\qquad

Do you get it?

Draw a sample space diagram to represent the scores when two standard dice are thrown. Find the probability of:
a) obtaining a score of 6
b) throwing a double
c) score <6

In Other Words
For ary event, the event elther happens or It doesn't. The Complement Rule is used when you know the probabllity that some event will occur and you want to know the dpposite: the chance It will not occur.

Visually, a Venn Diagram can be used to represent the situation.

Problem: According to the National Gambling Impact Study Commission, 52% of Americans have played state lotteries. What is the probability that a randomly selected American has not played a state lottery?

Problem: The data in Table 7 represent the income distribution of households in the United States in 2006.

Table 7			
Annual Income	Number (in thousands)	Annual Income	Number (in thousands)
Less than \$10,000	8,899	\$50,000 to \$74,999	21,222
\$10,000 to \$14,999	6,640	\$75,000 to \$99,999	13,215
\$15,000 to \$24,999	12,722	\$100,000 to \$149,999	12,164
\$25,000 to \$34,999	12,447	\$150,000 to \$199,999	3,981
\$35,000 to \$49,999	16,511	\$200,000 or more	3,817

Source: U.S. Census Bureau
(a) Compute the probability that a randomly selected household earned $\$ 200,000$ or more in 2006.
(b) Compute the probability that a randomly selected household earned less than $\$ 200,000$ in 2006.
(c) Compute the probability that a randomly selected household earned at least $\$ 10,000$ in 2006.

