = 125$$
 (=) $\log_5 (25 = 3)$

6.
$$9^{\frac{1}{2}} = 3$$
 (=> $\log_{10} 3 = \frac{1}{2}$

8.
$$27^{\frac{1}{3}} = 3$$
 $\iff \log_{27} 3 = \frac{1}{3}$

Evaluate Logarithmic Expressions

9.
$$\log_2 64$$
Let $\log_2 64 = 64$

$$2^{2} = 64$$

$$2^{2} = 2^{6}$$

$$6 = 6$$

10.
$$\log_2 64$$
Let $\log_2 64 = 1$
Let $\log_2 64 = 1$
Then, $2 = 64$
 $2 = 26$
 $2 = 26$
 $3 = \frac{1}{3^3}$
 $3 = \frac{1}{3^3}$

11.
$$\log_2 \sqrt{8}$$
 Let $\log_2 \sqrt{8} = 1$

Then, $2^{-1} = \sqrt{8}$
 $2^{-1} = \sqrt{8}$

So, 1092 18 = 3

Inverse Property of Exponents and Logarithms

Evaluate each expression.

12.
$$\log_6 6^8 = 8$$

12.
$$10g_6 6^3 = 8$$

14.
$$3^{\log_3(4x-1)} = 4x-1$$

16.
$$\log_5 5^{x-1} = x - 1$$

13.
$$\log_9 9^2 = 2$$

15.
$$7^{\log_7 21} = 21$$

17.
$$9^{\log_9 37} = 37$$

Logarithmic Equation: an equation that contains one or more logarithms.

Solving Logarithmic Equations

Solve each logarithmic equation.

18.
$$\log_4 n = \frac{5}{2}$$
 $4^{\frac{5}{2}} = n$ $2^{\frac{19}{2}} = n$ $2^{\frac{5}{2}} = n$

19.
$$\log_8 n = \frac{4}{3}$$
 $(2^3)^{\frac{1}{3}} = n$ $2^4 = n$ $(6 = n)$

20.
$$\log_9 x = \frac{3}{2}$$

$$(3^2)^{3/2} = n$$

$$3^3 = n$$

$$27 = n$$

21.
$$\log_{\frac{1}{10}} x = -3$$

$$\frac{1}{10} = x$$

$$\frac{1}{10} = x$$

$$\frac{10^{3}}{10^{3}} = x$$
ions:

(000 = x

Property of Equality for Logarithmic Functions:

If b is a positive number other than 1, then $\log_b x = \log_b y$ if and only if x = y

Solving Equations with Logarithms on Each Side

Solve each logarithmic equation.

22.
$$\log_5(3x - 2) = \log_5 x$$

$$3x - 2 = x$$

$$-3x - 3x$$

$$-2 = -2x$$

$$1 = x$$

24.
$$\log_5(x^2 - 2) = \log_5 x$$

 $x^2 - 2 = x$
 $x^2 - x - 2 = 0$
 $(x - 2)(x + 1) = 0$
 $x - 2 = 0$ $x + 1 = 0$
 $x = 2$ $x = -1$

CHECK (for extranous solutions):

(1)
$$\log_5(x^2-2) = \log_5 x$$

 $\log_5(2^2-2) = \log_5 2$
 $\log_5 2 = \log_5 2$

23.
$$\log_7(8x + 20) = \log_7(x + 6)$$

 $8x + 20 = x + 6$
 $-x - 10 = x - 20$
 $7x = -14$

25.
$$log_3(x^2) = log_3(9)$$

 $x^2 = 9$ "Take some root of
 $X = \pm 3$ both sides"

CHECK: (1)
$$\log_3(x^2) = \log_3 9$$
 $\log_3 3^2 = \log_3 9$
 $\log_3 9 = \log_3 9$

(2)
$$\log_3(-3)^2 = \log_3 9$$

 $X = \pm 3$ are both solutions