

Rational Functions: Behavior

Brought to you by MATHguide.com.

MATHguide offers text lessons, interactive quizzes, and instructional videos on math education.

Preparation:

Students need to know the basics about end behavior. This video demonstrates end behavior.

<u>https://www.youtube.com/watch?v=LFZH0IUBVEM</u>

To assess student understanding of end behavior, have students use this dynamic quizmaster.

http://www.mathguide.com/cgi-bin/quizmasters3/EB.cgi

The teacher also has to have discussed finding the behavior at certain x-values, especially at values that are not part of a rational function's domain. An example has been provided for student/teacher discussion.

Teacher Directions:

The teacher should place students in groups of 2 - 3 students to work on the worksheet that has been provided.

Name: ___

Period:

Match the araphs to their res	nective functions	Use the table below to co	mnile vour matches
match the graphs to then res	pective junctions.		inplic your matches.

1) $r(x) = \frac{4x-1}{x+1}$	
4) $a(x) = 1 + \frac{1}{x+2}$	
7) $j(x) = \frac{-2}{x^2 - 1}^{x+2}$	

2) $t(x) = \frac{2x+1}{x}$
x = 1
$S(n(x)) - \frac{1}{x+1}$
8) $z(x) = \frac{-3}{x-2}$

3) $k(x) = -1 + \frac{1}{x-1}$
6) $c(x) = 2 - \frac{2}{x+3}$
9) $f(x) = \frac{1}{x^2 - 4}$

Function	Graph	Domain	Asymptotes	Describe Behavior at Vertical Asymptote(s)
1				
2				$\lim_{x \to -} f(x) = \lim_{x \to +} f(x) =$
3				
4				
5				
6				
7				
8				
9				

Sketch the graph of a rational function, called f(x), that has the given characteristics.

10)	$\lim_{x \to -\infty} f(x) = 1, \lim_{x \to +\infty} f(x) = 1,$	11) $\lim_{x \to -\infty} f(x) = -1, \lim_{x \to +\infty} f(x) = -1,$
	$\lim_{x \to 3^-} f(x) = +\infty$, and $\lim_{x \to 3^+} f(x) = -\infty$	$\lim_{x \to 1^{-}} f(x) = +\infty$, and $\lim_{x \to 1^{+}} f(x) = +\infty$
12)	$\lim_{x \to -\infty} f(x) = 3, \lim_{x \to +\infty} f(x) = 3, \lim_{x \to 2^{-}} f(x) = -\infty$, and $\lim_{x \to 2^+} f(x) = +\infty$, $\lim_{x \to -2^-} f(x) = +\infty$,
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.
	$\lim_{x \to -2^+} f(x) = -\infty, f(-1) = 0, f(0) = 2, \text{ and } f(1)$	= 0.