Warm \uparrow :
Given: $\overline{G M} \| \overline{R A}$

$$
\angle M G R \cong
$$

$$
\angle R A M
$$

Prove: $\overline{G R} \| \overline{M A}$

Giver: ABCD (means II-grom)

$$
\begin{aligned}
& \angle D=(3 x-4)^{\circ} \\
& \angle A=x^{\circ}
\end{aligned}
$$

But $\overline{A D} \| \overline{B C}$ also means $\angle D+\angle C=180$.

$$
\begin{aligned}
\therefore \angle D+\angle C=180 & \Rightarrow 134+\angle C=180 \\
& \frac{-134-134}{\angle C C=46}
\end{aligned}
$$

