Unit 6 (Chapter 5): Analytic Trigonometry

5.6 The Law of Cosines

Target 6D: Use Law of Sines and Law of Cosines to solve triangles

2. Given $\angle \mathrm{A}=37^{\circ}, a=6, b=10$, find the (i) value of $\angle \mathrm{C}$.

$\sin 37^{\circ}=\frac{h}{10}$
$h=10 \sin 37^{\circ}$
$h=6.018$
$6<6.018$
\therefore, no Δ
$\angle C$ DNE

Law of Cosines

$$
c^{2}=a^{2}+b^{2}-2 a b \cos C
$$

OR

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

$$
\begin{gathered}
\text { OR } \\
b^{2}=a^{2}+c^{2}-2 a c \cos B
\end{gathered}
$$

∂ With what given conditions can Law of Cosines be used?

$$
\begin{aligned}
& \text { * Side-side-Side (SSS) } \\
& \text { * Side-Angle-Side (SAS) }
\end{aligned}
$$

Examples

1) Solve the triangle given $\angle \mathrm{C}=20^{\circ}, a=11 \mathrm{~cm}$, and $b=5 \mathrm{~cm}$.

$C=$?
$\angle A=$?
$\angle B=$?

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos c \\
& c^{2}=11^{2}+5^{2}-2(11)(5) \cos 20^{\circ} \\
& c=\sqrt{11^{2}+5^{2}-2(11)(5) \cos 20^{\circ}} \\
& c=6.529 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 11^{2}=5^{2}+(6.529)^{2}-2(5)(6.529) \cos A \\
& 11^{2}-5^{2}-(6.529)^{2}=-2(5)(6.529) \cos A \\
& \frac{11^{2}-5^{2}-(6.529)^{2}}{-2(5)(6.529)}=\cos A \\
& \angle A=\cos ^{-1}\left(\frac{11^{2}-5^{2}-(6.529)^{2}}{-2(5)(6.529)}\right)
\end{aligned}
$$

$$
\angle A=144.817^{\circ}
$$

$$
\begin{aligned}
& \angle B=180-\left(20^{\circ}+144.817^{\circ}\right) \\
& \angle B=15.183^{\circ}
\end{aligned}
$$

2) Solve the triangle given $a=7, b=8$, and $c=10$.

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& 10^{2}=7^{2}+8^{2}-2(7)(8) \cos C \\
& 100=113-112 \cos C \\
& -13=-112 \cos C \\
& \frac{13}{112}=\cos C \\
& \angle C=\cos ^{-1}\left(\frac{13}{112}\right) \\
& \angle C=83.335^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& 7^{2}=8^{2}+10^{2}-2(8)(10) \cos A \\
& 7^{2}-8^{2}-10^{2}=-2(8)(10) \cos A \\
& \frac{7^{2}-8^{2}-10^{2}}{-2(8)(10)}=\cos A \\
& \angle A=\cos ^{-1}\left(\frac{7^{2}-8^{2}-10^{2}}{-2(8)(10)}\right) \\
& \angle A=44.049^{\circ} \\
& \angle B=180-\left(83.335^{\circ}+44.049^{\circ}\right) \\
& \angle B=52.617^{\circ}
\end{aligned}
$$

Applications

Two ships leave port at $4 \mathrm{p} . \mathrm{m}$. One is headed at a bearing of N 38 E and is traveling at 11.5 miles per hour. The other is traveling 13 miles per hour at a bearing of S 47 E . How far apart are they when dinner is served at 6 p.m.?

$$
\begin{aligned}
& a=\left(11.5 \frac{\text { miles }}{h r}\right)(2 h r)=23 \text { miles } \\
& b=\left(\frac{13 \text { niles }}{h r}\right)(2 h r)=26 \text { miles } \\
& d^{2}=a^{2}+b^{2}-2 a b \cos D \\
& d^{2}=23^{2}+26^{2}-2(23)(26) \cos 95^{\circ} \\
& d=\sqrt{23^{2}+26^{2}-2(23)(26) \cos 95^{\circ}} \\
& d=36.183
\end{aligned}
$$

The two ships are 36.183 rimes apart when dinner is served
2) On a baseball field, the pitcher's mound is 60.5 feet from home plate. During practice, a batter hits a ball 261 feet at an angle of 31° to the right of the pitcher's mound. The right fielder catches the ball and throws it to the pitcher. How far does the right fielder throw the ball?

$$
\begin{aligned}
& x^{2}=60.5^{2}+261^{2}-2(60.5)(261) \cos 31^{\circ} \\
& x=\sqrt{60.5^{2}+261^{2}-2(60.5)(261) \cos 31^{\circ}}
\end{aligned}
$$

$$
x=211.45
$$

$$
\begin{aligned}
& \text { The right fielder throws the } \\
& \text { ball } 211.45 \mathrm{ft}
\end{aligned}
$$

```
    More Practice
Law of Cosines
https://www.mathsisfun.com/algebra/trig-cosine-law.html
http://www.mathwarehouse.com/trigonometry/law-of-cosines-formula-examples.php
https://www.khanacademy.org/math/geometry/hs-geo-trig/hs-geo-law-of-cosines/e/law_of_cosines
https://www.youtube.com/watch?v=ZE1OxG7_m3c
https://www.youtube.com/watch?v=ZElOxG7_m3c
https://www.youtube.com/watch?v=QkpDJaze31k
```

Homework Assignment
p. 494 \#1,3,5,9-17odd

