2.5 Complex Zeros and Fundamental Theorem of Algebra (More Practice)

(Target 2C/2D)

1. Write a polynomial in standard form with the following zeroes:
a) $3+i,-2$ cmijugate pair
$x=3+i \quad x=3-i \quad x=-2$
$x-3-i=0 \quad x-3+i=0 \quad x+2=0$
$f(x)=(x-3-i)(x-3+i)(x+2)$
$=\left(x^{2}-3 x+i x-3 x+9-3 i-i x+3 i-i^{2}\right)(x+2)$
$=\left(x^{2}-6 x+9-i^{2}\right)(x+2)$
$=\left(x^{2}-6 x+9-(-1)\right)(x+2)$
$=\left(x^{2}-6 x+10\right)(x+2)$
$=x^{3}+2 x^{2}-6 x^{2}-12 x+10 x+20$
$f(x)=x^{3}-4 x^{2}-2 x+20$
b) $3 i$ (multiplicity 1), 1 (multiplicity 2), 0 (multiplicity 3)

$$
x=3 i \quad x=-3 i \quad x=1 \quad x=0
$$

$$
x-3 i=0 \quad x+3 i=0 \quad x-1=0
$$

$$
f(x)=(x-3 i)(x+3 i)(x-1)^{2} \cdot x^{3}
$$

$$
\begin{aligned}
& =(x-3 i)(x+3 i)(x-1)^{2} \cdot x^{3} \\
& =\left(x^{2}-3 i x+3 i x-9 i^{2}\right)(x-1)^{2} \cdot x^{3}
\end{aligned}
$$

$$
=\left(x^{2}-9(-1)\right)(x-1)^{2} \cdot x^{3}
$$

$$
\int=\left(x^{2}+9\right)(x-1)(x-1) x^{3}, ~=\left(x^{2}+9\right)\left(x^{2}-x-x+1\right) x^{3} .
$$

$$
=\left(x^{2}+9\right)(x-1)^{2} \cdot x^{3}
$$

$$
\begin{aligned}
& =\left(x^{2}+9\right)\left(x^{2}-2 x+1\right) x \\
& =\left(x^{4}+9 x^{2}-2 x^{3}+x^{2}-18 x+9\right)\left(x^{3}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(x^{7}+9 x^{2}-2 x+10 x^{2}-18 x+9\right) x^{3} \\
& =\left(x^{4}-2 x^{3}+1\right.
\end{aligned}
$$

2. Identify the zeroes and x-intercepts of the polynomial.
a) $f(x)=(x-3)^{2}(x-1-i)(x-1+i)$

$$
\begin{aligned}
& =\left(x^{4}-2 x^{3}+10 x^{2}-18 x+4\right) x \\
& =x^{7}-2 x^{6}+10 x^{5}-18 x^{4}+9 x^{3}
\end{aligned}
$$

$$
\begin{array}{ccc}
x-3=0 & x-1-i=0 & x-1+i=0 \\
x=3 & x=1+i & x=1-i
\end{array}
$$

zeroes: $3,1+i, 1-i$
x-int: 3
b) $g(x)=x(x-4 i)(x+4 i)(x+1)^{2}$

$$
\text { zeroes: } 0,-1, \pm 4 i
$$

$$
x \text {-int: } 0,-1
$$

Draw a picture of (or explain why you are not able to draw) each of the following:
a) a quadratic function having only one real number root

b) a quadratic function having only one complex root.

$$
\begin{aligned}
& \text { not possible } \\
& \text { a quadratic function must have } 2 \text { roots. } \\
& \text { If one root is complex, then the } 2^{\text {nd }} \text { root } \\
& \text { is its conjugate pain. } \therefore \text {, function must have } \\
& 2 \text { complex roots. }
\end{aligned}
$$

c) a quadratic function with two real roots

d) a quadratic function with two complex roots.

