\qquad
Unit 2 (Chapter 2): Polynomial \& Rational Functions

2.3 Polynomial Functions of Higher Degree w/Modeling

Target 2A: Graph, Solve and Analyze Polynomial Functions
Review of Prior Concepts
Find the degree and leading coefficient of: $f(x)=5 x^{2}-4 x^{3}+2-7 x$.

End Behavior of polynomials:
\longrightarrow What happens to the graph of $f(x)$ as \qquad and \qquad

Notation	Meaning of the Notation

Using a graphing calculator, describe the end behavior of the function.

1. $f(x)=x^{2}+3 x-1$
2. $g(x)=-x^{3}+2 x$

More Practice
 End Behavior
 http://www.coolmath.com/precalculus-review-calculus-intro/precalculus-algebra/14-tail-behavior-limits-at-infinity-02 https://www.youtube.com/watch?v=Krjd_vU4Uvg

SAT Connection

Heart of Algebra
9. Understand connections between algebraic and graphical representations.

Example: Line ℓ in the $x y$-plane contains points from each of
Quadrants II, III, and IV, but no points from Quadrant I. Which of the following must be true?
A) The slope of line ℓ is undefined.
B) The slope of line ℓ is zero.
C) The slope of line ℓ is positive.
D) The slope of line ℓ is negative.

For any polynomial function $f(x)=a_{n} x^{n}+\cdots+a_{1} x+a_{0}$,

$$
\lim _{x \rightarrow-\infty} f(x) \quad \text { and } \quad \lim _{x \rightarrow \infty} f(x)
$$

are determined by the degree n of the polynomial and its leading coefficient a_{n}.

Conclusions about Leading Term Test

1. When n (degree) is even, the end behaviors are \qquad
2. When n is odd, the end behaviors are \qquad
3. Whenever the leading coefficient is positive, $\lim _{x \rightarrow \infty} f(x)=$ \qquad

- In other words, the graph ends by approaching the \qquad direction.

4. Whenever the leading coefficient is negative, $\lim _{x \rightarrow \infty} f(x)=$ \qquad

- In other words, the graph ends by approaching the \qquad direction.

Examples
Describe the end behavior of each function WITHOUT using a graphing calculator

1. $f(x)=x^{4}-2 x$
2. $g(x)=-4 x^{5}$
3. $h(x)=7-3 x^{6}$
4. $k(x)=-\frac{1}{2} x^{2}+5 x^{7}$

More Practice

Leading Term Test
http://hotmath.com/hotmath help/topics/leading-coefficient-test.html
https://www.boundless.com/algebra/textbooks/boundless-algebra-textbook/polynomials-and-rational-
functions-7/graphing-polynomial-functions-346/the-leading-term-test-143-725/
https://www.khanacademy.org/math/algebra2/polynomial-functions/polynomial-end-
behavior/v/polynomial-end-behavior
http://www.math.brown.edu/UTRA/polynomials.html\#graphing
https://www.youtube.com/watch?v=W1mSBnu61MI
https://www.youtube.com/watch?v=WU4sufdUHqY

Solution

Choice D is correct. The quadrants of the $x y$-plane are defined as follows: Quadrant I is above the x-axis and to the right of the y-axis; Quadrant II is above the x-axis and to the left of the y-axis; Quadrant III is below the x-axis and to the left of the y-axis; and Quadrant IV is below the x-axis and to the right of the y-axis. It is possible for line ℓ to pass through Quadrants II, III, and IV, but not Quadrant I, only if line ℓ has negative x - and y-intercepts. This implies that line ℓ has a negative slope, since between the negative x-intercept and the negative y-intercept the value of x increases (from negative to zero) and the value of y decreases (from zero to negative); so the quotient of the change in y over the change in x, that is, the slope of line ℓ, must be negative.

Choice A is incorrect because a line with an undefined slope is a vertical line, and if a vertical line passes through Quadrant IV, it must pass through Quadrant I as well. Choice B is incorrect because a line with a slope of zero is a horizontal line and, if a horizontal line passes through Quadrant II, it must pass through Quadrant I as well. Choice C is incorrect because if a line with a positive slope passes through Quadrant IV, it must pass through Quadrant I as well.

