
2.1 Linear & Quadratic Functions and Modeling

Review Target: Graph and Solve Quadratic Functions

Review of Prior Concepts

b) that contains the points (2, -3) and (5,1)

More Practice

Finding Slope of a Line

http://www.coolmath.com/algebra/08-lines/06-finding-slope-line-given-two-points-01 https://www.khanacademy.org/math/algebra/two-var-linear-equations/slope/v/slope-of-a-line

http://www.mathwarehouse.com/algebra/linear_equation/slope-of-a-line.php

https://www.youtube.com/watch?v=Z31F_75C_VE

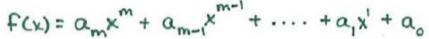
SAT Connection Heart of Algebra

1. Create, solve, or interpret a linear expression or equation in one variable that represents a context.

Example:

$$h = 3n + 28.6$$
 $m = \frac{\text{Change in height}}{\text{Change in age}} \Rightarrow \frac{3}{1}$
A pediatrician uses the model above to estimate the

A pediatrician uses the model above to estimate the height h of a boy, in inches, in terms of the boy's age a, in years, between the ages of 2 and 5. Based on the model, what is the estimated increase, in inches, of a boy's height each year?


for every I year, height charges 3 inches.

- B) 5.7
- C) 9.5
- D) 14.3

Solution

Polynomial Functions

A polynomial function of degree n (where n is a nonnegative integer) is written as:

Example:

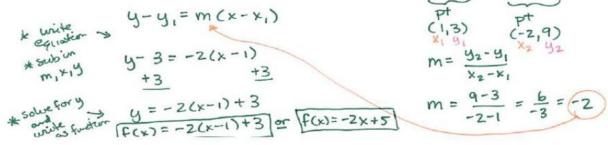
Write a sample polynomial:

$$f(x) = 23x^{7} + 20x^{6} + 17x^{5} + 14x^{4} - 10x^{3} + 2$$

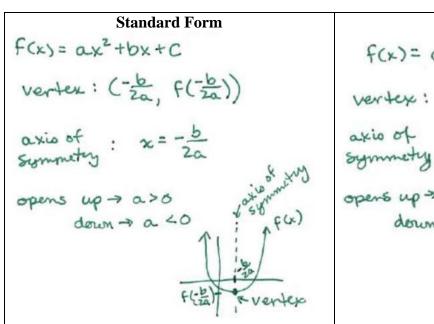
Degree: 7

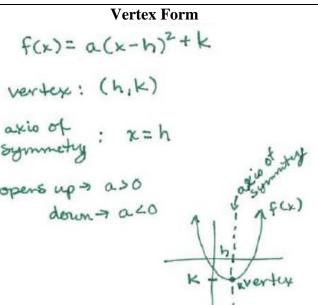
Leading coefficient: 23

Name	Form	Degree
Zero Function	F(x)=0	no degree
Constant Function	f(x)=c constant	0
Linear Function	f(x)=ax+b	1
Quadratic Function	f(x)= ax2+bx+c	2


Linear Function

$$f(x) = ax + b$$


One of the forms below is needed to write a linear function.


Slope-Intercept Form	Point-Slope Form	
y= m x+6 1 R slope y-wherept	$y-y_1 = m(x-x_1)$ $\begin{cases} slope \\ Point \end{cases}$	
y-int solope = rise run	$y_1 + \cdots = y_1 + \cdots = y_2 - y_1$ $x_1 + x_2 = y_2 - y_1$ $x_2 - x_1$	

Example: Write an equation for the linear function, f(x), where f(1) = 3 and f(-2) = 9.

Quadratic Function

Find the vertex, find the axis of symmetry, and describe the opening of the function:

Example 1:

$$f(x) = 3(x+2)^2 - 7$$
vortex: (-2,-7)

axis of symuty: x = -2

opens up b/c a>0

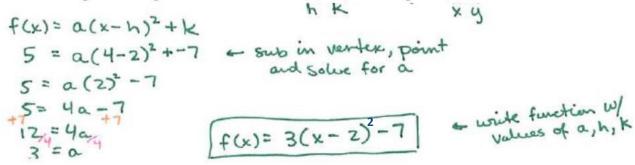
Example 2: $g(x) = -2x^2 + 7x - 3$ vertex: (-7/2(-2)) 9(2(-2))

(1.75, 9(1.75))

(1.75, 3.125)

opens down b/c a 40

Example 3:


Example 3:

$$h(x) = 8 + 2x - x^{2} \implies h(x) = -x^{2} + 2x + 8$$
Vertex: $(\frac{2}{2(-1)}, h(\frac{2}{2(-1)})$
(1, h(1))
$$(1, 9)$$
axis of symmetry: $x = 1$
opens down b/c a $\angle 0$

$$(a = -1) \cdots \bigcirc \bigcirc$$

Example 4:

Write the quadratic equation with the vertex (2, -7) and the point (4,5).

More Practice

Writing Linear Equations

http://www.mathsisfun.com/algebra/linear-equations.html

 $\underline{\text{http://www.mathplanet.com/education/algebra-1/formulating-linear-equations/writing-linear-$

 $\underline{https://www.khanacademy.org/math/algebra/two-var-linear-equations/point-slope/v/idea-behind-point-slope-form}$

https://www.youtube.com/watch?v=eHPTyYbNmx4

Quadratic Functions

http://mathbitsnotebook.com/Algebra1/Quadratics/QDVertexForm.html

http://www.purplemath.com/modules/grphquad2.htm

http://jwilson.coe.uga.edu/emt668/emat6680.f99/jones/instructional%20unit/writingquads.html

https://www.youtube.com/watch?v=0vSVCN3kJTY

https://www.youtube.com/watch?v=Pk-vBgl67JI

https://www.youtube.com/watch?v=BYlWhtgUwJI

Homework Assignment

p.169 #9,13,16,17,21,23, 25,27,35,39

SAT Connection

Solution

Choice A is correct. In the equation h = 3a + 28.6, if a, the age of the boy, increases by 1, then h becomes h = 3(a + 1) + 28.6 = 3a + 3 + 28.6 = (3a + 28.6) + 3. Therefore, the model estimates that the boy's height increases by 3 inches each year.

Alternatively: The height, h, is a linear function of the age, a, of the boy. The coefficient 3 can be interpreted as the rate of change of the function; in this case, the rate of change can be described as a change of 3 inches in height for every additional year in age.

Choices B, C, and D are incorrect and are likely to result from common errors in calculating the value of h or in calculating the difference between the values of h for different values of a.