\qquad

2.4 Real Zeroes of Polynomial Functions

Target 2B: Find Real and Complex Zeroes of Polynomials by Synthetic and Long Division

SAT Connection

Passport to Advanced Mathematics
11. Understand the relationship between zeros and factors of polynomials.

Example: For a polynomial $p(x)$, the value of $p(3)$ is -2 .
Which of the following must be true about $p(x)$?
A) $x-5$ is a factor of $p(x)$.
B) $x-2$ is a factor of $p(x)$.
C) $x+2$ is a factor of $p(x)$.
D) The remainder when $p(x)$ is divided by $x-3$ is -2 .
Solution

Rational Zeroes Theorem

Watch a video or view a website to learn about Rational Zeroes Theorem
http://www.wtamu.edu/academic/anns/mps/math/mathlab/col_algebra/col_alg_tut38_zero1.htm https://www.youtube.com/watch?v=7p2yeuAXSCs

Given a polynomial with integer coefficients,

$$
f(x)=\underbrace{a_{n}} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+\underbrace{a_{0}},
$$

and $x=\frac{p}{q}$ (in lowest terms) is a rational zero of $f(x)$
then, $\frac{p}{q}=$
(write an example from the website/video)
Example 1:

Example 2:
Find the rational zeroes of $f(x)=2 x^{3}-3 x^{2}-23 x+12$

- Factors of the constant \rightarrow
- Factors of the l.c. \rightarrow
- Possible rational zeroes:

Example 3: Find the zeroes of $f(x)=x^{3}-6 x^{2}+7 x+4$ and identify as rational or irrational.

More Practice

Rational Zeroes Theorem

http://www.sparknotes.com/math/algebra2/polynomials/section4.rhtml
http://www.virtualnerd.com/algebra-2/polynomials/roots-zeros/rational-zero-theorem/rational-zeros-
example
http://www.math-prof.com/Alg2/Alg2_Ch_16.asp
https://www.youtube.com/watch?v=YMyv9-9VXw4
https://www.youtube.com/watch?v=7mNBBBspqUc

Solution

Choice \mathbf{D} is correct. If the polynomial $p(x)$ is divided by $x-3$, the result can be written as $\frac{p(x)}{x-3}=q(x)+\frac{r}{x-3}$, where $q(x)$ is a polynomial and r is the remainder. Since $x-3$ is a degree 1 polynomial, the remainder is a real number. Hence, $p(x)$ can be written as $p(x)=(x-3) q(x)+r$, where r is a real number. It is given that $p(3)=-2$ so it must be true that $-2=p(3)=(3-3) q(3)+r=(0) q(3)+r=r$. Therefore, the remainder when $p(x)$ is divided by $x-3$ is -2 .

Choice A is incorrect because $p(3)=-2$ does not imply that $p(5)=0$. Choices B and C are incorrect because the remainder -2 or its negative, 2, need not be a root of $p(x)$.

