3.7 Quadratic Systems Notes

Target 7A. Solve a system of various functions using technology.

	Choice Which numbers are tem of equations?	y-values of the solution	ns $\begin{cases} y = -x^2 + 5x + 6\\ y = x + 6 \end{cases}$
A 4 onl	y 🛞 6 only	🛈 4 and 6	6 (D) 6 and 10
Graph the	equations. Find their inters	ections.	
The soluti	ons appear to be (0, 6) and ((4, 10).	12 ¹ y
Check	$y = -x^2 + 5x + 6$	y = x + 6	
	$6 \stackrel{?}{=} -(0)^2 + 5(0) + 6$	6 <u>≥</u> 0 + 6	10 (4, 10)
	6 = 6 V	6 = 6 🖌	8
	$y = -x^2 + 5x + 6$	y = x + 6	(0, 6)
	$10 \stackrel{?}{=} -(4)^2 + 5(4) + 6$	$10 \stackrel{?}{=} 4 + 6$	/
	10 = 10 🖌	10 = 10 🖌	
The y-valu	ies of the solutions are 6 and	10, choice D.	

Problem 2 Solving a Linear-Quadratic System Using Substitution

What is the solution of the system of equations? $\begin{cases} y = -x^2 - x + 6\\ y = x + 3 \end{cases}$

Think	Write
Substitute $x + 3$ for y in the quadratic equation.	$x + 3 = -x^2 - x + 6$
Write in standard form.	$x^2 + 2x - 3 = 0$
Factor. Solve for x.	(x - 1)(x + 3) = 0 x = 1 or x = -3
Substitute for x in $y = x + 3$.	$x = 1 \rightarrow y = 1 + 3 = 4$ $x = -3 \rightarrow y = -3 + 3 = 0$
	The solutions are $(1, 4)$ and $(-3, 0)$.

You can solve quadratic-quadratic systems using the same methods you used for linear-quadratic systems.

Problem 3 Solving a Quadratic System of Equations

What is the solution of the system? $\begin{cases} y = -x^2 - x + 12\\ y = x^2 + 7x + 12 \end{cases}$

Method 1 Use substitution.

Substitute $y = -x^2 - x + 12$ for y in the second equation. Solve for x.

$x^2 - x + 12 = x^2 + 7x + 12$	Substitute for y.
$-2x^2 - 8x = 0$	Write in standard form.
-2x(x+4)=0	Factor.
x = 6 or x = -4	Solve for x.

Substitute each value of x into either equation. Solve for y.

 $y = x^2 + 7x + 12$ $y = x^2 + 7x + 12$ $y = (0)^2 + 7(0) + 12$ $y = (-4)^2 + 7(-4) + 12$ y = 0 + 0 + 12 = 12y = 16 - 28 + 12 = 0

The solutions are (0, 12) and (-4, 0).

Method 2 Graph the equations.

Use a graphing calculator. Define functions Y_1 and Y_2 .

Plot1 Plot2	Plot3
W2 = X ³ +7X+121	
(Y3 =	
W4 =	
Ws =	
176 -	
W7=	

Use the INTERSECT feature to find the points of intersection.

The solutions are (-4, 0) and (0, 12).

The solution of this system is the region where the graphs overlap. The region contains no boundary points.

Problem 5 (we did it in class)

What is the solution of the system of inequalities? $\begin{cases} y < x^2 + 5 \\ y > 2x^2 - 4 \end{cases}$

The solution of this system is again the region where the graphs overlap. The region contains no boundary points; i.e., any point directly on the parabola is not a solution of the system of inequalities. It's also important to note that our window could have been adjusted to see two intersection points, which are (-3, 14) and (3, 14). Do you think this is important? If so, why? Are these points part of the solution set? Why or why not?