1.2 Functions and Their Properties
 Domain, Range, \& Continuity of Functions

Target 1A: Analyze functions using specific properties
Review of Prior Concepts
Is the formula a function? (Graph them to complete the vertical line test).
Vertical Line Test: A graph in the coordinate plane defines y as a function of $x \Leftrightarrow$ no vertical line intersects the graph in more than one pt.

1. $y=x^{2}$
2. $y^{2}=x$

3. $y=\sqrt{x}$
4. $x^{2}+y^{2}=4$

A function from a set D to a set $\mathrm{R}(f: \mathrm{D} \rightarrow \mathrm{R})$ is a rule that assigns to every element in D a unique element in R; i.e., The set D of all input values is the Domain of the function, and the set R of all output values is the Range of the function.

More Practice

Is it a Function?
http://www.mathwarehouse.com/algebra/relation/vertical-line-test.php
https://www.youtube.com/watch?v=zT69oxcMhPw
https://www.khanacademy.org/math/cc-eighth-grade-math/cc-8th-linear-equations-functions/cc-8th-
function-intro/e/recog-func-2

SAT Connection

Passport to Advanced Math

13. Use function notation, and interpret statements using function notation.

Example:

$$
g(x)=a x^{2}+24
$$

For the function g defined above, a is a constant and $g(4)=8$. What is the value of $g(-4)$?
A) 8
B) 0
C) -1

Solution \quad D) -8

Find the domain algebraically \& the range graphically of each function. Example 1:

Domain
Range

$$
f(x)=\frac{2}{x^{2}-3 x-4}
$$

Example 2:
Domain
Range

$$
g(x)=\frac{\sqrt{x-3}}{x^{2}-3 x-4}
$$

Example 3:

Domain

Range
$h(x)=\frac{x^{2}}{x^{2}-3 x}$

More Practice

Domain \& Range

http://www.coolmath.com/algebra/15-functions/06-finding-the-domain-01
https://www.khanacademy.org/math/algebra/algebra-functions/domain-and-range/v/domain-of-a-function-intro
http://www.intmath.com/functions-and-graphs/2a-domain-and-range.php

Continuity \& Discontinuity

- Functions are continuous if \qquad

- Removable discontinuity
- Non-removable discontinuity
\circ

○

Graph the function. Identify any points of discontinuity and describe the type of discontinuity.
Example 4: $f(x)=\frac{x^{2}}{x^{2}-3 x}$

Example 5: $g(x)=\frac{x^{2}-9}{x+3}$

SAT Connection

Solution

Choice A is correct. Since g is an even function, $g(-4)=g(4)=8$.
Alternatively: First find the value of a, and then find $g(-4)$. Since $g(4)=8$, substituting 4 for x and 8 for $g(x)$ gives $8=a(4)^{2}+24=16 a+24$. Solving this last equation gives $a=-1$. Thus $g(x)=-x^{2}+24$, from which it follows that $g(-4)=-(-4)^{2}+24 ; g(-4)=-16+24$; and $g(-4)=8$.

Choices B, C, and D are incorrect because g is a function and there can only be one value of $g(-4)$.

