2.1 Linear \& Quadratic Functions and Modeling

Review Target: Graph and Solve Quadratic Functions
Review of Prior Concepts

Find the slope of the line:

a)

b) that contains the points $(2,-3)$ and $(5,1)$

More Practice

Finding Slope of a Line

http://www.coolmath.com/algebra/08-lines/06-finding-slope-line-given-two-points-01
https://www.khanacademy.org/math/algebra/two-var-linear-equations/slope/v/slope-of-a-line
http://www.mathwarehouse.com/algebra/linear_equation/slope-of-a-line.php
https://www.youtube.com/watch? v=Z31F_75C_VE

SAT Connection

Heart of Algebra

1. Create, solve, or interpret a linear expression or equation in one variable that represents a context.

Example:

$$
h=3 a+28.6
$$

A pediatrician uses the model above to estimate the height h of a boy, in inches, in terms of the boy's age a, in years, between the ages of 2 and 5 . Based on the model, what is the estimated increase, in inches, of a boy's height each year?
A) 3
B) 5.7
C) 9.5
D) 14.3

Solution

Polynomial Functions

A polynomial function of degree n (where n is a nonnegative integer) is written as: $f(x)=$

Example:
Write a sample polynomial:
$f(x)=$
Degree:
Leading coefficient:

Name	Form	Degree

Linear Function

$$
f(x)=
$$

One of the forms below is needed to write a linear function.

Slope-Intercept Form	Point-Slope Form

Example: Write an equation for the linear function, $f(x)$, where $f(1)=3$ and $f(-2)=9$.

Quadratic Function

Standard Form	Vertex Form

Find the vertex, find the axis of symmetry, and describe the opening of the function: Example 1:
$f(x)=3(x+2)^{2}-7$

Example 2:
$g(x)=-2 x^{2}+7 x-3$

Example 3:
$h(x)=8+2 x-x^{2}$

Example 4:

Write the quadratic equation with the vertex $(2,-7)$ and the point $(4,5)$.

More Practice

Writing Linear Equations

http://www.mathsisfun.com/algebra/linear-equations.html
http://www.mathplanet.com/education/algebra-1/formulating-linear-equations/writing-linear-equations-
using-the-slope-intercept-form
https://www.khanacademy.org/math/algebra/two-var-linear-equations/point-slope/v/idea-behind-point-slope-form
https://www.youtube.com/watch? v=eHPTyYbNmx4

Quadratic Functions

http://mathbitsnotebook.com/Algebra1/Quadratics/QDVertexForm.html
http://www.purplemath.com/modules/grphquad2.htm
http://jwilson.coe.uga.edu/emt668/emat6680.f99/jones/instructional\ unit/writingquads.html
https://www.youtube.com/watch? $\mathrm{v}=0 \mathrm{vSVCN} 3 \mathrm{kJTY}$
https://www.youtube.com/watch? v=Pk-vBg167JI
https://www.youtube.com/watch?v=BYlWhtgUwJI

SAT Connection

Solution

Choice A is correct. In the equation $h=3 a+28.6$, if a, the age of the boy, increases by 1 , then h becomes $h=3(a+1)+28.6=3 a+3+28.6=$ $(3 a+28.6)+3$. Therefore, the model estimates that the boy's height increases by 3 inches each year.

Alternatively: The height, h, is a linear function of the age, a, of the boy. The coefficient 3 can be interpreted as the rate of change of the function; in this case, the rate of change can be described as a change of 3 inches in height for every additional year in age.

Choices B, C, and D are incorrect and are likely to result from common errors in calculating the value of h or in calculating the difference between the values of h for different values of a.

