\qquad
Unit 2 (Chapter 2): Polynomial \& Rational Functions

2.4 Real Zeroes of Polynomial Functions

Target 2B: Find Real and Complex Zeroes of Polynomials by Synthetic and Long Division Review of Prior Concepts

1. Write the factored form of the polynomial function that crosses the x-axis @ $x=3$ and $x=-2$ and touches the x-axis @ $x=1$ with a degree of 6 .
2. Write the factored form of the polynomial function: $f(x)=x^{3}-4 x$
3. Perform long division to find the remainder of: $1272 \div 7$

More Practice

```
Factored form of Polynomials
https://www.youtube.com/watch?v=PmBNhKRhpqE
http://www.mathplanet.com/education/algebra-1/factoring-and-polynomials/polynomial-equations-in-factored-form
```


SAT Connection

Passport to Advanced Mathematics
11. Understand the relationship between zeros and factors of polynomials.

Example:

A) $y=(x+3)(x-5)$
B) $y=(x-3)(x+5)$
C) $y=x(x-2)-15$
D) $y=(x-1)^{2}-16$

Which of the following is an equivalent form of the equation of the graph shown in the $x y$-plane above, from which the coordinates of vertex A can be identified as constants in the equation?

Divide $f(x)=x^{3}+4 x^{2}+7 x-9$ by $d(x)=x+3$

Long Division

Example: Divide $f(x)=x^{3}+3 x-4$ by $g(x)=x-2$

Remainder Theorem

If a polynomial $f(x)$ is divided by $x-k$, then $f(k)=$ remainder .

Example:
Find the remainder when $f(x)=x^{3}+3 x-4$ is divided by $g(x)=x-2$

To determine if $x-k$ is a factor of a polynomial $f(x)$, use either:
(1) Synthetic Division
(2) Remainder Theorem

Example:
Does $f(x)=x^{3}-5 x^{2}-18 x+72$ have the factor $g(x)=x-3$?
Remainder Theorem
Synthetic Division

Example:

Find two factors of $f(x)=3 x^{4}-2 x^{3}-9 x^{2}+4$ using the graphing calculator and find the other factors using synthetic division.

More Practice

Real Zeros of Polynomials

http://www.coolmath.com/algebra/22-graphing-polynomials/05-real-zeros-03
https://people.richland.edu/james/lecture/m116/polynomials/zeros.html
Synthetic Division
http://mathbitsnotebook.com/Algebra2/Polynomials/POPolySynDivide.html
http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut37_syndiv.htm http://www.mesacc.edu/~scotz47781/mat120/notes/divide_poly/synthetic/synthetic_division.html https://www.youtube.com/watch?v=1byR9UEQJN0
Remainder Theorem \& Factor Theorem
https://www.mathsisfun.com/algebra/polynomials-remainder-factor.html
http://mathbitsnotebook.com/Algebra2/Polynomials/PORemainderTh.html
https://www.youtube.com/watch?v=_IPqCaspZOs

Homework Assignment
p. 205 \#1,7,9,10,15,17,22,25,26,27

Solution

Choice \mathbf{D} is correct. Any quadratic function q can be written in the form $q(x)=a(x-h)^{2}+k$, where a, h, and k are constants and (h, k) is the vertex of the parabola when q is graphed in the coordinate plane. (Depending on the sign of a, the constant k must be the minimum or maximum value of q, and h is the value of x for which $a(x-h)^{2}=0$ and $q(x)$ has value k.) This form can be reached by completing the square in the expression that defines q. The given equation is $y=x^{2}-2 x-15$, and since the coefficient of x is -2 , the equation can be written in terms of $(x-1)^{2}=x^{2}-2 x+1$ as follows: $y=x^{2}-2 x-15=\left(x^{2}-2 x+1\right)-16=(x-1)^{2}-16$. From this form of the equation, the coefficients of the vertex can be read as $(1,-16)$

Choices A and C are incorrect because the coordinates of the vertex A do not appear as constants in these equations. Choice B is incorrect because it is not equivalent to the given equation.

