\qquad
Unit 5 (Chapter 4): Trigonometric Functions

4.4 Graphs of Sinusoidal Functions

Target 5C: Rigid and non-rigid transformations of sinusoids
Review of Prior Concepts
From the parent function $f(x)=x^{2}$, describe the transformation of $g(x)=(x-1)^{2}+3$ and give the domain and range of $g(x)$.

```
Transformations
https://www.mathsisfun.com/sets/function-transformations.html
https://www.khanacademy.org/math/algebra2/manipulating-functions/stretching-functions/v/shifting-
and-reflecting-functions
https://academics.utep.edu/Portals/1788/CALCULUS\%20MATERIAL/1_7\%20TRANSFORMATION
\%200F\%20FNS.pdf
https://www.youtube.com/watch?v=0a-AjP4UdnY
\(\underline{\text { https://www.youtube.com/watch? } v=3 Q 5 S y 034 f o k}\)
```


SAT Connection

Passport to Advanced Math
14. Use structure to isolate or identify a quantity of interest in an expression

Example:

Note: Figures not drawn to scale.

The angles shown above are acute and
$\sin \left(a^{\circ}\right)=\cos \left(b^{\circ}\right)$. If $a=4 k-22$ and $b=6 k-13$,
what is the value of k ?
A) 4.5
B) 5.5
C) 12.5
D) 21.5

Solution

- Sinusoidal Functions -
- Amplitude -
- Period -
- Phase Shift -
- Vertical Shift -
- Midline -

TI-Nspire Activity

Open the TI-Nspire document: Basic_Trigonometric_Transformations.tns

Move to page 1.2

1. Drag the sliders to change the values of a in the function $f(x)=a \sin (b x)$.
a) How does the value of a affect the shape of the graph?
1.1 1.2/2.1) Bascic_Triso...ons ∇ Kilx

Basic Trigonometric Transformations

Utilize sliders to explore the effects of changing the parameters a, b, c, and d in the functions $f(x)=a \sin (b x+c)+d$ and $g(x)=a \cos (b x+c)+d$.
b) What happens to the graph if a is negative?
c) How does the value of b affect the shape of the graph?

Conclusion:

For $a \neq 0$ and $b \neq 0$, the graph of $f(x)=a \sin (b x)$ has an amplitude of \qquad and a period of \qquad .

Move to page 2.2

2. Drag the sliders to change the value of d in the function of $f(x)=\sin (x)+d$. How does the value of d affect the shape of the graph?

Conclusion:

The graph of $f(x)=\sin (x)+d$ has a vertical shift of \qquad .

Move to page 3.2

3. Drag the sliders to change the value of c in the function of $f(x)=\sin (x+c)$. How does the value of c affect the shape of the graph?

Conclusion:

The graph of $f(x)=\sin (x+c)$ has a phase shift of \qquad .

Move to page 4.2
4. Drag the sliders to change the value of a, b, c and d in the function $f(x)=a \sin (b x+c)+d$. Which of the four parameters have an impact on the phase shift of the graph?

Conclusion:

The graph of $f(x)=a \sin (b x+c)+d$ has a phase shift of \qquad .

Apply Knowledge from Activity

$\left.\begin{array}{|c|c|c|}\hline \text { Transformation } & \begin{array}{c}\text { General Form } \\ f(x)=a \sin (b x+c)+d \\ \text { OR }\end{array} & \begin{array}{c}\text { Example } \\ \\ \\ \text { Amplitude }\end{array} \\ \hline & & f(x)=3 \cos (b x+c)+d\end{array}\right)$

Sketch the graph of: $f(x)=3 \sin (2 x+\pi)-4$

More Practice

Transformations of Sinusoidal Functions
https://www.khanacademy.org/math/trigonometry/trig-function-graphs
http://www.purplemath.com/modules/grphtrig.htm
http://www.algebralab.org/lessons/lesson.aspx?file=Trigonometry_TrigTransformations.xml
https://www.youtube.com/watch?v=iEbF1aa0Qps
https://www.youtube.com/watch?v=s_NI50p-pcg

Homework Assignment
p. 357 \#3,5,9,11,13,15,21,25

SAT Connection

Solution

Choice C is correct. Since the angles are acute and $\sin \left(a^{\circ}\right)=\cos \left(b^{\circ}\right)$, it follows from the complementary angle property of sines and cosines that $a+b=90$. Substituting $4 k-22$ for a and $6 k-13$ for b gives $(4 k-22)+(6 k-13)=90$, which simplifies to $10 k-35=90$. Therefore, $10 k=125$, and $k=12.5$.

Choice A is incorrect and may be the result of mistakenly assuming that $a+b$ and making a sign error. Choices B and D are incorrect because they result in values for a and b such that $\sin \left(a^{\circ}\right) \neq \cos \left(b^{\circ}\right)$.

