

Date

What is Log?

logarithms.

1.1 1.2 1.3 ▶ what_is_log

Turn the page to begin investigating

Open the TI-Nspire document *What_is_Log.tns.*

You may have noticed that above is [log]. What does *log* mean? Why is [log] placed above the exponential key? You will investigate these questions in this activity.

Move to page 1.2.

Press ctrl) and ctrl (to navigate through the lesson.

- 1. The graph of the function $f(x) = 2^x$ is shown.
 - a. What are the domain and range of f(x)?
 - b. Recall that $f(x) = 2^x$ is a one-to-one function, so it has an inverse reflected over the line y = x. What are the domain and range of $f^{-1}(x)$?
 - c. Point *P* is a point on f(x). Move the Show Reflection slider to Yes and then move point *P*. As you do so, point *P'* invisibly traces the graph of $f^{-1}(x)$. Since f(x) can be written as $y = 2^x$, write a corresponding equation for the inverse.
 - d. The equation $x = 2^{y}$ cannot be written as a function of y in terms of x without new notation. Move the Show Function slider to Yes. The inverse of f(x) is actually $f^{-1}(x) = \log_2(x)$. In general, $\log_b x = y$ is equivalent to $b^{y} = x$ for x > 0, b > 0 and $b \neq 1$. Why do you think x and b must be greater than 0? Why can b not be equal to 1?

e. Move point *P* so that its coordinates are (1, 2). The point (1, 2) on $f(x) = 2^x$ indicates that $2^1 = 2$. *P'* has the coordinates (2, 1). The point (2, 1) on $f^{-1}(x) = \log_2(x)$ indicates that $\log_2 2 = 1$. Use this relationship between exponential expressions and logarithmic expressions to complete the following table. (Move

point *P* as necessary.)

Р	P '	Exponential Expression	Logarithmic Expression
(1, 2)	(2, 1)	2 ¹ = 2	$\log_2 2 = 1$
(2, 4)			
	(8, 3)		
		2 [°] = 1	
		$2^{-1} = \frac{1}{2}$	
$\left(-2, \ \frac{1}{4}\right)$			
			$\log_2 \frac{1}{8} = -3$

Move to page 1.3.

2. Solve the logarithmic equation $\log_2 32 = y$ using the patterns from question 1. Then, use the slider to change the *n*-value to solve the logarithmic equation. How does the exponential equation verify your result?