1.2 Functions and Their Properties
 Vertical and Horizontal Asymptotes

Target 1A: Analyze functions using specific properties
Review of Prior Concepts
Identify any discontinuities for $f(x)=\frac{x^{2}+7 x+10}{x^{2}-4 x-12}$ and describe the type of discontinuity.
$f(x)=\frac{(x+5)(x+2)}{(x-6)(x+2)}$
$=\frac{(x+5)(x+2)}{(x-6)(x+2)}$
$\uparrow \rightarrow$ removable discont
nonremovable
@ $x=6$

More Practice
 Discontinuities
 http://www.ck12.org/Analysis/Discrete-and-Continuous-Functions/lesson/Continuity-and-DiscontinuityPCALC/
 $\underline{\text { https://www.youtube.com/watch? } \mathrm{v}=2 \mathrm{n} 5 \mathrm{VzMFJQVY}}$

Vertical \& Horizontal Asymptotes

RECALL:

Vertical Asymptotes - non-removable discontinuity found from denominator set equal to zero (after common factors have been removed).

Horizontal Asymptotes -- occur when end behavior approaches a \#, c. H.A. is @ $y=c$.

$$
\text { NOTATION: } \lim _{x \rightarrow \infty} f(x)=c \quad \text { or } \quad \lim _{x \rightarrow-\infty} f(x)=c
$$

Graph each function. Find vertical asymptotes algebraically \& horizontal asymptotes graphically (if any).

Example 1: $g(x)=\frac{2 x^{2}}{4-x^{2}}$

$$
\begin{aligned}
& f(x)=\frac{x}{(x-2)(x+1)} \\
& x-2=0 \quad x+1=0 \\
& x=2 \quad x=-1 \\
& \text { V.A. \& } x=-1, x=2
\end{aligned}
$$

Example 3: $h(x)=\frac{4 x^{2}-6 x^{3}}{x^{2}-4 x}$

$$
\begin{aligned}
& h(x)=\frac{x^{2}(4 x-6)}{x(x-4)} \\
&=\frac{x(x)(4 x-6)}{x(x-4)} \\
&=\frac{x(4 x-6)}{x-4} \\
& x-4=0 \\
& x=4 \\
& \text { V.A. } \& x=4
\end{aligned}
$$

No H.A. b/c
$\lim _{x \rightarrow \infty} f(x)=-\infty, \lim _{x \rightarrow-\infty} f(x)=\infty$

More Practice

Vertical Asymptotes
http://www.purplemath.com/modules/asymtote.htm
https://www.youtube.com/watch?v=h910JbhzecI

Homework Assignment

