Unit 7 (Chapter 9): Discrete Mathematics

9.4 Series

Target 7D: Calculate the sums of finite and infinite series

Review of Prior Concepts

Find the 100th term in the following sequence of numbers.
a) 2,5,8,11, ...
b) 2,4,8,16, ...

2. Find the sum of the 1^{st} 100 positive integers.

More Practice

Arithmetic and Geometric Sequences <u>https://www.mathsisfun.com/algebra/sequences-sums-arithmetic.html</u> <u>http://www.mathsisfun.com/algebra/sequences-sums-geometric.html</u>

SAT Connection <u>Heart of Algebra</u>

8. Interpret the variables and constants in expressions for linear functions within the context presented.

Example:

$$a = 18t + 15$$

Jane made an initial deposit to a savings account. Each week thereafter she deposited a fixed amount to the account. The equation above models the amount a, in dollars, that Jane has deposited after t weekly deposits. According to the model, how many dollars was Jane's initial deposit? (Disregard the \$ sign when gridding your answer.)

		NOTE: You
1	00	may start your
	0000	answers in any
0	0000	column, space
1	0000	permitting.
2	0000	Columns you
3	0000	don't need to
4	0000	use should be
5	0000	left blank.
6	0000	
7	0000	
8	0000	
9	0000	

Solution

Summation/Series

Summation (or Series) - sum up the terms of a sequence

Example 1: Find the value of:

Example 2: Write the summation $2 + 5 + 8 + 11 + \dots + 29$ in sigma notation.

Example 3: Write the series $5 - 15 + 45 - 135 + \cdots$ in sigma notation.

Sum of the Terms in an Arithmetic Sequence

Start with the sum of an arithmetic sequence n

$$\sum_{k=1}^{n} a_k = a_1 + (a_1 + d) + (a_1 + 2d) + \dots + (a_1 + (n-1)d)$$

Write the terms backwards, starting with a_n ,

$$\sum_{k=1}^{n} a_k =$$

Add the two equations together,

Simplify,

Solve for sigma,

 \therefore , Formula for Sum of the Terms in an Arithmetic Sequence is:

$$\sum_{k=1}^{n} a_k = \frac{n}{2}(a_1 + a_n) \qquad OR \qquad \qquad \sum_{k=1}^{n} a_k = \frac{n}{2}(2a_1 + (n-1)d)$$

Example 1: Find the sum of: $2 + 5 + 8 + 11 + \dots + 29$

Example 2: Find the sum of the sequence: $-3, 1, 5, 9, \dots, 133$

More Practice

Arithmetic Series

https://www.mathsisfun.com/algebra/sequences-sums-arithmetic.html http://www.purplemath.com/modules/series4.htm https://www.khanacademy.org/math/algebra2/sequences-and-series/copy-of-seq-andseries/e/arithmetic_series https://youtu.be/cYw4MFWsB6c https://youtu.be/xWHfQGBzgbc

https://youtu.be/UHkueFmPC6s

Homework Assignment p.657 #43-45all; p.664 #1–11odd

SAT Connection Solution

The correct answer is 15. The amount, *a*, that Jane has deposited after *t* fixed weekly deposits is equal to the initial deposit plus the total amount of money Jane has deposited in the *t* fixed weekly deposits. This amount *a* is given to be a = 18t + 15. The amount she deposited in the *t* fixed weekly deposits is the amount of the weekly deposit times *t*; hence, this amount must be given by the term 18t in a = 18t + 15 (and so Jane must have deposited 18 dollars each week after the initial deposit). Therefore, the amount of Jane's original deposit, in dollars, is a - 18t = 15.