Markerboard or Stations Activity
 Geometric \& Arithmetic Series

Write each series in summation (sigma) notation.

1. $2+4+6+\cdots+36$
2. $1+2+4+\cdots+2048$
3. $1-3+9-27+\cdots-2187$
4. $-3-7-11+\cdots-95$

Evaluate the series (using your calculator).
1.

$$
\sum_{k=1}^{10} \frac{1}{2}(3)^{k-1}
$$

2. $2+5+8+\cdots+74$
3.

$\sum_{k=5}^{12}(3 k-8)$
4. $-64+32-16+8+\cdots$

Evaluate the series (without your calculator).
1.
$\sum_{k=1}^{5} 3\left(\frac{1}{2}\right)^{k-1}$
2. $-5-25-45-\cdots-165$
3.

$$
\sum_{k=1}^{\infty} 5\left(\frac{1}{3}\right)^{k-1}
$$

4. $\frac{5}{2}+1-\frac{1}{2}-2-\cdots-a_{8}$

Determine whether the series converges or diverges. If the series converges, find the sum. 1.

$$
\sum_{k=1}^{\infty}(2 k+5)
$$

2.

$$
\sum_{k=1}^{\infty} \frac{16}{9}\left(\frac{3}{2}\right)^{k-1}
$$

3.

$\sum_{k=1}^{\infty} 3\left(-\frac{1}{4}\right)^{k-1}$
4. $3+\frac{9}{4}+\frac{27}{16}+\frac{81}{64}+\cdots$

Real-life applications

1. If you had $\$ 145$ in your account at the beginning of week 13 and $\$ 205$ at the beginning of week 18, how much are you depositing weekly? Assume no withdrawals are made and no interest paid.
2. You throw a SuperBall on the cement as hard as you can and watch it bounce until it stops. You notice the first bounce reaches a height of 200 ft , but the second bounce reaches only half of that height. How high will the $7^{\text {th }}$ bounce reach? How far (total distance) has the ball traveled before the $8^{\text {th }}$ bounce?
3. You decide you are going to open a savings account. Each week, you are going to deposit $\$ 3$ more than the previous week. The first week, you deposit $\$ 10$. How much money will you deposit during the $25^{\text {th }}$ week?
4. You deposit $\$ 100$ at the end of each month into an account that pays 8% interest compounded monthly. Write the sum of the amount of money you have in the account after 10 years as a geometric series. Find the balance of the account after 10 years.
(Recall: $A=P\left(1+\frac{r}{n}\right)^{n t}$)

Solutions:

Write each series in summation (sigma) notation.
1.

$$
\sum_{k=1}^{18} 2 k
$$

2.

$$
\sum_{k=1}^{12} 2^{k-1}
$$

3.

$$
\sum_{k=1}^{8}(-3)^{k-1}
$$

4.

$$
\sum_{k=1}^{24}(-4 k+1)
$$

Evaluate the series (using your calculator).

1. 14762
2. 950
3. 140
4. $-\frac{128}{3}$ or -42.667

Evaluate the series (without your calculator).

1. $\frac{93}{16}$
2. -765
3. $\frac{15}{2}$
4. -22

Determine whether the series converges or diverges. If the series converges, find the sum.

1. Diverges (infinite arithmetic)
2. Diverges
3. The series converges to $\frac{12}{5}$.
4. The series converges to 12 .

Real life applications

1. $\$ 12$
2. The $7^{\text {th }}$ bounce reaches 3.125 ft .

The ball traveled 793.75 ft before the $8^{\text {th }}$ bounce.
3. $\$ 82$
4. $100\left(1+\frac{.08}{12}\right)^{0}+100\left(1+\frac{.08}{12}\right)^{1}+100\left(1+\frac{.08}{12}\right)^{2}+\cdots+100\left(1+\frac{.08}{12}\right)^{119}$
$\sum_{k=1}^{120} 100\left(1+\frac{.08}{12}\right)^{k-1}=\$ 18294.60$

