P5-7: Geometric Sequences & Series

Honors Advanced Algebra

Name: ______ Period: _____ Date: _____

Is the sequence geometric? If it is, what are a_1 and r?

3.
$$2^3$$
, 2^7 , 2^{11} , 2^{15} , ...

4.
$$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$$

What are the indicated terms of the geometric sequence?

- 5. The second term of the geometric sequence 3, ___, 12, ...
- 6. The eighth term of the geometric sequence 10, 5, 2.5, ...
- 7. When radioactive substances decay, the amount remaining will form a geometric sequence when measured over constant intervals of time. The table below shows the amount of Np-240, a radioactive isotope of Neptunium, initially and after 2 hours. What are the amounts left after 1 hour, 3 hours and 4 hours?

Hours Elapsed	0	1	2	3	4
Grams of Np-240	1244		346		

Evaluate the sum of the finite geometric series.

8.
$$-5 - 10 - 20 - 40 - \dots - 2560$$

9.
$$\frac{1}{5} + \frac{1}{10} + \frac{1}{20} + \frac{1}{40} + \frac{1}{80}$$

10. 9 - 6 + 4 -
$$\frac{8}{3}$$
 + $\frac{16}{9}$