Unit 2 (Chapter 2): Polynomial & Rational Functions

DATE: ____ Pre-Calculus

2.4 Real Zeroes of Polynomial Functions

Target 2B: Find Real and Complex Zeroes of Polynomials by Synthetic and Long Division Review of Prior Concepts

- 1. Write the factored form of the polynomial function that crosses the *x*-axis @ x = 3 and x = -2 and touches the *x*-axis @ x = 1 with a degree of 6.
- 2. Write the factored form of the polynomial function: $f(x) = x^3 4x$
- 3. Perform long division to find the remainder of: $1272 \div 7$

More Practice

Factored form of Polynomials

<u>https://www.youtube.com/watch?v=PmBNhKRhpqE</u> <u>http://www.mathplanet.com/education/algebra-1/factoring-and-polynomials/polynomial-equations-in-factored-form</u>

SAT Connection Passport to Advanced Mathematics

11. Understand the relationship between zeros and factors of polynomials.

Which of the following is an equivalent form of the equation of the graph shown in the *xy*-plane above, from which the coordinates of vertex *A* can be identified as constants in the equation?

Solution

Long Division

Synthetic Division

- Set divisor equal to zero & solve for *x*.
- Write coefficients of dividend (use 0 for any missing term)

Example: Divide $f(x) = x^3 + 3x - 4$ by g(x) = x - 2

Remainder Theorem If a polynomial f(x) is divided by x - k, then f(k) = remainder. *Example:* Find the remainder when $f(x) = x^3 + 3x - 4$ is divided by g(x) = x - 2To determine if x - k is a factor of a polynomial f(x), use either: ^① Synthetic Division ^② Remainder Theorem Example: Does $f(x) = x^3 - 5x^2 - 18x + 72$ have the factor g(x) = x - 3? Remainder Theorem Synthetic Division

Example:

Find two factors of $f(x) = 3x^4 - 2x^3 - 9x^2 + 4$ using the graphing calculator and find the other factors using synthetic division.

More Practice

 Real Zeros of Polynomials

 http://www.coolmath.com/algebra/22-graphing-polynomials/05-real-zeros-03

 https://people.richland.edu/james/lecture/m116/polynomials/zeros.html

 Synthetic Division

 http://mathbitsnotebook.com/Algebra2/Polynomials/POPolySynDivide.html

 http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut37_syndiv.htm

 http://www.mesacc.edu/~scotz47781/mat120/notes/divide_poly/synthetic/synthetic_division.html

 https://www.youtube.com/watch?v=1byR9UEQJN0

 Remainder Theorem & Factor Theorem

 https://www.mathsisfun.com/algebra/polynomials-remainder-factor.html

 http://mathbitsnotebook.com/Algebra2/Polynomials/PORemainderTh.html

 https://www.youtube.com/watch?v=_IPqCaspZOs

Homework Assignment p.205 #1,7,9,10,15,17,22,25,26,27 **Choice D is correct**. Any quadratic function *q* can be written in the form $q(x) = a(x - h)^2 + k$, where *a*, *h*, and *k* are constants and (h, k) is the vertex of the parabola when *q* is graphed in the coordinate plane. (Depending on the sign of *a*, the constant *k* must be the minimum or maximum value of *q*, and *h* is the value of *x* for which $a(x - h)^2 = 0$ and q(x) has value *k*.) This form can be reached by completing the square in the expression that defines *q*. The given equation is $y = x^2 - 2x - 15$, and since the coefficient of *x* is -2, the equation can be written in terms of $(x - 1)^2 = x^2 - 2x + 1$ as follows: $y = x^2 - 2x - 15 = (x^2 - 2x + 1) - 16 = (x - 1)^2 - 16$. From this form of the equation, the coefficients of the vertex can be read as (1, -16)

Choices A and C are incorrect because the coordinates of the vertex *A* do not appear as constants in these equations. Choice B is incorrect because it is not equivalent to the given equation.