\qquad
Unit 8 (Chapter 6 \& 7): Matrices \& Vectors

Pre-Calculus

6.2 Dot Product of Vectors (continued)

Target 8D: Apply properties of vectors to real life situations
Review of Prior Concepts

1. Given $\vec{u}=\langle 5,2\rangle$ and $\vec{v}=\langle-4,3\rangle$, find the angle between the two vectors.
$\begin{array}{rlrl}\cos \theta & =\frac{5(-4)+2(3)}{(\sqrt{29})(5)} & |\vec{u}| & =\sqrt{5^{2}+2^{2}} \\ & =\sqrt{29} \\ \cos \theta & =\frac{-14}{5 \sqrt{29}} & |\vec{v}| & =\sqrt{(-4)^{2}+3^{2}} \\ \theta & =\cos ^{-1}\left(\frac{-14}{5 \sqrt{29}}\right) & & =5 \\ \theta & =121.329^{\circ} & & \end{array}$
2. Find the value of x that would make

$$
\begin{aligned}
& \vec{u}=\langle 5,2\rangle \text { and } \vec{v}=\langle x, 3\rangle \text { orthogonal. } \\
& \vec{u} \cdot \vec{v}=5(x)+2(3) \\
& 0=5 x+6 \\
& -6=5 x \\
& -6 / 5=x \\
& \text { or }=-1.2
\end{aligned}
$$

Work

$$
\begin{aligned}
\text { Work } & =\text { Force } \cdot \text { Distance } \\
W & =F \cdot d
\end{aligned}
$$

Examples:

1. Abigail lifts a book that weighs 2 lbs from the floor onto a shelf that is 4 feet high. How much work did she do?

$$
\begin{aligned}
W & =F \cdot d \\
& =(216 s)(4 \mathrm{ft}) \\
W & =8 \mathrm{ft} \cdot 16 \mathrm{~s}
\end{aligned}
$$

2. Juan is sitting on a desk. The combined weight of Juan and the desk is 155 pounds. How much work must Oswald do to lift Juan and the desk 6 ft high? $G_{\text {Force }}$

$$
\begin{aligned}
w & =F \cdot d \\
& =155(6) \\
& =930 \mathrm{ft} \cdot 1 \mathrm{bs}
\end{aligned}
$$

3. How much work must Karen do to life a $\underbrace{100 \text { pound }}_{\text {Force }}$ sack of potatoes $\underbrace{3 \text { feet? }}_{\text {dist }}$

$$
W=F \cdot d
$$

$=100 \cdot 3$
$=300 \mathrm{ft} \cdot 1 \mathrm{lbs}$

Work \& Force with Angular Direction Examples

1. Jose is sitting on a sled on the side of a hill that is inclined at a 35° angle. Jose and the sled weigh 140 lbs. Alejandro needs to use what force to pull Jose up the hill?

$$
\begin{aligned}
& \sin 35^{\circ}=\frac{|\vec{F}|}{140} \\
& 140 \sin 35^{\circ}=|\vec{F}| \\
& 80.301 \mathrm{lbs}=|\vec{F}|
\end{aligned}
$$

2. Mandy is pulling a box up a hill that weighs 20 lbs . The hill is at a 75° angle. What force does she need to use?

$$
\begin{aligned}
& \sin 75^{\circ}=\frac{|\vec{F}|}{20} \\
& 20 \sin 75^{\circ}=|\vec{F}| \\
& 19.319 \mathrm{lbs}=|\vec{F}|
\end{aligned}
$$

3. Oscar is dragging his luggage through the airport at an angle of 65° with a force of 400 N over a distance of 47 m . How much work did he do?

4. Find the work done by a, 10 pound force acting in the direction $\langle 1,2\rangle$ in moving an object 3
feet from $\left(\frac{0,0)}{\text { horizontal }(3,0)} \quad \zeta|\vec{F}|=10 \mathrm{lb}\right.$
$\cos \theta=\frac{u \cdot v}{|u| \| v \mid}$
$\cos \theta=\frac{1(3)+2(0)}{\sqrt{5} \cdot \sqrt{9}} \quad$ or $\cos \theta=\frac{1}{\sqrt{5}}$

$$
\begin{array}{rlrl}
\left|\vec{F}_{H}\right| & =|\vec{F}| \cos \theta & \\
& =10\left(\frac{1}{\sqrt{5}}\right) & w & =\left|\vec{F}_{H}\right| \cdot d \\
\left|\vec{F}_{H}\right| & =\frac{10}{\sqrt{5}} & & =\frac{10}{\sqrt{5}} \cdot 3
\end{array}
$$

$$
\begin{aligned}
w & =\left|\vec{F}_{H}\right| \cdot d \\
& =\frac{10}{\sqrt{5}} \cdot 3
\end{aligned}
$$

$$
\cos \theta=\frac{3}{\sqrt{5} \cdot 3}
$$

$$
\cos \theta=\frac{1}{\sqrt{5}}
$$

Work \& Force

https://www.varsitytutors.com/hotmath/hotmath_help/topics/solving-problems-with-vectors https://www.khanacademy.org/math/precalculus/vectors-precalc/applications-of-vectors/v/vector-component-in-direction
http://www.physicsclassroom.com/class/energy/Lesson-1/Calculating-the-Amount-of-Work-Done-byForces
https://www.mansfieldct.org/Schools/MMS/staff/hand/work=fxd.htm
http://www.uwgb.edu/fenclh/problems/energy/1/
https://youtu.be/WSY4HzWZIlo
https://youtu.be/tZOBPEwshb8
https://youtu.be/EKyWQKi76uo
$\frac{\text { Homework Assignment }}{\text { p. } 473 \text { \#29-43odd }}$

