6.2 Dot Product of Vectors (*Target* 8*C* & 8*D*) RALLY COACH Find the component form of \overrightarrow{AB} and find the magnitude of \overrightarrow{AB} .

1. A (2,4), B (-1,3) **1.** A (4,-2), B (5,-5)

Let $\vec{v} = \langle 2, -1 \rangle$ and $\vec{w} = \langle -3, 1 \rangle$. Find \vec{u} and sketch the vector operation. 2. $\vec{u} = 2\vec{v}$ 2. $\vec{u} = -2\vec{w}$

-			 	-
++-			++-	
		_		
-	++-			
-				

Find the unit vector. 3. $\vec{v} = \langle -2,5 \rangle$

3. $\vec{v} = \langle 3, -2 \rangle$

Find the direction angle of the vector. 4. $\mathbf{v} = -2\mathbf{i} + 5\mathbf{j}$

4. v = 3i - 2j

Sketch the two vectors. Find the angle between the two vectors 5. v = 3i + 2j, w = -3i + j5. v = -2i + j, w = 2i + 4j

Fi	nd u•v.
6.	$ \vec{u} = 8$, $ \vec{v} = 12$, and angle between
	\vec{u} and \vec{v} is 60°.

6. $|\vec{u}| = 4$, $|\vec{v}| = 5$, and angle between \vec{u} and \vec{v} is 120°.

Now, WORK TOGETHER.

7. Which pairs of vectors are orthogonal? (A) $\vec{v} = \langle 3, -2 \rangle, \vec{w} = \langle -1, 2 \rangle$

(C)
$$\vec{v} = \langle 3, -6 \rangle, \vec{w} = \langle 2, 1 \rangle$$

(B)
$$\vec{v} = \langle -2, 0 \rangle, \vec{w} = \langle 0, 5 \rangle$$

(D)
$$\vec{v} = \langle 2, -3 \rangle, \vec{w} = \langle -2, 3 \rangle$$

8. Find k so that \vec{u} and \vec{v} are orthogonal. $\vec{u} = -4k\vec{i} + 5\vec{j}, \ \vec{v} = 2\vec{i} - 6\vec{j}$

WORK Problems from http://www.physicsclassroom.com/calcpad/energy/problem

- **9.** Renatta Gass is out with her friends. Misfortune occurs and Renatta and her friends find themselves getting a *work*out. They apply a cumulative force of 1080 N to push the car 218 m to the nearest fuel station. Determine the work done on the car.
- **10.** Hans Full is pulling on a rope to drag his backpack to school across the ice. He pulls upwards and rightwards with a force of 22.9 Newtons at an angle of 35 degrees above the horizontal to drag his backpack a horizontal distance of 129 meters to the right. Determine the work (in Joules) done upon the backpack.
- 11. Lamar Gant, U.S. powerlifting star, became the first man to deadlift five times his own body weight in 1985. Deadlifting involves raising a loaded barbell from the floor to a position above the head with outstretched arms. Determine the work done by Lamar in deadlifting 300 kg to a height of 0.90 m above the ground.
- **12.** Sheila has just arrived at the airport and is dragging her suitcase to the luggage check-in desk. She pulls on the strap with a force of 190 N at an angle of 35° to the horizontal to displace it 45 m to the desk. Determine the work done by Sheila on the suitcase.
- **13.** While training for breeding season, a 380 gram male squirrel does 32 pushups in a minute, displacing its center of mass by a distance of 8.5 cm for each pushup. Determine the total work done on the squirrel while moving upward (32 times).