Open the TI-Nspire document *Transformations_of_Exponential_ Functions.tns.*

The purpose of this activity is to examine the family of exponential functions of the form $f(x) = c b^{x+a}$ where *a*, *b*, and *c* are

parameters. At the end of this activity, you will use your results to match each function with its corresponding graph.

Note: The parameter *b* is the base of the exponential function and $b > 0, b \neq 1$.

Move to page 2.1.

Press ctrl) and ctrl 4 to navigate through the lesson.

- 1. The graph of $y = f1(x) = b^x$ is shown in the right panel. Click the arrows in the left panel to change the value of b, and observe the changes in the graph of f1.
 - a. Explain why for every value of b, the graph of f1 passes through the point (0,1).
 - b. For b > 1, using limit notation, describe the graph of $y = f 1(x) = b^x$.
 - c. For 0 < b < 1, using limit notation, describe the graph of $y = f 1(x) = b^x$.
 - d. Find the domain and range of function $f l(x) = b^x$.
 - e. Does the graph of $y = b^x$ intersect the *x*-axis? Explain why or why not.

Move to page 3.1.

- 2. The graph of $y = f 1(x) = b^{x+a}$ is shown in the right panel. For a specific value of b, click the arrows to change the value of a and observe the changes in the graph of f1. Repeat this process for other values of b.
 - a. Describe the effect of the parameter *a* on the graph of $y = b^{x+a}$. Discuss the effects of both positive and negative values of *a*.

Move to page 4.1.

- 3. The graph of $y = f 1(x) = c \cdot b^{x+a}$ is shown in the right panel. For specific values of a and b, click the arrows to change the value of c, and observe the changes in the graph of f1. Repeat this process for other values of a and b.
 - a. Describe the effect of the parameter c on the graph of $y = c \cdot b^{x+a}$. Discuss the effects of both positive and negative values of c.

CONCLUSION:

Describe the transformation of the graph with parameters *a*,*b*,*c*, and *d*: $y = c \cdot b^{x+a} + d$.

Describe the transformation of the graph: $y = 3 \cdot 2^{x+1} - 5$

4. Match each equation with its corresponding graph.

(e) $f(x) = e^x$

(a)
$$f(x) = 3^{x-4}$$

(b) $f(x) = -\left(\frac{1}{3}\right)^x$
(c) $f(x) = (0.7)^{x-4}$
(d) $f(x) = -2(0.1)^{x+3}$
(e) $f(x) = e^x$
(f) $f(x) = -\left(\frac{1}{2}\right) \cdot \pi^x$

Note: The function in part (e) is the "natural" exponential function and involves the number $e \approx 2.71828...$

