DATE: \_\_\_\_\_

### **Polar Graphing Activity**

You will explore graphs of polar equations. A polar equation is a function rule in the form  $r = f(\theta)$ , where  $\theta$  can be measured in radians or degrees.

#### Use your calculator to explore the following:

1. Consider equations of the form:  $r = a \sin \theta$  $r = a \cos \theta$ . Experiment with different values for *a*.

- **a.** What type of figure is created by these equations?
- **b.** How do the figures differ when different trig functions are used (sin vs. cos)?
- **c.** What is significant about the *a*-value?
- **2.** Consider equations of the form:  $r = a \pm b \sin \theta \\ r = a \pm b \cos \theta$  Limaçons

Graph together:  $\begin{array}{c} r = 2 + 5\sin\theta \\ r = 1 + 3\cos\theta \end{array}$ Graph together:  $\begin{array}{c} r = 4 + 3\sin\theta \\ r = 3 + 2\cos\theta \end{array}$ Graph together:  $\begin{array}{c} r = 4 + 4\sin\theta \\ r = 2 - 2\cos\theta \end{array}$ 

**a.** How do the figures differ when different trig functions are used (sin vs. cos)?

- **b.** What is it about the "*a*" & "*b*" values that determines the shape of the graph?
- c. What is the significance of "a + b"?

**3.** Consider equations of the form:  $\begin{aligned} r &= a \sin(n\theta) \\ r &= a \cos(n\theta) \end{aligned}$  *Rose Curves* 

Graph these functions one at a time:  $r = 2\sin(3\theta)$   $r = 4\sin(2\theta)$   $r = 2\cos(3\theta)$   $r = 4\cos(2\theta)$ 

- a. How do the figures differ when different trig functions are used (sin vs. cos)?
- **b.** What determines the length of a petal?
- c. What determines the number of petals?

**4.** Consider equations of the form:  $r = a\theta + b$ 

 $r = ab^{\theta}$ 

# To see these graphs better, do the following: ZOOM 6; change $\theta$ max to $6\pi$ ; then ZOOM 5.

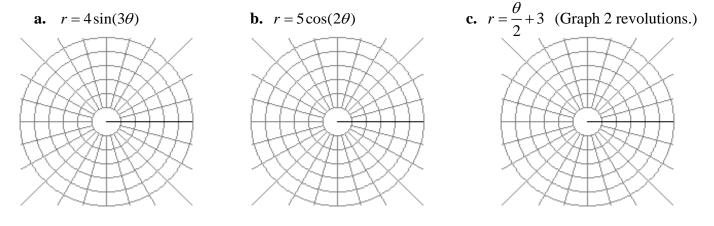
**a.** Graph these two:  $r = \theta + 2$  Then graph these two:  $r = 3^{\theta}$  $r = 2\theta$   $r = 2*3^{\theta}$ 

Spirals of Archimedes

# Logarithmic Spirals

**b.** What is the difference between the Spirals of Archimedes and Logarithmic Spirals?

5. Graph each of the following, one at a time.


$$r = \frac{5}{6+8\cos\theta} \qquad r = \frac{6}{4+3\cos\theta} \qquad r = \frac{2}{3+3\cos\theta}$$

- **a.** What is the name of the shape for each figure produced?
- **b.** How are these equations related to those of the limaçons?

## **Polar Graphing Practice**

1. What shape is the following graph:  $r = 8\sin\theta$ ? Identify the center and radius. Then convert the equation into rectangular form.

**2.** Sketch accurate graphs of the following:



### Write polar equations for the following:

- 3. A circle with radius 4.8, oriented to the polar axis \_\_\_\_\_
- 4. An example of a logarithmic spiral \_\_\_\_\_
- **5**. A rose curve with 20 petals of length 13 units, oriented to the  $\pi/2$  axis

6. An example of a hyperbola oriented to the  $\pi/2$  axis \_\_\_\_\_

7. An example of an ellipse oriented to the polar axis \_\_\_\_\_