1.1 Modeling \& Equation Solving

Review Target: Find extrema, zeroes, in odd or even functions

Review of Prior Concepts

Solve the equation $x+1=2 \sqrt{x+4}$ algebraically.
Show your work.

Explain your steps.

More Practice

Solving Radical Equations
http://www.regentsprep.org/regents/math/algtrig/ate10/radlesson.htm
http://www.purplemath.com/modules/solverad2.htm
https://www.youtube.com/watch?v=JBCsfUaXTNs

SAT Connection

Passport to Advanced Math

7. Solve an equation in one variable that contains radicals.

Example: If $a=5 \sqrt{2}$ and $2 a=\sqrt{2 x}$, what is the value of x ?

NOTE: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.

Fundamental Connection (p.70)
If a is a real number that solves the equation $f(x)=0$, then these 3 statements are equivalent.
1.
2.
3.

Example 1: Find the zero(s) of $f(x)=x+1-2 \sqrt{x+4}$ graphically.

Example 2: Solve the equation $x+1=2 \sqrt{x+4}$ by finding the x-intercepts graphically.

Now you try...\& verify with your group members. (round to nearest thousandths -3 decimal places)

Find the roots of the equation $f(x)=\|2 x-1\|-5$ graphically.		Find the zero(s) of the equation $g(x)=x+2-2 \sqrt{x+3}$ graphically.	

More Practice

Zeros, Roots, and X-Intercepts

http://www.themathpage.com/aprecalc/roots-zeros-polynomial.htm
https://www.youtube.com/watch?v=yL-H9S18BVI

SAT Connection

Solution

The correct answer is $\mathbf{1 0 0}$. Since $a=5 \sqrt{2}$, one can substitute $5 \sqrt{2}$ for a in $2 a=\sqrt{2} x$, giving $10 \sqrt{2}=\sqrt{2} x$. Squaring each side of $10 \sqrt{2}=\sqrt{2} x$ gives $(10 \sqrt{2})^{2}=(\sqrt{2} x)^{2}$, which simplifies to $(10)^{2}(\sqrt{2})^{2}=(\sqrt{2} x)^{2}$, or $200=2 x$. This gives $x=100$. Checking $x=100$ in the original equation gives $2(5 \sqrt{2})=\sqrt{(2)(100)}$, which is true since $2(5 \sqrt{2})=10 \sqrt{2}$ and $\sqrt{(2)(100)}=(\sqrt{2})(\sqrt{100})=10 \sqrt{2}$.

