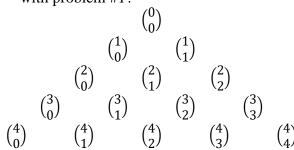
Unit 7 (Chapter 9): Discrete Mathematics


9.2 The Binomial Theorem

Target 7A: Expand the power of a binomial using the Binomial Theorem

Review of Prior Concepts

1. Predict the next 2 rows:

2. How does the following compare with problem #1?

More Practice

Pascal's Triangle

 $\underline{http://www.mathsisfun.com/pascals-triangle.html}$

https://youtu.be/XMriWTvPXHI

SAT Connection
Heart of Algebra

4. Create an equivalent form of an algebraic expression

Example:

$$9a^4 + 12a^2b^2 + 4b^4$$

Which of the following is equivalent to the expression shown above?

A)
$$(3a^2 + 2b^2)^2$$

B)
$$(3a + 2b)^4$$

C)
$$(9a^2 + 4b^2)^2$$

D)
$$(9a + 4b)^4$$

Unit 7 (Chapter 9): Discrete Mathematics

Find the terms in:

$$(a + b)^0$$

$$(a + b)^1$$

$$(a + b)^2$$

$$(a + b)^3$$

$$(a + b)^4$$

$$(a + b)^5$$

Binomial Coefficient:

Binomial Theorem

$$(a+b)^{n} = \binom{n}{0} a^{n} b^{0} + \binom{n}{1} a^{n-1} b^{1} + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{n-1} a^{1} b^{n-1} + \binom{n}{n} a^{0} b^{n}$$
$$= \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^{k}$$

Example 1: Expand $(x + 2)^6$

Example 2: Expand $(x-3)^4$

Finding one Term in a Binomial Expansion

$$(a+b)^{n} = \underbrace{\binom{n}{0}} a^{n} b^{0} + \underbrace{\binom{n}{1}} a^{n-1} b^{1} + \underbrace{\binom{n}{2}} a^{n-2} b^{2} + \dots + \binom{n}{n-1}} a^{1} b^{n-1} + \underbrace{\binom{n}{n}} a^{0} b^{n}$$

$$1^{\text{st}} \text{ term}$$

$$2^{\text{nd}} \text{ term}$$

$$3^{\text{rd}} \text{ term}$$

In general, the r^{th} term is: $\binom{n}{a}a$

Example 3: Find the coefficient of the 8th term of $(x + 2)^{11}$

Unit 7 (Chapter 9): Discrete Mathematics

Pre-Calculus

Example 4: Find the coefficient of the 3^{rd} term of $(x-3)^6$

Example 5: Find the 4th term of $(x^2 + y)^5$

More Practice

Binomial Theorem

http://www.purplemath.com/modules/binomial.htm

https://www.mathsisfun.com/algebra/binomial-theorem.html

https://people.richland.edu/james/lecture/m116/sequences/binomial.html

https://youtu.be/ojFuf9RYmzI

Homework Assignment

p.648 #1-15odd,27,28

SAT Connection

Solution

Choice A is correct. If a polynomial expression is in the form $(x)^2 + 2(x)(y) + (y)^2$, then it is equivalent to $(x + y)^2$. Because $9a^4 + 12a^2b^2 + 4b^4 = (3a^2)^2 + 2(3a^2)(2b^2) + (2b^2)^2$, it can be rewritten as $(3a^2 + 2b^2)^2$.

Choice B is incorrect. The expression $(3a + 2b)^4$ is equivalent to the product (3a + 2b)(3a + 2b)(3a + 2b)(3a + 2b). This product will contain the term $4(3a)^3$ $(2b) = 216a^3b$. However, the given polynomial, $9a^4 + 12a^2b^2 + 4b^4$, does not contain the term $216a^3b$. Therefore, $9a^4 + 12a^2b^2 + 4b^4 \neq (3a + 2b)^4$. Choice C is incorrect. The expression $(9a^2 + 4b^2)^2$ is equivalent to the product $(9a^2 + 4b^2)(9a^2 + 4b^2)$. This product will contain the term $(9a^2)(9a^2) = 81a^4$. However, the given polynomial, $9a^4 + 12a^2b^2 + 4b^4$, does not contain the term $81a^4$. Therefore, $9a^4 + 12a^2b^2 + 4b^4 \neq (9a^2 + 4b^2)^2$. Choice D is incorrect. The expression $(9a + 4b)^4$ is equivalent to the product (9a + 4b)(9a + 4b)(9a + 4b) (9a + 4b). This product will contain the term $(9a)(9a)(9a)(9a) = 6,561a^4$. However, the given polynomial, $9a^4 + 12a^2b^2 + 4b^4$, does not contain the term $6,561a^4$. Therefore, $9a^4 + 12a^2b^2 + 4b^4 \neq (9a + 4b)^4$.