\qquad
Unit 7 (Chapter 9): Discrete Mathematics

9.4 Series

Target 7D: Calculate the sums of finite and infinite series
Review of Prior Concepts

1. Find the $100^{\text {th }}$ term in the following sequence of numbers.
a) $2,5,8,11, \ldots$
b) $2,4,8,16, \ldots$
2. Find the sum of the $1^{\text {st }} 100$ positive integers.

More Practice

Arithmetic and Geometric Sequences

https://www.mathsisfun.com/algebra/sequences-sums-arithmetic.html http://www.mathsisfun.com/algebra/sequences-sums-geometric.html

SAT Connection

Heart of Algebra

8. Interpret the variables and constants in expressions for linear functions within the context presented.

Example:

$$
a=18 t+15
$$

Jane made an initial deposit to a savings account. Each week thereafter she deposited a fixed amount to the account. The equation above models the amount a, in dollars, that Jane has deposited after t weekly deposits. According to the model, how many dollars was Jane's initial deposit? (Disregard the $\$$ sign when gridding your answer.)

,	NOTE:
00	may start your
0000	answers in any
- 0000	column, space
10000	permitting.
20000	Columns you
30000	don't need to
0000	use should be
OOOO	left blank.
6 OOOO	
70000	
$8 \bigcirc \bigcirc 00$	
, ○○○○	

Solution

Summation/Series

Summation (or Series) - sum up the terms of a sequence

Example 1: Find the value of:

$$
\sum_{k=2}^{5} 3 k
$$

Example 2: Write the summation $2+5+8+11+\cdots+29$ in sigma notation.

Example 3: Write the series $5-15+45-135+\cdots$ in sigma notation.

Sum of the Terms in an Arithmetic Sequence

Proof

Start with the sum of an arithmetic sequence

$$
\sum_{k=1}^{n} a_{k}=a_{1}+\left(a_{1}+d\right)+\left(a_{1}+2 d\right)+\cdots+\left(a_{1}+(n-1) d\right)
$$

Write the terms backwards, starting with a_{n},

$$
\sum_{k=1}^{n} a_{k}=
$$

Add the two equations together,

Simplify,

Solve for sigma,
\therefore, Formula for Sum of the Terms in an Arithmetic Sequence is:

$$
\sum_{k=1}^{n} a_{k}=\frac{n}{2}\left(a_{1}+a_{n}\right) \quad \text { OR } \quad \sum_{k=1}^{n} a_{k}=\frac{n}{2}\left(2 a_{1}+(n-1) d\right)
$$

Example 1:
Find the sum of: $2+5+8+11+\cdots+29$

Example 2:
Find the sum of the sequence: $-3,1,5,9, \ldots, 133$

```
    More Practice
Arithmetic Series
https://www.mathsisfun.com/algebra/sequences-sums-arithmetic.html
http://www.purplemath.com/modules/series4.htm
https://www.khanacademy.org/math/algebra2/sequences-and-series/copy-of-seq-and-
series/e/arithmetic_series
https://youtu.be/cYw4MFWsB6c
https://youtu.be/xWHfQGBzgbc
https://youtu.be/UHkueFmPC6s
```

Homework Assignment p. 657 \#43-45all; p. 664 \#1-11odd

SAT Connection

Solution

The correct answer is $\mathbf{1 5}$. The amount, a, that Jane has deposited after t fixed weekly deposits is equal to the initial deposit plus the total amount of money Jane has deposited in the t fixed weekly deposits. This amount a is given to be $a=18 t+15$. The amount she deposited in the t fixed weekly deposits is the amount of the weekly deposit times t; hence, this amount must be given by the term $18 t$ in $a=18 t+15$ (and so Jane must have deposited 18 dollars each week after the initial deposit). Therefore, the amount of Jane's original deposit, in dollars, is $a-18 t=15$.

