Go to https://teacher.desmos.com/activitybuilder/custom/574de5cdab71b5085a2aad42 and do the activity.

1) Watch this dot as it moves along the function $y=f(x)$. What y-value is the dot getting closer to as x approaches 1 from the left side?
2) Now look carefully at the function. What is the actual value of y when $x=1$?
3) Is the function shown here continuous at $x=1$? Explain.
4) Explain what these statements mean:
a) $\lim _{x \rightarrow 1^{-}} f(x)=2$
b) $\quad \lim _{x \rightarrow 1^{+}} f(x)=3$
c) $f(1)=0.5$
5) Watch this dot as it moves along the function $y=f(x)$. What y-value is the dot getting closer to as x approaches 1 from the right side?
6)

(a) What y-value is the function approaching as x approaches 3 from the left?
(b) What y-value is the function approaching as x approaches 3 from the right?
(c) What (if any) is the actual y-value at $x=3$?
7) Is the function shown here continuous at $x=3$? Explain.
9) Sketch a function that approaches two different points as x approaches -4 .
(a) What y-value is it approaching from the left?
(b) What y-value is it approaching from the right?
(c) What (if any) is its actual y-value at that point?
(d) Is your graph continuous at $x=-4$?
11) Sketch a function that is discontinuous at $x=2$.
8) Change the graph (by dragging one of the movable points) to create a function that is continuous at $x=3$. Draw your sketch below.
10) As x approaches 0 , the left and right limits equal 3. However, the actual y-value at that point is -3 . Is the function continuous at $x=0$? Explain.
2) Which of the functions are continuous for all x-values?

