\qquad

Unit 7 (Chapter 9): Discrete Mathematics

Pre-Calculus

9.3 Sequences

Target 7C: Generate and identify the explicit rule for geometric sequences and series Review of Prior Concepts
Is the sequence arithmetic? If yes, find the common difference.
a) $1,5,9,13,17, \ldots$ yes, $d=4$
b) $1,4,9,16,25, \ldots$ no
c) $4 x, x,-2 x,-5 x,-8 x, \ldots$ yes, $d=-3 x$

More Practice

Arithmetic Sequences

https://www.mathsisfun.com/algebra/sequences-sums-arithmetic.html
https://www.khanacademy.org/math/algebra/sequences/constructing-arithmetic-sequences/a/writing-
recursive-formulas-for-arithmetic-sequences
http://www.algebralab.org/lessons/lesson.aspx?file=algebra_arithseq.xml
http://www.coolmath.com/algebra/19-sequences-series/05-arithmetic-sequences-01
https://youtu.be/_cooC3yG_p0
https://youtu.be/lj_X9JVSF8k

SAT Connection

Passport to Advanced Math

10. Interpret parts of nonlinear expressions in terms of their context

Example:

Jessica opened a bank account that earns 2 percent interest compounded annually. Her initial deposit was $\$ 100$, and she uses the expression $\$ 100(x)^{t}$ to find the value of the account after t years.
What is the value of x in the expression?

Solution

Geometric Sequence

Geometric Sequence - sequence written as $\left\{a, a r, a r^{2}, a r^{3}, \ldots, a r^{n-1}, \ldots\right\}$

Explicit Rule

Recursive Rule

Example 1: Find the common ratio and $10^{\text {th }}$ term, and write a recursive rule and explicit rule for the sequence: $9,18,36,72, \ldots$

Example 2: Find the common ratio and $10^{\text {th }}$ term, and write a recursive rule and explicit rule for the sequence: $7,0.7,0.07,0.007, \ldots$

Example 3: Given the geometric sequence terms $a_{3}=\frac{1}{2}$ and $a_{5}=\frac{9}{2}$, find a_{1}.

$$
\begin{array}{rlr}
a_{n}=a_{1} r^{n-1} & \\
a_{3}=a_{1} r^{3-1} & a_{5} & =a_{1} r^{5-1} \\
\frac{1}{2}=a_{1} r^{2} & \frac{9}{2} & =a_{1} r^{4} \\
\frac{9}{2} & =a_{1} r^{2} \cdot r^{2} & \frac{1}{2}=a_{1}(\pm 3)^{2} \\
\frac{1}{2}=a_{1} r^{2} & \frac{9}{2} & =\frac{1}{2} \cdot r^{2} \\
9 & =r^{2} & \frac{1}{2}=9 a_{1} \cdot \frac{1}{9} \\
\pm 3 & =r & \frac{1}{18}=a_{1} \\
& &
\end{array}
$$

Example 4: The fifth and eighth terms of a geometric sequence are 1920 and 30 , respectively. Find a_{1}.

$$
\begin{array}{rlrl}
a_{n} & =a_{1} r^{n-1} & \\
a_{5} & =a_{1} r^{5-1} & a_{8} & =a_{1} r^{8-1} \\
1920 & =a_{1} r^{4} & 30 & =a_{1} r^{7} \\
30 & =a_{1} r^{4} \cdot r^{3} \\
1920 & =a_{1} r^{4} & 30 & =1920 \cdot r^{3} \\
1920 & =a_{1}\left(\frac{1}{4}\right)^{4} & \frac{1}{64} & =r^{3} \\
256 \cdot 1920 & =a_{1}\left(\frac{1}{256}\right) \cdot 250 & \frac{1}{4} & =r \\
491520 & =a_{1} &
\end{array}
$$

Example 5: A population of ants is growing at a rate of 8% a year. If there are 160 ants in the initial population,

$$
\text { find the number of ants after } 6 \text { years. }
$$

$$
\begin{aligned}
& \text { find the number of ants af } \\
& \text { Sequence method: } \\
& \begin{aligned}
a_{n} & =a_{1} r^{n}-1
\end{aligned} \\
& \begin{aligned}
a_{7} & =160(1.08)^{7-1} \\
& =160(1.08)^{6} \\
& =253
\end{aligned}
\end{aligned}
$$

Example 6:
Find which term in the geometric sequence $1,3,9,27, \ldots$ is the first to exceed 7,000 .

More Practice

Geometric Sequences

http://www.mathsisfun.com/algebra/sequences-sums-geometric.html
http://www.algebralab.org/lessons/lesson.aspx?file=algebra_geoseq.xml
http://www.mathguide.com/lessons/SequenceGeometric.html
https://youtu.be/EJjCXIhP7X0
https://youtu.be/h1HJEOD6u8E
https://youtu.be/C7tE26CDI2M
https://youtu.be/cXy LJK0Ui8
https://youtu.be/lj X9JVSF8k
$\frac{\text { Homework Assignment }}{\text { p.656 \#2-10even,25,27,31 }}$

SAT Connection

Solution

The correct answer is 1.02 . The initial deposit earns 2 percent interest compounded annually. Thus at the end of 1 year, the new value of the account is the initial deposit of $\$ 100$ plus 2 percent of the initial deposit: $\$ 100+\frac{2}{100}(\$ 100)=\$ 100(1.02)$. Since the interest is compounded annually, the value at the end of each succeeding year is the sum of the previous year's value plus 2 percent of the previous year's value. This is again equivalent to multiplying the previous year's value by 1.02 . Thus, after 2 years, the value will be $\$ 100(1.02)(1.02)=\$ 100(1.02)^{2}$; after 3 years, the value will be $\$ 100(1.02)^{3}$; and after t years, the value will be $\$ 100(1.02)^{t}$. Therefore, in the formula for the value for Jessica's account after t years, $\$ 100(x)^{t}$, the value of x must be 1.02 .

