\qquad
Unit 5 (Chapter 4): Trigonometric Functions

4.8 Solving Problems with Trig

Target 5D: Evaluate inverse and composite trigonometric functions and expressions using the unit circle Review of Prior Concepts

More Practice

Trigonometry

https://www.khanacademy.org/math/trigonometry/trigonometry-right-triangles
http://www.mathsisfun.com/algebra/trigonometry.html
http://www.mathgoodies.com/lessons/vol2/circumference.html
https://www.youtube.com/watch? $\mathrm{v}=$ SqFQZWRALGc
https://www.youtube.com/watch?v=Jsiy4TxgIME

SAT Connection
Passport to Advanced Math
14. Use structure to isolate or identify a quantity of interest in an expression
corresponding side of triangle $A B C$. What is the
 $B C=16$, and $A C=20$. Triangle $D E F$ is similar to $(A$
triangle $A B C$, where vertices D, E, and F correspond to vertices A, B, and C, respectively, and each side of triangle $D E F$ is $\frac{1}{3}$ the length of the

$A B=12$

In triangle $A B C$, the measure of $\angle B$ is 90°,

$$
\sin F=\sin C
$$

$$
\sin F=\frac{12}{20}
$$

$$
=\frac{3}{5}
$$

NOTE: You may start your answers in any column, space permitting. Columns you don't need to use should be left blank.
value of $\sin F$?
Solution

Terminology

Angle of elevation (measure with respect to a horizontal line):

Angle of depression (measure with respect to a horizontal line):

Navigational angle (measure with respect to north, positive direction is clockwise):

Surveying, bearing angle (the acute angle at which the direction varies to the east or west from the north-south line):

Examples

1) From a point 384 ft in a horizontal line from the base of a building, the angle of elevation to the top of the building is 36°. How tall is the building?

$278.992=x$
2) A certain piece of land is in the shape of a right triangle. The longest side is 842 meters and bears S $36^{\circ} \mathrm{W}$. If one of the sides runs north-south, how long is the side that runs east-west?

$$
\begin{aligned}
& \sin 36^{\circ}=\frac{x}{842} \\
& 842 \sin 36^{\circ}=x \\
& 494.915=x
\end{aligned}
$$

The side that rums east-west
3) A piece of land slopes at an angle of 3° and runs for 280 ft in the direction of the slope. In order to level the land, a retaining wall is to be built at the lower end of the property so that fill-dirt can level the property. How high must the wall be?

$$
\begin{gathered}
\sin 3^{\circ}=\frac{x}{280} \\
280 \cdot \sin 3^{\circ}=x \\
14.654^{=}=x
\end{gathered}
$$

The wall must be
14.654 ft tall
4) p. $394 \# 14$

While hiking on a level path toward Colorado's Front Range, Otis Evans determines that the angle of elevation to the top of Long's Peak is 30°. Moving 1000 ft closer to the mountain, Otis determines the angle of elevation to be 35°. How much higher is the top of Long's Peak than Otis' elevation?

$d \cdot \tan 35^{\circ}=\frac{x}{d} \cdot d$
$\tan 30^{\circ}=\frac{x}{1000+d}$
$1000 \tan 30^{\circ} \tan 30^{\circ}=x \tan 35^{\circ}-$ $x+6-30^{\circ}$
$d \tan 35^{\circ}=x$
$d=\frac{x}{\tan 35^{\circ}} \quad\left(1 \tan 30^{\circ}=\frac{x}{1000+\frac{x}{\tan 35^{\circ}}}\left(10000 \tan 30^{\circ} \tan 35^{\circ}=x\left(\tan 35^{\circ}-1000\right.\right.\right.$
$\left.\tan 30^{\circ}\right)$

$3290.526 \mathrm{ft}=x$
5) p. $394 \# 18$

The Cerrito Lindo travels at a speed of 40 knots from Fort Lauderdale on a course of 65° for 2 hours and then changes to a course of 155° for 4 hours. Determine the distance and the bearing from Fort Lauderdale to the boat.

knots = speed, hrs = three
distance =(rate Alive)

$$
=(\text { knots })(\text { hrs })
$$

$$
d_{1}=(40)(2)
$$

$$
=80 \text { nautical miles }
$$

$$
d_{2}=(40)(4)
$$

$$
\begin{gathered}
=160 \text { nautical } \\
\text { miles }
\end{gathered}
$$

$$
\tan \theta=\frac{160}{80}
$$

$$
0.8
$$

$$
\theta=\tan ^{80}\left(\frac{160}{80}\right)=63.435^{\circ}
$$

More Practice

Trigonometric Ratios

http://www.themathpage.com/atrig/solve-right-triangles.htm
http://www.mathguide.com/lessons/RightTriTrig.html
https://www.youtube.com/watch?v=15VbdqRjTXc

SAT Connection

Solution
The correct answer is $\frac{3}{5}$ or .6. Triangle $A B C$ is a right triangle with its right angle at B. Thus, $\overline{A C}$ is the hypotenuse of right triangle $A B C$, and $\overline{A B}$ and $\overline{B C}$ are the legs of right triangle $A B C$. By the Pythagorean theorem, $A B=$ $\sqrt{20^{2}-16^{2}}=\sqrt{400-256}=\sqrt{144}=12$. Since triangle $D E F$ is similar to triangle $A B C$, with vertex F corresponding to vertex C, the measure of angle F equals the measure of angle C. Thus, $\sin F=\sin C$. From the side lengths of triangle $A B C, \sin C=\frac{\text { opposite side }}{\text { hypotenuse }}=\frac{A B}{A C}=\frac{12}{20}=\frac{3}{5}$. Therefore, $\sin F=\frac{3}{5}$. Either $\frac{3}{5}$ or its decimal equivalent, . 6 , may be gridded as the correct answer.

DATE:
Unit 5 (Chapter 4): Trigonometric Functions

