\qquad

9.4 Series Continued

Target 7D: Calculate the sums of finite and infinite series
Review of Prior Concepts

1. Find the sum (if it exists): $\sum_{k=0}^{\infty} 78\left(\frac{1}{3}\right)^{k}$

Applications of Series

Example 1:

You decide you are going to open a savings account. Each week, you are going to deposit $\$ 3$ more than the previous week. The first week, you deposit $\$ 10$. How much money will you deposit during the $25^{\text {th }}$ week?

Example 2:

You deposit $\$ 100$ at the end of each month into an account that pays 8% interest compounded monthly. Write the sum of the amount of money you have in the account after 10 years as a geometric series. Find the balance of the account after 10 years. Recall: $A=P\left(1+\frac{r}{n}\right)^{n t}$

Example 3:

Express the rational number as a fraction of integers: 5.93939393...

Example 4: You throw a SuperBall on the cement as hard as you can and watch it bounce until it stops. You notice the first bounce reaches a height of 200ft, but the second bounce reaches only half of that height. How high will the $7^{\text {th }}$ bounce reach? How far (total distance) has the ball traveled before the $8^{\text {th }}$ bounce?

Review Problems

Write each series in summation (sigma) notation.

1. $2+4+6+\cdots+36$
2. $1+2+4+\cdots+2048$
3. $1-3+9-27+\cdots-2187$
4. $-3-7-11+\cdots-95$

Evaluate the series (using your calculator).
1.

$$
\sum_{k=1}^{10} \frac{1}{2}(3)^{k-1}
$$

2. $2+5+8+\cdots+74$
3.

$$
\sum_{k=5}^{12}(3 k-8)
$$

4. $-64+32-16+8+\cdots$

Evaluate the series (without your calculator).
1.

$$
\sum_{k=1}^{5} 3\left(\frac{1}{2}\right)^{k-1}
$$

2. $-5-25-45-\cdots-165$
3.

$$
\sum_{k=1}^{\infty} 5\left(\frac{1}{3}\right)^{k-1}
$$

4. $\frac{5}{2}+1-\frac{1}{2}-2-\cdots-a_{8}$

Determine whether the series converges or diverges. If the series converges, find the sum. 1.

$$
\sum_{k=1}^{\infty}(2 k+5)
$$

2.

$$
\sum_{k=1}^{\infty} \frac{16}{9}\left(\frac{3}{2}\right)^{k-1}
$$

3.

$$
\sum_{k=1}^{\infty} 3\left(-\frac{1}{4}\right)^{k-1}
$$

4. $3+\frac{9}{4}+\frac{27}{16}+\frac{81}{64}+\cdots$
