2.4 Real Zeroes of Polynomial Functions

Target 2B: Find Real and Complex Zeroes of Polynomials by Synthetic and Long Division *Review of Prior Concepts*

Write the factored form of the polynomial function that crosses the x-axis @ x = 3 and x = -2 and touches the x-axis @ x = 1 with a degree of 6.

ever-expand f(x) = (x-1)(x-3)(x+2)

supponents need to add to 6

Write the factored form of the polynomial function: $f(x) = x^3 - 4x$

$$f(x) = x(x^2 - 4)$$

 $f(x) = x(x - 2)(x + 2)$

Perform long division to find the remainder of: $1272 \div 7$

More Practice

Factored form of Polynomials

 $\underline{https://www.youtube.com/watch?v=PmBNhKRhpqE}$

 $\underline{http://www.mathplanet.com/education/algebra-1/factoring-and-polynomials/polynomial-equations-infactored-form}$

SAT Connection

Passport to Advanced Mathematics

11. Understand the relationship between zeros and factors of polynomials.

Example:

A)
$$v = (x+3)(x-5)$$

R)
$$v = (r - 3)(r + 5)$$

C)
$$y = x(x-2) - 15$$

parent finction x
shifted right 2 unit,
down 16 units

Which of the following is an equivalent form of the equation of the graph shown in the *xy*-plane above, from which the coordinates of vertex *A* can be identified as constants in the equation?

Dividing Polynomials

Divide
$$f(x) = x^3 + 4x^2 + 7x - 9$$
 by $d(x) = x + 3$

Long Division

$$\frac{x^{2} + x + 4}{x+37x^{3}+4x^{2}+7x-9}$$

$$\frac{-(x^{3}+3x^{2})}{x^{2}+7x}$$

$$\frac{-(x^{2}+3x)}{4x-9}$$

$$\frac{-(4x+12)}{-21}$$

$$= \frac{-(4x+12)}{x+3}$$

$$= x^{3}+4x^{2}+7x-9$$

$$= x^{2}+x+4+\frac{-21}{x+3}$$

Synthetic Division

- Set divisor equal to zero & solve for x.
- Write coefficients of dividend (use 0 for any missing term)

$$x+3=6$$
 $x=3$

1 4 7 -9 ① bring down
L.c.

2 multiply by
 $x=k$

Remaider

1 3 add

4 repeat $2+3$

Function

 $x+3=6$
 $x=3$

Function

 $x=1$
 $x=1$

Example: Divide
$$f(x) = x^3 + 3x - 4$$
 by $g(x) = x - 2$

Remainder Theorem

If a polynomial f(x) is divided by x - k, then f(k) = remainder.

Example:

Find the remainder when $f(x) = x^3 + 3x - 4$ is divided by g(x) = x - 2

$$f(2) = 2^3 + 3(2) - 4$$

= $8 + 6 - 4$
= $14 - 4$
 $f(2) = 10$
remainder

To determine if x - k is a factor of a polynomial f(x), use either:

- ① Synthetic Division
- ② Remainder Theorem

if remainder is ZERO, then x-k is a factor

Example:

Does $f(x) = x^3 - 5x^2 - 18x + 72$ have the factor g(x) = x - 3?

Remainder Theorem

$$f(3) = 3^3 - 5(3)^2 - 18(3) + 72$$

$$= 27 - 45 - 54 + 72$$

$$f(3) = 0$$
Since remainder is zero,

Synthetic Division

Example:

Find two factors of $f(x) = 3x^4 - 2x^3 - 9x^2 + 4$ using the graphing calculator and find the other

More Practice

Real Zeros of Polynomials

http://www.coolmath.com/algebra/22-graphing-polynomials/05-real-zeros-03

https://people.richland.edu/james/lecture/m116/polynomials/zeros.html

Synthetic Division

http://mathbitsnotebook.com/Algebra2/Polynomials/POPolySynDivide.html

http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut37_syndiv.htm

http://www.mesacc.edu/~scotz47781/mat120/notes/divide_poly/synthetic/synthetic division.html

https://www.youtube.com/watch?v=1byR9UEQJN0

Remainder Theorem & Factor Theorem

https://www.mathsisfun.com/algebra/polynomials-remainder-factor.html

http://mathbitsnotebook.com/Algebra2/Polynomials/PORemainderTh.html

https://www.youtube.com/watch?v=_IPqCaspZOs

Homework Assignment

p.205 #1,7,9,10,15,17,22,25,26,27

SAT Connection

Solution

Choice D is correct. Any quadratic function q can be written in the form $q(x) = a(x - h)^2 + k$, where a, h, and k are constants and (h, k) is the vertex of the parabola when q is graphed in the coordinate plane. (Depending on the sign of a, the constant k must be the minimum or maximum value of q, and h is the value of x for which $a(x - h)^2 = 0$ and q(x) has value k.) This form can be reached by completing the square in the expression that defines q. The given equation is $y = x^2 - 2x - 15$, and since the coefficient of x is -2, the equation can be written in terms of $(x - 1)^2 = x^2 - 2x + 1$ as follows: $y = x^2 - 2x - 15 = (x^2 - 2x + 1) - 16 = (x - 1)^2 - 16$. From this form of the equation, the coefficients of the vertex can be read as (1, -16)

Choices A and C are incorrect because the coordinates of the vertex *A* do not appear as constants in these equations. Choice B is incorrect because it is not equivalent to the given equation.