Unit 7 (Chapter 9): Discrete Mathematics

9.3 Sequences

Target 7C: Generate and identify the explicit rule for geometric sequences and series **Review of Prior Concepts**

Is the sequence arithmetic? If yes, find the common difference.

a) 1,5,9,13,17, ...

- **b**) 1,4,9,16,25, ...
- c) 4x, x, -2x, -5x, -8x, ...

More Practice

Arithmetic Sequences

https://www.mathsisfun.com/algebra/sequences-sums-arithmetic.html https://www.khanacademy.org/math/algebra/sequences/constructing-arithmetic-sequences/a/writingrecursive-formulas-for-arithmetic-sequences http://www.algebralab.org/lessons/lesson.aspx?file=algebra_arithseq.xml http://www.coolmath.com/algebra/19-sequences-series/05-arithmetic-sequences-01 https://youtu.be/_cooC3yG_p0

https://youtu.be/lj_X9JVSF8k

SAT Connection

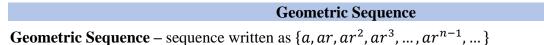
Passport to Advanced Math

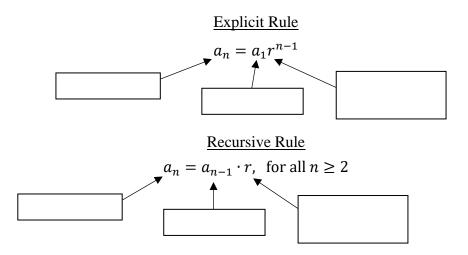
10. Interpret parts of nonlinear expressions in terms of their context

Example:

Jessica opened a bank account that earns 2 percent interest compounded annually. Her initial deposit was \$100, and she uses the expression $(x)^t$ to find the value of the account after t years. What is the value of x in the expression?

Solution





Example 1: Find the common ratio and 10th term, and write a recursive rule and explicit rule for the sequence: 9,18,36,72, ...

Example 2: Find the common ratio and 10th term, and write a recursive rule and explicit rule for the sequence: 7,0.7,0.07,0.007, ...

Example 3: Given the geometric sequence terms $a_3 = \frac{1}{2}$ and $a_5 = \frac{9}{2}$, find a_1 .

Unit 7 (Chapter 9): Discrete Mathematics

Example 4: The fifth and eighth terms of a geometric sequence are 1920 and 30, respectively. Find a_1 .

Example 5: A population of ants is growing at a rate of 8% a year. If there are 160 ants in the initial population, find the number of ants after 6 years.

Example 6: Find which term in the geometric sequence 1, 3, 9, 27, ... is the first to exceed 7,000.

More Practice
Geometric Sequences
http://www.mathsisfun.com/algebra/sequences-sums-geometric.html
http://www.algebralab.org/lessons/lesson.aspx?file=algebra_geoseq.xml
http://www.mathguide.com/lessons/SequenceGeometric.html
https://youtu.be/EJjCXIhP7X0
https://youtu.be/h1HJEOD6u8E
https://youtu.be/C7tE26CDI2M
https://youtu.be/cXy_LJK0Ui8
https://youtu.be/lj_X9JVSF8k

Homework Assignment p.656 #2-10even,25,27,31

SAT Connection Solution

The correct answer is 1.02. The initial deposit earns 2 percent interest compounded annually. Thus at the end of 1 year, the new value of the account is the initial deposit of \$100 plus 2 percent of the initial deposit: $$100 + \frac{2}{100}$ (\$100) = \$100(1.02). Since the interest is compounded annually, the value at the end of each succeeding year is the sum of the previous year's value plus 2 percent of the previous year's value. This is again equivalent to multiplying the previous year's value by 1.02. Thus, after 2 years, the value will be \$100(1.02)(1.02) = \$100(1.02)^2; after 3 years, the value will be \$100(1.02)³; and after *t* years, the value will be \$100(1.02)^t. Therefore, in the formula for the value for Jessica's account after *t* years, \$100(*x*)^t, the value of *x* must be 1.02.