DATE: \qquad
Pre-Calculus

3.6 Mathematics of Finance

Target 3G: Solve real-world applications using exponential and logarithmic functions

SAT Connection

Passport to Advanced Math
10. Interpret parts of nonlinear expressions in terms of their context

Example:

Jessica opened a bank account that earns 2 percent interest compounded annually. Her initial deposit was $\$ 100$, and she uses the expression $\$ 100(x)^{t}$ to find the value of the account after t years.
Jessica's friend Tyshaun found an account that earns 2.5 percent interest compounded annually. Tyshaun made an initial deposit of $\$ 100$ into this account at the same time Jessica made a deposit of $\$ 100$ into her account. After 10 years, how much more money will Tyshaun's initial deposit have earned than Jessica's initial deposit? (Round your answer to the nearest cent and ignore the dollar sign when gridding your response.)

Solution

Difference: $\$ 128.01-\$ 121.90$
 $\$ 6.11$

Compound Interest (\& Simple Interest)

Example

Find the value of your investment if you invest $\$ 500$ at 3% compounded annually for 5 years.

$$
\begin{aligned}
& A=500(1+.03)^{5} \\
& A=\$ 579.64
\end{aligned}
$$

Compound Interest (semiannually, quarterly, monthly, daily, periodically, etc.)

Example
Find the value of your investment if you invest $\$ 500$ at 3% compounded daily for 5 years.

$$
\begin{aligned}
A & =500\left(1+\frac{.03}{365}\right)^{365(5)} \\
A & =\begin{aligned}
P & =500 \\
k & =365 \quad(365 \text { days in a year) } \\
r & =39=.03 \\
t & =5
\end{aligned} \\
& =P\left(\lim _{k \rightarrow \infty}\left(1+\frac{r}{k}\right)^{k}\right)^{t} \\
A & \left.=\lim _{k \rightarrow \infty} P\left(1+\frac{r}{k}\right)^{r}\right)^{t} \\
& =P e^{r t}
\end{aligned}
$$

Compound Continuously

Example

Find the value of your investment if you invest $\$ 500$ at 3% compounded continuously for 5 years.

More Practice

Compound Periodically

http://www.mathsisfun.com/money/compound-interest-periodic.html
https://www.youtube.com/watch?v=3az4AKvUmmI
Compound Continuously
http://www.coolmath.com/algebra/17-exponentials-logarithms/04-continuous-compound-interest-02 https://www.youtube.com/watch?v=vyJM1n0AvZI

SAT Connection

Solution

The correct answer is $\mathbf{6 . 1 1}$. Jessica made an initial deposit of $\$ 100$ into her account. The interest on her account is 2 percent compounded annually, so after 10 years, the value of her initial deposit has been multiplied 10 times by the factor $1+0.02=1.02$. Hence, after 10 years, Jessica's deposit is worth $\$ 100(1.02)^{10}=\$ 121.899$ to the nearest tenth of a cent. Tyshaun made an initial deposit of $\$ 100$ into his account. The interest on his account is 2.5 percent compounded annually, so after 10 years, the value of his initial deposit has been multiplied 10 times by the factor $1+0.025=1.025$. Hence, after 10 years, Tyshaun's deposit is worth $\$ 100(1.025)^{10}=\$ 128.008$ to the nearest tenth of a cent. Hence, Jessica's initial deposit earned \$21.899 and Tyshaun's initial deposit earned $\$ 28.008$. Therefore, to the nearest cent, Tyshaun's initial deposit earned $\$ 6.11$ more than Jessica's initial deposit.

