\qquad
Unit 5 (Chapter 4): Trigonometric Functions

4.3 Circular Functions

Target 5A: Evaluate trigonometric functions and expressions
Target 5B: Use reference angles to evaluate trigonometric ratios given specific constrains
Review of Prior Concepts
In the following triangle, what is the value of $\sec n$?
(A) $\sqrt{5}$
(B) $2 \sqrt{5}$
(C) $\frac{\sqrt{5}}{2}$
(D) $\frac{\sqrt{5}}{5}$
(E) $\frac{2 \sqrt{5}}{5}$

Trigonometric Ratios
 http://www.themathpage.com/atrig/solve-right-triangles.htm
 http://www.mathguide.com/lessons/RightTriTrig.html
 https://www.youtube.com/watch?v=15VbdqRjTXc

SAT Connection

Passport to Advanced Math
14. Use structure to isolate or identify a quantity of interest in an expression

Example:

NOTE: You may start your answers in any column, space permitting.
Columns you don't need to use should be left blank.

In the $x y$-plane above, O is the center of the circle, and the measure of $\angle A O B$ is $\frac{\pi}{a}$ radians. What is the value of a ?

Vocabulary

Key Idea	Definition (in your own words)	Sketch/Drawing/Diagram
Initial Side		
Vertex		
Terminal Side		
Positive Angles		
Negative Angles		
Standard Position		
Coterminal Angles		

Examples

Sketch the angle θ whose terminal side in standard position passes through the given point, and find the six trigonometric functions for $\boldsymbol{\theta}$. Then, find the measure of the reference angle α and the angle $\boldsymbol{\theta}$ for each example.

1. $(9,12)$
2. $(-4,3)$

Find the angle that passes through the given point. Give your answer in radians and degrees. Then, find two more angles that are co-terminal with your solution angle for each example.
3. $(1, \sqrt{3})$
4. $(-3,3)$

More Practice

Exact Value of Angles
http://www.purplemath.com/modules/quadangs2.htm
https://www.youtube.com/watch?v=BZwIbvrcbEQ
https://www.youtube.com/watch?v=kpcT81MAOV4
Homework Assignment
p. 347 \#1,3,7,10,13,17,19,25,27,29

SAT Connection

Solution

The correct answer is 6 . By the distance formula, the length of radius $O A$ is $\sqrt{(\sqrt{3})^{2}+1^{2}}=\sqrt{3+1}=2$. Thus, $\sin (\angle A O B)=\frac{1}{2}$. Therefore, the measure of $\angle A O B$ is 30°, which is equal to $30\left(\frac{\pi}{180}\right)=\frac{\pi}{6}$ radians. Hence, the value of a is 6 .

