\qquad
Unit 3 (Chapter 3): Exponential, Logistic, \& Logarithmic Functions

3.2 Exponential \& Logistic Modeling

Target 3F: Model real world situations and use regressions with the use of functions Review of Prior Concepts

The population of country A was 40 million in the year 2000 and has grown continually in the years following. The population P, in millions, of the country t years after 2000 can be modeled by the function $P(t)=40 e^{0.027 t}$, where $t \geq 0$.
Based on the model, the solution to the equation $50=40 e^{0.027 t}$ gives the number of years it will take for the population of country A to reach 50 million. What is the solution to the equation expressed as a logarithm?

More Practice

Introduction to Exponential Functions

http://www.virtualnerd.com/algebra-2/exponential-logarithmic-functions/exponentials/exponential-
functions/function-definition
https://www.khanacademy.org/math/algebra/introduction-to-exponential-functions/exponential-growth-and-decay/v/exponential-growth-functions https://www.youtube.com/watch?v=jnOwrj8OvYI

SAT Connection

Problem Solving and Data Analysis

5. Use the relationship between two variables to investigate key features of the graph.

[^0]
Solution

Exponential Population Model

Half-Life/Radioactive Decay Model

Example 1:
Write the exponential function that satisifies the given conditions:
a) initial value $=\$ 10$, increasing at a rate of 3% per day

$$
\begin{aligned}
& P(t)=P_{0}(1+r)^{t} \\
& P(t)=10(1+.03)^{t} \\
& P(t)=10(1.03)^{t}
\end{aligned}
$$

b) initial value $=\$ 10$, decreasing at a rate of 3% per day

$$
\begin{aligned}
P(t) & =P_{0}(1+r)^{t} \\
P(t) & =10(1+(-.03))^{t} \\
& =10(1-.03)^{t} \\
P(t) & =10(.97)^{t}
\end{aligned}
$$

c) initial population $=250$, halving every 2 hours

$$
\begin{aligned}
& y=y_{0}\left(\frac{1}{2}\right)^{t / t / 2} \\
& y=250\left(\frac{1}{2}\right)^{t / 2}
\end{aligned}
$$

or $y(t)=250\left(\frac{1}{2}\right)^{\frac{t}{2}}$

Example 2.

use
$t=-10$
2. The population of River City in the year 1910 was 4200 . Assume the population increased at a rate of 2.25% per year.
a) Estimate the population in 1930 and

$$
\begin{aligned}
& 10 \rightarrow \underline{1900} \\
& P(t)=4200(1+.0225)^{t} \\
& P(t)=4200(1.0225)^{t} \\
& P(20)=4200(1.0225)^{20} \\
&=6554.139 \\
&=6554 \text { people }=20 \\
& \text { pop. } \\
& \text { in i930 } \\
& P(-18)=4200(1.0225)^{-10} \\
&=3362.143 \\
&=3362 \text { people }
\end{aligned}
$$

$\rightarrow P_{0}$
b) Determine when the population reached 20,000.

$$
\begin{aligned}
P(t) & =4200(1.0225)^{t} \\
20000 & =4200(1.0225)^{t} \\
\frac{20000}{4200} & =(1.0225)^{t} \\
\ln \left(\frac{100}{21}\right) & =\ln (1.0225)^{t} \\
\ln \left(\frac{100}{21}\right) & =t \cdot \ln (1.0225)
\end{aligned}
$$

$$
\frac{\ln \left(\frac{100}{21}\right)}{\ln (1.0225)}=t
$$

$$
t=70.140
$$

3. The half-life of a certain radioactive substance is 65 days. There are 3.5 g present initially.
a) Express the amount of substance remaining as a function of time t.

$$
\text { or } y(t)=3.5\left(\frac{1}{2}\right)^{\frac{t}{65}}
$$

b) When will there be less than 1 g

$$
\begin{aligned}
& \text { remaining? } \\
& \frac{1}{3.5}=\left(\frac{1}{2}\right)^{t / 65} \\
& \ln \left(\frac{1}{3.5}\right)=\ln \left(\frac{1}{2}\right)^{t / 65} \\
& \ln \left(\frac{1}{3.5}\right)=\frac{t}{65} \ln \left(\frac{1}{2}\right) \\
& \frac{\ln \left(\frac{1}{3.5}\right)}{\ln \left(\frac{1}{2}\right)}=\frac{t}{65} \\
& 65\left(\frac{\ln \left(\frac{1}{3.5}\right)}{\ln \left(\frac{1}{2}\right)}\right)=t \longrightarrow t=117.478 \\
& 117 \text { days }
\end{aligned}
$$

There will be less than 1 g remaining after approximately 117 days.

```
More Practice
Exponential Population Models
http://www.mathsisfun.com/money/compound-interest.html
http://www.coolmath.com/algebra/17-exponentials-logarithms/03-compound-interest-01
https://youtu.be/m5Tf6vgoJtQ
Half-Life Models
http://www.coolmath.com/algebra/17-exponentials-logarithms/13-radioactive-decay-decibel-levels-01 https://youtu.be/kaxfCiP9d0w
```

Homework Assignment
p. 270 \#1,3,12,18,19,29,33,39,43

SAT Connection

Solution

Choice C is correct. Let x represent the number of installations that each unit on the y-axis represents. Then $9 x, 5 x, 6 x, 4 x$, and $3.5 x$ are the number of rooftops with solar panel installations in cities $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, and E , respectively. Since the total number of rooftops is 27,500 , it follows that $9 x+5 x+6 x+4 x+3.5 x=27,500$, which simplifies to $27.5 x=27,500$. Thus, $x=1,000$. Therefore, an appropriate label for the y-axis is "Number of installations (in thousands)."

Choices A, B, and D are incorrect and may result from errors when setting up and calculating the units for the y-axis.

[^0]: The number of rooftops with solar panel installations in 5 cities is shown in the graph above. If the total number of installations is 27,500 , what is an appropriate label for the vertical axis of the graph?

