2.1 Linear \& Quadratic Functions and Modeling

Review Target: Graph and Solve Quadratic Functions
Review of Prior Concepts

b) that contains the points $(2,-3)$ and $(5,1)$

$$
\begin{aligned}
M & =\frac{1--3}{5-2} \\
& =\frac{4}{3}
\end{aligned}
$$

More Practice

Finding Slope of a Line

http://www.coolmath.com/algebra/08-lines/06-finding-slope-line-given-two-points-01
https://www.khanacademy.org/math/algebra/two-var-linear-equations/slope/v/slope-of-a-line
http://www.mathwarehouse.com/algebra/linear_equation/slope-of-a-line.php
https://www.youtube.com/watch?v=Z31F_75C_VE

SAT Connection

Heart of Algebra

1. Create, solve, or interpret a linear expression or equation in one variable that represents a context.

Example:

$$
h=3-28.6 \quad m=\frac{\text { change in height }}{\text { chang in ag }} \Rightarrow \frac{3}{1}
$$

A pediatrician uses the model above to estimate the height h of a boy, in inches, in terms of the boy's age a, in years, between the ages of 2 and 5 . Based on the model, what is the estimated increase, in inches, of a boy's height each year?
A) 3

B) 5.7
C) 9.5
D) 14.3

Solution

A polynomial function of degree n (where n is a nonnegative integer) is written as:

$$
f(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{1} x^{1}+a_{0}
$$

Example:
Write a sample polynomial:

$$
f(x)=23 x^{7}+20 x^{6}+17 x^{5}+14 x^{4}-10 x^{3}+2
$$

Degree: 7
Leading coefficient: 23

Name	Form	Degree
Zero Function	$f(x)=0$	no degree
Constant Function	$f(x)=c$	0
Linear Function	$f(x)=a x+b$	1
Quadratic Function	$f(x)=a x^{2}+b x+c$	2

Linear Function

$$
f(x)=a x+b
$$

One of the forms below is needed to write a linear function.

Example: Write an equation for the linear function, $f(x)$, where $f(1)=3$ and $f(-2)=9$.

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& * \begin{array}{l}
\text { wite } \\
\text { equation }
\end{array} \\
& \text { * suioun } y-3=-2(x-1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { * Solefory } \rightarrow \quad y=-2(x-1)+3 \text { or } f(x)=-2 x+5 \\
& m=\frac{9-3}{-2-1}=\frac{6}{-3}=-2
\end{aligned}
$$

Find the vertex, find the axis of symmetry, and describe the opening of the function:
Example 1:

$$
f(x)=3(x+2)^{2}-7
$$

vertex: $(-2,-7)$
axis of symmetry: $x=-2$
opensup $b / c a>0$

$$
a=3
$$

Example 2:

$$
g(x)=-2 x^{2}+\frac{7 x}{b}-\frac{3}{c}
$$

vert

$$
h(x)=8+2 x-x^{2} \rightarrow h(x)=-x^{2}+2 x+8
$$

vertex: $\left(\frac{-2}{2(-1)}, h\left(\frac{-2}{(x-1)}\right)\right.$

$$
\begin{aligned}
&(2(-1), h(2(-1)) \\
&(1, h(1)), h(1) \\
&(1,9)=-(1)^{2}+2(1)+8 \\
&(1,9
\end{aligned}
$$

axis of symmetry: $x=1$
opens down $b / c \quad a<0$

$$
a=-1
$$

Example 4:

Write the quadratic equation with the vertex $(2,-7)$ and the point $(4,5)$.

$f(x)=a(x-h)^{2}+k$

and solve for a
$5=a(2)^{2}-7$
$2=4 a+7$

More Practice

Writing Linear Equations

http://www.mathsisfun.com/algebra/linear-equations.html
http://www.mathplanet.com/education/algebra-1/formulating-linear-equations/writing-linear-equations-using-the-slope-intercept-form
https://www.khanacademy.org/math/algebra/two-var-linear-equations/point-slope/v/idea-behind-point-slope-form
https://www.youtube.com/watch?v=eHPTyYbNmx4

Quadratic Functions

http://mathbitsnotebook.com/Algebra1/Quadratics/QDVertexForm.html
http://www.purplemath.com/modules/grphquad2.htm
http://jwilson.coe.uga.edu/emt668/emat6680.f99/jones/instructional\ unit/writingquads.html https://www.youtube.com/watch?v=0vSVCN3kJTY
https://www.youtube.com/watch?v=Pk-vBg167JI
https://www.youtube.com/watch?v=BYlWhtgUwJI

SAT Connection

Solution
Choice A is correct. In the equation $h=3 a+28.6$, if a, the age of the boy, increases by 1 , then h becomes $h=3(a+1)+28.6=3 a+3+28.6=$ $(3 a+28.6)+3$. Therefore, the model estimates that the boy's height increases by 3 inches each year.

Alternatively: The height, h, is a linear function of the age, a, of the boy. The coefficient 3 can be interpreted as the rate of change of the function; in this case, the rate of change can be described as a change of 3 inches in height for every additional year in age.

Choices B, C, and D are incorrect and are likely to result from common errors in calculating the value of h or in calculating the difference between the values of h for different values of a.

