\qquad
Unit 3 (Chapter 3): Exponential, Logistic, \& Logarithmic Functions

3.2 Exponential \& Logistic Modeling

Target 3F: Model real world situations and use regressions with the use of functions
Review of Prior Concepts
The population (P) of a city can be represented in an equation $P=3000 e^{k t}$, where $t=0$ represents the year 1900. In 1850, the population was 1100. Find the value of k and use this value of k to estimate the population in the year 2012.

More Practice

```
Population Modeling
http://www.coolmath.com/algebra/17-exponentials-logarithms/06-population-exponential-growth-01
http://www.purplemath.com/modules/expoprob2.htm
https://www.youtube.com/watch?v=63udRYh04sY
```


SAT Connection

Passport to Advanced Mathematics

1. Create a quadratic or exponential function or equation that models a context.

Example: A radioactive substance decays at an annual rate of 13 percent. If the initial amount of the substance is 325 grams, which of the following functions f models the remaining amount of the substance, in grams, t years later?
A) $f(t)=325(0.87)^{t}$
B) $f(t)=325(0.13)^{t}$
C) $f(t)=0.87(325)^{t}$
D) $f(t)=0.13(325)^{t}$

Solution

Logistic Model

Example 1:
p. 271 \#24

Example 2:
p. 271 \#26

Example 3:
p. 272 \#46

Logistic Models http://www.ck12.org/book/CK-12-Precalculus-Concepts/section/3.7/ More Practice https://www.youtube.com/watch? $\mathrm{v}=\mathrm{LyJrUtzKtwI}$
https://www.youtube.com/watch?v=OSMPeY354cU

SAT Connection

Solution

Choice A is correct. Each year, the amount of the radioactive substance is reduced by 13 percent from the prior year's amount; that is, each year, 87 percent of the previous year's amount remains. Since the initial amount of the radioactive substance was 325 grams, after 1 year, 325(0.87) grams remains; after 2 years $325(0.87)(0.87)=325(0.87)^{2}$ grams remains; and after t years, $325(0.87)^{t}$ grams remains. Therefore, the function $f(t)=325(0.87)^{t}$ models the remaining amount of the substance, in grams, after t years.

Choice B is incorrect and may result from confusing the amount of the substance remaining with the decay rate. Choices C and D are incorrect and may result from confusing the original amount of the substance and the decay rate.

