$\int_{3}^{3} (x^{2}+9)(x-1)(x-1) + \frac{3}{2}$ $= (x^{2}+9)(x^{2}-x-x+1) + \frac{3}{2}$ $= (x^{2}+9)(x^{2}-2x+1) + \frac{3}{2}$

 $=(x^4+9x^2-2x^3+x^2-18x+9)(x^3)$

 $= (x^{4} - 2x^{3} + 10x^{2} - 18x^{4} + 9x^{3})$ $= (x^{7} - 2x^{6} + 10x^{5} - 18x^{4} + 9x^{3})$

2.5 Complex Zeros and Fundamental Theorem of Algebra (More Practice) (Target 2C/2D)

1. Write a polynomial in standard form with the following zeroes:

a)
$$3+i,-2$$
 conjugate pair
 $x=3+i$ $x=3-i$ $x=-2$
 $x-3-i=0$ $x-3+i=0$ $x+2=0$

$$F(x)=(x-3-i)(x-3+i)(x+2)$$

$$=(x^2-3x+ix-3x+9-3i-ix+3i-i^2)(x+2)$$

$$=(x^2-6x+9-i^2)(x+2)$$

$$=(x^2-6x+9-(-i))(x+2)$$

$$=(x^2-6x+10)(x+2)$$

$$=(x^2-6x+10)(x+2)$$

$$=x^3+2x^2-6x^2-12x+10x+20$$

$$F(x)=x^3-4x^2-2x+20$$

b) 3i (multiplicity 1), 1 (multiplicity 2), 0 (multiplicity 3)

$$x=3i \quad x=-3i \quad x=1 \quad x=0$$

$$x-3i=0 \quad x+3i=0 \quad x-1=0$$

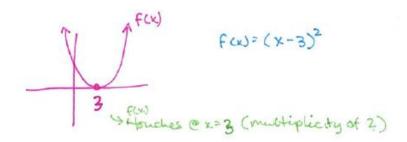
$$f(x)=(x-3i)(x+3i)(x-1)^2 \cdot x^3$$

$$=(x^2-3ix+3ix-9i^2)(x-1)^2 \cdot x^3$$

$$=(x^2-9(-1))(x-1)^2 \cdot x^3$$

$$=(x^2+9)(x-1)^2 \cdot x^3$$

2. Identify the zeroes and x-intercepts of the polynomial. a) $f(x) = (x-3)^2(x-1-i)(x-1+i)$


$$\chi - 3 = 0$$
 $\chi - 1 - i = 0$ $\chi - 1 + i = 0$
 $\chi = 3$ $\chi = 1 + i$ $\chi = 1 - i$
 $\chi = 1 - i$
 $\chi = 1 - i$
 $\chi = 1 - i$

b) $g(x) = x(x-4i)(x+4i)(x+1)^2$

$$\chi = 0$$
 $\chi - 4i = 0$ $\chi + 4i = 0$ $\chi = -4i$ $\chi = -1$

Draw a picture of (or explain why you are not able to draw) each of the following:

a) a quadratic function having only one real number root

b) a quadratic function having only one complex root.

c) a quadratic function with two real roots

f(x)=
$$(x+1)(x-3)$$

f(x)= $(x+1)(x-3)$
f(x)= $(x+1)(x-3)$
f(x)= $(x+1)(x-3)$
f(x)= $(x+1)(x-3)$
 $(x-3)$

d) a quadratic function with two complex roots.