Useful Angle - Arc Theorems
(1) An L inscribed in a semicircle is a sight L.

PF: Since $\angle A P B$ is an inscribed L_{1} we must show $\angle A P B$ is 90°.
$\angle A P B$ is
ON $\odot\} \angle A P B=\frac{1}{2} m \widehat{A B}=\frac{1}{2}\left(180^{\circ}\right)=90^{\circ} \mathrm{V}$

(2) The sum of measures of tangent-tangent \angle and its minor arcs is 180°.

Pf:
Must show $\angle A+\underset{(\text { minor })}{\widehat{X B B}}=180^{\circ}$.
We know $\overline{A X}$ and $\overline{A B}$ are tangent to $\odot 0$. Then

$$
\begin{aligned}
& \angle A X O \cong \angle A B O=90^{\circ} \text {. A } \triangle O B \text { is a quad. } \\
& \text { So } \angle A+\angle A X O+\angle A B O+\angle X O B=360 \rightarrow \text { Recall } S_{i}=180(4-2)=360 \\
& \angle A+\overline{90}+90+\angle X O B=360 \\
& \angle A+180+\angle \times 00=360 \Rightarrow \angle A+\angle \times O B=180 \Rightarrow \angle A+M \times B=180^{\circ} \text {, }
\end{aligned}
$$

Given: $\mathrm{m} \angle \mathrm{BDC}=50$
$m \overparen{D A}=30$
$\mathrm{mCD}=90$ \bigcirc

Name

$m \angle 1=\frac{50}{35}$
$m \angle 2=\frac{-65}{3}$
$m \angle 3=\frac{115}{70}$
$m \angle 5=\frac{15}{50}$
$m \angle 6=\frac{15}{45}$
$m \angle 7=\frac{15}{m \angle 9}=\frac{1}{2}$
$\mathrm{m} \angle 9=$ \qquad

Given: $\overrightarrow{D A}$ and $\overrightarrow{D C}$ are tangents
$m \overparen{E A}=86$
$\mathrm{mGE}=56$
$m \overparen{A C}=110$

00

$\mathrm{m} \angle 1=$ \qquad
$\mathrm{m} \angle 2=$ \qquad $\mathrm{m} \angle 3=$ \qquad
$\mathrm{m} \angle 4=$
$\mathrm{m} \angle 5=$ \qquad
$\mathrm{m} \angle 6=$ \qquad
$\mathrm{m} \angle 7=$ \qquad

- 19 \qquad
- /in
\qquad

Given: $\overrightarrow{\mathrm{DA}}$ and $\overrightarrow{\mathrm{DC}}$ are tangents
$\mathrm{m} \overparen{E A}=86$
$\mathrm{mGE}=56$
$m \overparen{A C}=110$
\odot

Given: $\odot 0, \overleftrightarrow{A T}$ is a tangent
$\therefore \mathrm{mAB}=80$
$m B C=20$
$m \mathrm{DE}=50$

$m \angle 1$	$=40$
$m \angle 2$	$=\frac{50}{}$
$m \angle 3$	$=\frac{65}{}$
$m \angle 4$	$=-\frac{25}{40}$
$m \angle 5$	$=\frac{65}{}$
$m \angle 6$	$=\frac{50}{}$
$m \angle 8$	$=\frac{20}{}$
$m \angle 9$	$=\frac{25}{}$
$m \angle 10$	$=115$

(3) Given: $\angle A, \angle B$ are inscribed $\angle s$ intercepting $\overparen{C D}$. (same arc) Conclusion: $\angle A \cong \angle B$.

Pf: Easy'. Think vertex location. Then
 transitive property.
(4) Given: $\overleftrightarrow{A B}$ tangent at pt. B $\overparen{A B} \cong \overparen{D E}$ (congruen tares) Conclusion: $\angle A B F \cong \angle C$

Af: Can you prove it?

