6.3 Parametric Equations

Target 10C: Solve real-world problems using parametric models
Review of Prior Concepts
Write the parametric equations in rectangular form.

Velocity Vector $=\left\langle v_{0} \cos \theta, v_{0} \sin \theta\right\rangle$
Horizontal position $\rightarrow x(t)=v_{0} \cos \theta t+x_{0}$
Vertical position $\rightarrow y(t)=\frac{1}{2} g t^{2}+v_{0} \sin \theta t+y_{0}$

Examples

1a) Maria was a star outfielder for the Oakland Athletics. It was game 7 of the World Series. She was up to bat with 2 outs and the bases were loaded in the bottom of the $9^{\text {th }}$ inning. The count was 3 and 2 (3 balls, 2 strikes) and the score was 3-6.

She was their only hope...The next pitch was a fastball, Maria's favorite pitch and it was in her wheelhouse. She closed her eyes and swung the bat as hard as she could.

She hit the ball at 3 feet above the ground with an initial speed of $150 \mathrm{ft} / \mathrm{sec}$ at an angle of 18 degrees with the horizontal. Did the A's win the World Series if the wall is 400 ft away and 20 ft high? Did the ball go over the fence? Did the outfielder catch the ball?

1b) Suppose there was a $25 \mathrm{ft} / \mathrm{sec}$ horizontal wind gust as Maria hit the ball. Does the ball clear the fence? If so, by how much?

$$
\begin{aligned}
& x(t)=\left(150 \cos 18^{\circ}+25\right) \cdot t \\
& 400=\left(150 \cos 18^{\circ}+25\right) \cdot t \\
& \frac{400}{150 \cos 18^{\circ}+25}=t \quad y(2.389)=-16(2.389)^{2}+\left(150 \sin 18^{\circ}\right)(2.389)+3 \\
& 2.389 \mathrm{sec}=t \\
& =22.515 \mathrm{ft} \\
& \text { Therefore, the ball clears the } 20 \mathrm{ft} \text { fence by } 2.515 \mathrm{ft} \text {. }
\end{aligned}
$$

2) Real-Life Situation from https://www.khanacademy.org/math/algebra-home/alg-trig-functions/alg-parametric/v/parametric-equations-1
Marzine and Jocelyn are driving in a car at a speed of $5 \mathrm{~m} / \mathrm{s}$; Mr. B. is chasing them down because he needs a homework assignment from them. They are afraid of being caught because they didn't complete all of the work that supports their answers. They are approaching a cliff 10 m away that is 50 m above Lake Michigan and have to decide to face the wrath of Mr. B., or see if the car can FLY!!!! They are very scared of Mr. B., so they chose the latter. After 2 seconds, will they be able to jump onto a hot air balloon that is 30 m off of the ground and 10 m from the cliff?

$$
\begin{array}{lll}
x_{0}=10 \mathrm{~m} & x(t)=v_{0} t+x_{0} & y(t)=\frac{1}{2} g t^{2}+v_{0} t+y_{0} \\
y_{0}=50 \mathrm{~m} & x(t)=5 t+10 & y(t)=\frac{1}{2}(-9.8) t^{2}+0+50 \\
\begin{array}{c}
\text { horizontal } \\
\text { velocity }
\end{array}=5 \mathrm{~m} / \mathrm{s} & & y(t)=-4.9 t^{2}+50
\end{array}
$$

make table of

t	x	y
0	10	50
1	15	45.1
2	20	30.4
3	25	5.9

At $t=0$, you are about to go off the cliff

\longrightarrow when $t=2, ~ M a r z i n e ~$ Jocelyn will be $\quad \begin{aligned} & 10 \mathrm{~m} \text { fran the cliff }+ \\ & 30.4 \mathrm{~m} \text { off the ground... }\end{aligned}$

```
    More Practice
Applications of Parametric Equations
http://www.ck12.org/book/CK-12-Precalculus-Concepts/section/10.5/
http://www.shelovesmath.com/precal/introduction-to-parametric-equations/#Applications
https://youtu.be/0Fi9iDDjD64
https://youtu.be/4o6MOaVtz8Y
```


Homework Assignment

p. 482 \#39,44,45,49,55

