

Given: $\overline{P E} \cong \overline{P R}$

$$
\overline{B E} \cong \overline{B R}
$$

Prove: $\overleftrightarrow{P B}$ is \perp bisector of $\overline{E R}$

DETOUR!
Statements
(1) $\overline{P E} \cong \overline{P R}$
$\overline{B E} \cong \overline{B R}$
(2) $\overline{P B} \cong \overline{P B}$
(3) $\triangle P E B \cong \triangle P R B$
(1) $\angle E P S \cong \angle R P S$
(5) $\overline{P S} \cong P S$
(6) $\triangle E P S \cong \triangle R P S$
(1) $\overline{E_{S}} \cong \overline{R S}$
(8) $\overrightarrow{P_{B}}$ bis $\overline{E R}$
(9) $\angle P S E \cong \angle P S R$
(10) $\angle P S E S \operatorname{SPP}_{P S}$
(11) $\angle P S E, \angle P S R$
(12) $\overleftrightarrow{P B} \perp \overrightarrow{E R}$
(13) $\stackrel{P B}{P B} \perp \overrightarrow{E R}$

Reasons
(1) Given
(2) Reflexine Property
(3) SSS
(4) CPCTC
(5) Reflexine p-operty
(6) $S A S$
(ㄱ) $\subset P \subset T C$
(8) DeF. of bisection
(9) CPCTC
(10) If 2 Lform $s t . \angle$, then supp.
(1) If $<s$ supp and \cong, then ct. $<s$ s
(12) If 2 lines int. to (13) step 8 and 12

4.4. Honors Geometry

DATE \square
Target 4E. Recognize and apply the relationship between equidistance and perpendicular bisection

The Equidistance Theorems

- Equidistant: Two or more points that are the same distance away from a third point.
- Example: All of the points on a circle are equidistant from the center!

Use a compass to construct points A, B, and C so that they are all equidistant from P .

So, $\overline{A(P)} \cong \overline{B P}) \cong \overline{C P}$ means that P is equidistant from A, B, and C .

- Perpendicular Bisector: a segment or a line that bisects and is perpendicular to
- Perpendicular Bisector: a segment or a line that bisects and is perpendicular to another segment.
- Example: think back...The median of an isosceles triangle was also a \perp bisector!

B Below, create a sketch of $\stackrel{\overleftarrow{C D}}{ }$ so that it is the \perp bisector of $\overline{M N}$. Use the proper tick marks to label all of the important information.

Think about the steps that you just completed in order to construct the \perp bisector. Why did you want the arcs to intersect? The next theorem proves why our construction worked!

- Theorem: If two points are each equidistant from the endpoints of a segment, then the two points determine the \perp bisector of that segment.

Given: $\overline{P A} \cong \overline{P B}, \overline{Q A} \cong \overline{Q B}$ (above)
Prove: $\overline{P Q}$ is the \perp bisector of $\overline{A B}$
(a detour proof for this theorem is provided on page 181, sample problem \#2)

- Theorem: If a point is on a \perp bisector of a segment, then it is equidistant from the endpoints of that segment.

Draw a new point (name it point C) on $\overline{P Q}$ in your construction above. Then draw and measure segments $\overline{C A}$ and $\overline{C B}$. Is our theorem true?

Given: $\overleftrightarrow{C Q}$ is the \perp bisector of $\overrightarrow{A B}$
Prove: $\overline{C A} \cong \overline{C B}$
(a proof can be created using definition of perpendicular bisector, SAS, and CPCTC)

Given: $\overline{\mathrm{AB}} \approx \overline{\mathrm{AD}}$,

$$
\overline{B C} \cong \overline{C D}
$$

Conclusion: $\overline{\mathrm{BE}}=\overline{\mathrm{ED}}$

statement	Reason
(1) $\overline{A B} \cong \overline{\triangle D}$	(1)
$\overline{B C} \cong$ Given	

(2) $\overleftrightarrow{A C} \perp$ bis $\overline{B D}$
(3) $\overline{B E} \cong \overline{D E}$
(2) Two pts. equidistant from the endpts ($3, D$) of a segment determine the \perp bisector of the segment
(3) A point on the \perp bisector of a segment is covidistant from the endpts of the segment.

Given: $\angle 1 \cong \angle 2$,

$$
\angle 3 \cong \angle 4
$$

Prove: $\overleftrightarrow{\mathrm{AE}} \perp$ bis. $\overline{\mathrm{B}} \overline{\mathrm{D}}$

(3) $\bar{\subseteq} B \cong \bar{\subseteq} \square$
(4) $\overleftrightarrow{A E} \perp$ bis $\overline{B D}$
© Given
(2)

(3) Same as step 2.
(4) Evvidistance Thu. (Step 2, 3)
$\left[\begin{array}{l}\text { Two pts e evidistant from the } \\ \text { endrts of a seg.determine } \perp \text { bis. }\end{array}\right]$

Given: $\overline{\mathrm{AB}} \approx \overline{\mathrm{AD}}$,

$$
\overline{B C} \cong C D
$$

