Polar Graphing Activity

You will explore graphs of polar equations. A polar equation is a function rule in the form $r=f(\theta)$, where θ can be measured in radians or degrees.

Use your calculator to explore the following:

1. Consider equations of the form: $\begin{aligned} & r=a \sin \theta \\ & r=a \cos \theta\end{aligned}$. Experiment with different values for a.
a. What type of figure is created by these equations?
b. How do the figures differ when different trig functions are used (sin vs. cos)?
c. What is significant about the a-value?
2. Consider equations of the form: $\begin{aligned} & r=a \pm b \sin \theta \\ & r=a \pm b \cos \theta\end{aligned}$. Limaçons

Graph together: $\begin{aligned} & r=2+5 \sin \theta \\ & r=1+3 \cos \theta\end{aligned}$ Graph together: $\begin{aligned} & r=4+3 \sin \theta \\ & r=3+2 \cos \theta\end{aligned}$ Graph together: $\begin{aligned} & r=4+4 \sin \theta \\ & r=2-2 \cos \theta\end{aligned}$
a. How do the figures differ when different trig functions are used (sin vs. cos)?
b. What is it about the " a " \& " b " values that determines the shape of the graph?
c. What is the significance of " $a+b$ "?
3. Consider equations of the form: $\begin{aligned} & r=a \sin (n \theta) \\ & r=a \cos (n \theta)\end{aligned}$. Rose Curves

Graph these functions one at a time: $r=2 \sin (3 \theta) \quad r=4 \sin (2 \theta) \quad r=2 \cos (3 \theta) \quad r=4 \cos (2 \theta)$
a. How do the figures differ when different trig functions are used (sin vs. cos)?
b. What determines the length of a petal?
c. What determines the number of petals?
4. Consider equations of the form:

$$
\begin{aligned}
& r=a \theta+b \\
& r=a b^{\theta}
\end{aligned}
$$

To see these graphs better, do the following: ZOOM 6; change θ max to 6π; then ZOOM 5.
a. Graph these two:

$$
\begin{aligned}
& r=\theta+2 \\
& r=2 \theta
\end{aligned}
$$

Then graph these two: $r=3^{\theta}$ $r=2 * 3^{\theta}$

Spirals of Archimedes

Logarithmic Spirals

b. What is the difference between the Spirals of Archimedes and Logarithmic Spirals?
5. Graph each of the following, one at a time.

$$
r=\frac{5}{6+8 \cos \theta} \quad r=\frac{6}{4+3 \cos \theta} \quad r=\frac{2}{3+3 \cos \theta}
$$

a. What is the name of the shape for each figure produced?
b. How are these equations related to those of the limaçons?

Polar Graphing Practice

1. What shape is the following graph: $r=8 \sin \theta$? Identify the center and radius. Then convert the equation into rectangular form.
2. Sketch accurate graphs of the following:
a. $r=4 \sin (3 \theta)$

b. $r=5 \cos (2 \theta)$

c. $r=\frac{\theta}{2}+3$ (Graph 2 revolutions.)

Write polar equations for the following:

3. A circle with radius 4.8 , oriented to the polar axis \qquad
4. An example of a logarithmic spiral \qquad
5. A rose curve with 20 petals of length 13 units, oriented to the $\pi / 2$ axis \qquad
6. An example of a hyperbola oriented to the $\pi / 2$ axis \qquad
7. An example of an ellipse oriented to the polar axis \qquad
