\qquad

8.1, 8.2 \& 8.3 Parabolas, Ellipses \& Hyperbolas

Target 4A/4C/4E: Investigate the geometric properties of parabolas/ellipses/hyperbolas

Conics in General Form vs. Standard Form

How to write an ellipse equation from general form to standard form (or how to complete a square)

Steps	Example
Start with general form of equation.	$4 x^{2}+9 y^{2}-48 x+72 y+144=0$
Move the constant \& group x-terms together and y-terms together.	$4 x^{2}-48 x+9 y^{2}+72 y=-144$
Factor out the coefficient(s) on the square terms.	$4\left(x^{2}-12 x\right)+9\left(y^{2}+8 y\right)=-144$
Leave empty space after the x-terms and the y-terms.	$4(x^{2} \underbrace{-12 x})+9(y^{2} \underbrace{8} y \quad)=-144$
Take $1 / 2$ the coefficient of the linear terms and square that \#.	$\begin{array}{cl} \frac{1}{2}(-12) & \frac{1}{2}(8) \\ \left(\frac{1}{2}(-12)\right)^{2}=36 & \left(\frac{1}{2}(8)\right)^{2}=16 \end{array}$
Place the values into the empty spaces. Multiply the values by the coefficients and place on the other side of the equation.	$4\left(x^{2}-12 x+36\right)+9\left(y^{2}+8 y+16\right)=-144+\underbrace{4(36)}+\underbrace{9(16)}$
Write the x-terms and the y terms in squared form (where the constant is $1 / 2$ the coefficient of the linear terms).	$4(x-6)^{2}+9(y+4)^{2}=144$
Divide by value on right side to get equation into standard form.	$\frac{(x-6)^{2}}{36}+\frac{(y+4)^{2}}{16}=1$

SAT Connection

Passport to Advanced Math

12. Understand a nonlinear relationship between two variables

Example: $x^{2}+y^{2}+4 x-2 y=-1$
The equation of a circle in the $x y$-plane is shown
above. What is the radius of the circle?
A) 2
B) 3
C) 4
D) 9

Now, you try....

Example 1:

Write the equation in standard form and identify the center, vertices, and foci.
$16 x^{2}+4 y^{2}-32 x+24 y-12=0$

Example 2:

Write the equation in standard form and identify the center, vertices, and asymptotes. $4 x^{2}-5 y^{2}+40 x-30 y-45=0$

How to write a parabola equation from general form to standard form (or how to complete a square)

Steps	Example
	$x^{2}-6 x-12 y-3=0$

Trade this paper with a classmate.
Your classmate will try to follow your steps for the example below.

Example

Write the equation in standard form and identify the vertex, focus, and directrix.
$y^{2}+4 y+8 x+12=0$

More Practice

Rewriting Conic Sections
https://www.algebra.com/algebra/homework/Quadratic-relations-and-conic-sections/Quadratic-relations-and-conic-sections.faq.question. $581877 . \mathrm{html}$
https://www.mathway.com/examples/algebra/conic-sections/finding-the-vertex-form-of-ahyperbola? id=818
https://www.youtube.com/watch?v=X5rBFTVYCa0
https://www.youtube.com/watch?v=qgM37pssnWY
Homework Assignment
p. $579 \# 49,51 ;$ p. $591 \# 45,47 ; ~ p .600 ~ \# 47,49$

SAT Connection

Solution

Choice \mathbf{A} is correct. The equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$. To put the equation $x^{2}+y^{2}+4 x-2 y=-1$ in this form, complete the square as follows:

$$
\begin{aligned}
x^{2}+y^{2}+4 x-2 y & =-1 \\
\left(x^{2}+4 x\right)+\left(y^{2}-2 y\right) & =-1 \\
\left(x^{2}+4 x+4\right)-4+\left(y^{2}-2 y+1\right)-1 & =-1 \\
(x+2)^{2}+(y-1)^{2}-4-1 & =-1 \\
(x+2)^{2}+(y-1)^{2} & =4=2^{2}
\end{aligned}
$$

Therefore, the radius of the circle is 2 .
Choice C is incorrect because it is the square of the radius, not the radius. Choices B and D are incorrect and may result from errors in rewriting the given equation in standard form.

