Unit 2 (Chapter 2): Polynomial & Rational Functions

DATE: ____ Pre-Calculus

2.3 Polynomial Functions of Higher Degree w/Modeling

Target 2A: Graph, Solve and Analyze Polynomial Functions

Review of Prior Concepts

Find the degree and leading coefficient of: $f(x) = 5x^2 - 4x^3 + 2 - 7x$.

End Behavior of polynomials:

What happens to the graph of f(x) as _____ and _____

Notation	Meaning of the Notation

Using a graphing calculator, describe the end behavior of the function.

1. $f(x) = x^2 + 3x - 1$ **2.** $g(x) = -x^3 + 2x$

More Practice

End Behavior

http://www.coolmath.com/precalculus-review-calculus-intro/precalculus-algebra/14-tail-behavior-limits-at-infinity-02 https://www.youtube.com/watch?v=Krjd_vU4Uvg

SAT Connection Heart of Algebra

9. Understand connections between algebraic and graphical representations.

Example: Line ℓ in the xy-plane contains points from each of Quadrants II, III, and IV, but no points from Quadrant I. Which of the following must be true?

- A) The slope of line ℓ is undefined.
- B) The slope of line ℓ is zero.
- C) The slope of line ℓ is positive.
- D) The slope of line ℓ is negative.

Solution

Unit 2 (Chapter 2): Polynomial & Rational Functions Leading Term Test for Polynomial End Behavior

For any polynomial function $f(x) = a_n x^n + \dots + a_1 x + a_0$,

$$\lim_{x \to -\infty} f(x) \quad \text{and} \quad \lim_{x \to \infty} f(x)$$

are determined by the degree n of the polynomial and its leading coefficient a_n .

Conclusions about Leading Term Test

- 1. When *n* (degree) is even, the end behaviors are _____
- 2. When *n* is odd, the end behaviors are _____
- 3. Whenever the leading coefficient is positive, $\lim_{x \to \infty} f(x) =$ _____
 - In other words, the graph ends by approaching the ______ direction.
- 4. Whenever the leading coefficient is negative, $\lim_{x \to \infty} f(x) =$ _____
 - In other words, the graph ends by approaching the ______ direction.

Examples

Describe the end behavior of each function WITHOUT using a graphing calculator 1. $f(x) = x^4 - 2x$ **2.** $g(x) = -4x^5$

3. $h(x) = 7 - 3x^6$

4.
$$k(x) = -\frac{1}{2}x^2 + 5x^7$$

More Practice

Leading Term Test	
http://hotmath.com/hotmath_help/topics/leading-coefficient-test.html	
https://www.boundless.com/algebra/textbooks/boundless-algebra-textbook/polynomials-and-rational-	
functions-7/graphing-polynomial-functions-346/the-leading-term-test-143-725/	
https://www.khanacademy.org/math/algebra2/polynomial-functions/polynomial-end-	
behavior/v/polynomial-end-behavior	
http://www.math.brown.edu/UTRA/polynomials.html#graphing	
https://www.youtube.com/watch?v=W1mSBnu61MI	
https://www.youtube.com/watch?v=WU4sufdUHqY	

Homework Assignment p.193 #5,9,12,18,19

Choice D is correct. The quadrants of the *xy*-plane are defined as follows: Quadrant I is above the *x*-axis and to the right of the *y*-axis; Quadrant II is above the *x*-axis and to the left of the *y*-axis; Quadrant III is below the *x*-axis and to the left of the *y*-axis; and Quadrant IV is below the *x*-axis and to the right of the *y*-axis. It is possible for line ℓ to pass through Quadrants II, III, and IV, but not Quadrant I, only if line ℓ has negative *x*- and *y*-intercepts. This implies that line ℓ has a negative slope, since between the negative *x*-intercept and the negative *y*-intercept the value of *x* increases (from negative to zero) and the value of *y* decreases (from zero to negative); so the quotient of the change in *y* over the change in *x*, that is, the slope of line ℓ , must be negative.

Choice A is incorrect because a line with an undefined slope is a vertical line, and if a vertical line passes through Quadrant IV, it must pass through Quadrant I as well. Choice B is incorrect because a line with a slope of zero is a horizontal line and, if a horizontal line passes through Quadrant II, it must pass through Quadrant I as well. Choice C is incorrect because if a line with a positive slope passes through Quadrant IV, it must pass through Quadrant I as well.