Introduction

In this unit, students begin by applying the properties of real numbers to expressions, equalities, and inequalities, including absolute value inequalities and compound inequalities. Throughout the unit, students explore the relationship between linear equations and their graphs.

These explorations include modeling data with scatter plots and lines of regression, as well as linear programming and solving systems of equations. The unit concludes with instruction about operations on matrices and using matrices to solve systems of equations.

Assessment Options

\square Unit 1 Test Pages 237-238 of the Chapter 4 Resource Masters may be used as a test or review for Unit 1. This assessment contains both multiple-choice and short answer items.

TestCheck and Worksheet Builder

This CD-ROM can be used to create additional unit tests and review worksheets.

2 Unit 1 First-Degree Equations and Inequalities

You can model and analyze real-world situations by using algebra. In this unit, you will solve and you will solve and
graph linear equations

First-Degree Equations and Inequalities

Lessons in Home Buying, Selling

Source: USA TODAY, November 18, 1999
"'Buying a home,' says Housing and Urban Development Secretary Andrew Cuomo, 'is the most expensive, most complicated and most intimidating financial transaction most Americans ever make.'" In this project, you will be exploring how functions and equations relate to buying a home and your income.

10ain
Log on to wwww.algebra2.com/webquest.
Begin your WebQuest by reading the Task.
Then continue working on your WebQuest as you study Unit 1.

Unit 1 First-Degree Equations and Inequalities 3

BusA
Teaching Suggestions

Have students study the

 USA TODAY Snapshot ${ }^{\circledR}$.- Ask students to write an inequality using the data for two of the expenditure categories shown. See students' work.
- According to the data, what was the average cost per person for apparel in 1998? \$669.60
- Point out to students that how they budget their money can affect their ability to buy a home. Their spending habits also affect what type of home they could afford.

Additional USA TODAY

Snapshots ${ }^{\circledR}$ appearing in Unit 1:
Chapter 1 School shopping (p. 17)

Just looking, thank you (p. 39)
Chapter 2 Cruises grow in popularity (p. 69)
Cost of seeing the doctor (p. 84)
Chapter 3 Per-pupil spending is climbing (p. 135)
Chapter 4 Student-to-teacher ratios dropping (p. 206)

(Web Quest Internet Project

A WebQuest is an online project in which students do research on the Internet, gather data, and make presentations using word processing, graphing, page-making, or presentation software. In each chapter, students advance to the next step in their WebQuest. At the end of Chapter 4, the project culminates with a presentation of their findings.
Teaching suggestions and sample answers are available in the WebQuest and Project Resources.

Solving Equations and Inequalities Chapter Overview and Pacing

	PACING (days)			
	Regular		Block	
	Basic/ Average	Advanced	Basic/ Average	Advanced
1-1 Expressions and Formulas (pp. 6-10) - Use the order of operations to evaluate expressions. - Use formulas.	1	optional	0.5	optional
1-2 Properties of Real Numbers (pp. 11-19) - Classify real numbers. - Use the properties of real numbers to evaluate expressions. Follow-Up: Investigating Polygons and Patterns	$\begin{gathered} 2 \\ \text { (with 1-2 } \\ \text { Follow-Up) } \end{gathered}$	optional	0.5	optional
1-3 Solving Equations (pp. 20-27) - Translate verbal expressions into algebraic expressions and equations, and vice versa. - Solve equations using the properties of equality.	1	optional	1 (with 1-2 Follow-Up)	optional
Solving Absolute Value Equations (pp. 28-32) - Evaluate expressions involving absolute values. - Solve absolute value equations.	1	optional	0.5	optional
1-5 Solving Inequalities ($p p .33-39$) - Solve inequalities. - Solve real-world problems involving inequalities.	1	optional	0.5	optional
Solving Compound and Absolute Value Inequalities (pp. 40-46) - Solve compound inequalities. - Solve absolute value inequalities.	1	optional	0.5	optional
Study Guide and Practice Test (pp. 47-51) Standardized Test Practice (pp. 52-53)	1	2	0.5	1
Chapter Assessment	1	1	0.5	0.5
TOTAL	9	3	4.5	1.5

Pacing suggestions for the entire year can be found on pages T20-T21.

Chapter Resource Manager

All-In-One Planner

 and Resource Center
*Key to Abbreviations: GCS = Graphing Calculator and Speadsheet Masters,
$\begin{aligned} S C & =\text { School-to-Career Masters, } \\ S M & =\text { Science and Mathematics Lab Manual }\end{aligned}$

Continuity of Instruction

Prior Knowledge

Students have worked with linear equations in previous classes and they should be familiar, to some extent, with some of the properties of equality and inequality. Also, in earlier grades students have used number lines and have related inequalities to intervals on number lines.

This Chapter

Students review the real number system and the order of operations. They begin to study formulas, evaluating expressions, and additive and multiplicative inverses. They see how properties of equality and properties of the real number system can be used to solve equations, and they study other topics related to linear equations, linear inequalities, and absolute value.

Future Connections

Equations, inequalities, and absolute value expressions appear throughout all levels of mathematics. Solving equations and inequalities and justifying mathematical steps on the basis of properties is at the center of all mathematical analysis and presentation.

1-1 Expressions and Formulas

An algebraic expression usually contains at least one variable and may also contain numbers and operations. The order of operations is a mathematical convention for deciding which operations are performed before others in an algebraic expression. That order is: evaluate powers; multiply and divide from left to right; and add and subtract from left to right. There is one more part to the convention: any grouping symbol (parentheses, brackets, braces, fraction bar) takes first priority. To evaluate an expression means to replace each variable with its given value and then follow the order of operations to simplify. A formula is an equation in which one variable is set equal to an algebraic expression.

1-2 Properties of Real Numbers

The set N of natural numbers is $\{1,2,3, \ldots\}$; add zero and the result is the set W of whole numbers. The set Z of integers is $\{\ldots,-2,-1,0,1,2, \ldots\}$ and the numbers in the set Q of rational numbers have the form $\frac{a}{b}$ where a and b are integers and $b \neq 0$. The rationals, along with the set I of irrational numbers, make up the set R of real numbers. There is a one-to-one correspondence between the real numbers and the points on a line in that each real number corresponds to exactly one point on a line and each point on a line corresponds to exactly one real number.

Properties of real numbers are used to justify the steps of solving equations and describing mathematical relationships. These include the commutative and associative properties of addition and the commutative and associative properties of multiplication. Another property, the distributive property, relates addition and multiplication. The real numbers include an identity element for the operation of addition, an identity element for the operation of multiplication, an additive inverse for every real number, and a multiplicative inverse for every real number except 0 .

1-3 Solving Equations

A mathematic sentence with an equal sign between two algebraic or arithmetic expressions is called an equation. To solve an equation requires a series of equations, equivalent to the given equation, that result in a final equation that isolates the variable on one side. That final equation presents the solution to the original equation. However, solutions should always be substituted into the original equation to check for correctness.

The rules for writing equivalent equations are called Properties of Equality. We can write the equation
$a=a$; given $a=b$ then we can write $b=a$; given $a=b$ and $b=c$ then we can write $a=c$. A fourth rule is Substitution: if $a=b$, then we can write an equation replacing a with b or b with a. Also, if $a=b$ we can write $a+c=b+c$, we can write $a-c=b-c$, we can write $a \cdot c=b \cdot c$, and, if $c \neq 0$, we can write $\frac{a}{c}=\frac{b}{c}$.

Solving Absolute Value Equations

The absolute value of a number is its distance from zero. Described algebraically, the definition of absolute value is $|a|=a$ if $a \geq 0$ and $|a|=-a$ if $a<0$. The absolute value symbols are a grouping symbol like parentheses or a fraction bar. For example, to evaluate $2 \cdot|15-31|$, first calculate inside the symbols. So, $2 \cdot|15-31|=2 \cdot|-16|=2 \cdot(16)$ or 32 .

The equation $|a-6|=4$ can be interpreted as the distance between a and 6 is 4 units. The value $a-6$ can be 4 or -4 , so if $a-6=4$, then $a=10$. If $a-6=-4$, then $a=2$. The solution is $\{2,10\}$. "No solution" can be written as $\}$ or \varnothing, the symbols for the empty set.

1-5 Solving Inequalities

An inequality is a mathematical sentence with one of the symbols $<, \leq,>$, or \geq between two expressions. Solving an inequality means writing a series of equivalent inequalities, ending with one that isolates the variable. The rules for writing equivalent inequalities are called properties of inequality. (The properties hold for all inequalities, but are usually expressed initially in terms of $>$.) If $a>b$, then we can write $a+c>b+c$ and $a-c>b-c$. Also, if $a>b$ and $c>0$, then we can write $a c>b c$ and $\frac{a}{c}>\frac{b}{c}$ or, if $c<0$, we can write $a c<b c$ and $\frac{a}{c}<\frac{b}{c}$. In general, multiplying or dividing an inequality by a negative number reverses the order of the inequality. The Trichotomy Property states that for any two real numbers, either the values are equal or one value is greater than the other. In symbols, exactly one of these statements is true: $a<b, a=b$, or $a>b$.

When the solution to an inequality is graphed, an open circle indicates a value that is not included and a closed circle indicates a value that is included. Open circles are used with $<$ and $>$, and closed circles are used with \leq and \geq. Solutions to inequalities are often written using set-builder notation, so a solution such as $x \geq 4$ would be written $\{x \mid x \geq 4\}$, read the set of values x such that x is greater than or equal to 4 .

1-6 Solving Compound and Absolute Value Inequalities

There are important connections between compound inequalities and absolute value inequalities. An absolute value inequality using $<$ or \leq is related to a compound inequality using the word and. For example, thinking of $|a|<7$ as $|a-0|<7$, then the value of a is any number whose distance from 0 is less than 7 units.

An absolute value inequality using $>$ or \geq is related to a compound inequality using the word or. For example, thinking of $|b|>5$ as $|b-0|>5$, then the value of b is any number whose distance from 0 is more than 5 .

Possible values for b

To solve absolute value inequalities, use two patterns. One pattern is to rewrite $|A|<B$ as $-B<A$ and $A<B$ (or $-B<A<B$), so rewrite $|2 x-5|<18$ as $-18<2 x-5$ and $2 x-5<18$. The solution is $-\frac{13}{2}<x<\frac{23}{2}$. The other pattern is to rewrite $|A|>B$ as $A<-B$ or $A>\mathrm{B}$, so rewrite the inequality $|3 x+1|>15$ as $3 x+1<-15$ or $3 x+1>15$. The solution is $x<-\frac{16}{3}$ or $x>\frac{14}{3}$.

wwww.algebra2.com/key_concepts

Additional mathematical information and teaching notes are available in Glencoe's Algebra 2 Key Concepts: Mathematical Background and Teaching Notes, which is available at www.algebra2.com/key_concepts. The lessons appropriate for this chapter are as follows.

- Solving Multi-Step Inequalities (Lesson 15)
- Solving Compound Inequalities (Lesson 16)

	Type	Student Edition	Teacher Resources	Technology/Internet
	Ongoing	Prerequisite Skills, pp. 5, 10, 18, $27,32,39$ Practice Quiz 1, p. 18 Practice Quiz 2, p. 39	5-Minute Check Transparencies Quizzes, CRM pp. 51-52 Mid-Chapter Test, CRM p. 53 Study Guide and Intervention, CRM pp. 1-2, 7-8, $13-14,19-20,25-26,31-32$	Alge2PASS: Tutorial Plus www.algebra2.com/self_check_quiz www.algebra2.com/extra_examples
	Mixed Review	pp. 18, 27, 32, 39, 46	Cumulative Review, CRM p. 54	
	Error Analysis	Find the Error, pp. 24, 43 Common Misconceptions, p. 12	Find the Error, TWE pp. 24, 44 Unlocking Misconceptions, TWE pp. 15, 18, 22 Tips for New Teachers, TWE pp. 10, 27	
	Standardized Test Practice	$\begin{gathered} \text { pp. } 10,17,23,24,27,31,32 \text {, } \\ 39,46,51,52-53 \end{gathered}$	TWE p. 23 Standardized Test Practice, CRM pp. 55-56	```Standardized Test Practice CD-ROM www.algebra2.com/ standardized_test```
	Open-Ended Assessment	Writing in Math, pp. 10, 17, 27, $31,38,45$ Open Ended, pp. 8, 14, 24, 30, $37,43$	Modeling: TWE pp. 18, 32 Speaking: TWE pp. 10, 27 Writing: TWE pp. 39, 46 Open-Ended Assessment, CRM p. 49	
	Chapter Assessment	Study Guide, pp. 47-50 Practice Test, p. 51	Multiple-Choice Tests (Forms 1, 2A, 2B), CRM pp. 37-42 Free-Response Tests (Forms 2C, 2D, 3), CRM pp. 43-48 Vocabulary Test/Review, CRM p. 50	TestCheck and Worksheet Builder (see below) MindJogger Videoquizzes www.algebra2.com/ vocabulary_review www.algebra2.com/chapter_test

Key to Abbreviations: TWE $=$ Teacher Wraparound Edition; CRM $=$ Chapter Resource Masters

Additional Intervention Resources

The Princeton Review's Cracking the SAT \& PSAT The Princeton Review's Cracking the ACT

ALEKS

TestCheck and Worksheet Builder

This networkable software has three modules for intervention and assessment flexibility:

- Worksheet Builder to make worksheet and tests
- Student Module to take tests on screen (optional)
- Management System to keep student records (optional)

Special banks are included for SAT, ACT, TIMSS, NAEP, and End-of-Course tests.

Intervention Technology

Alge2PASS: Tutorial Plus CD-ROM offers a complete, self-paced algebra curriculum.

Algebra 2 Lesson	Alge2PASS Lesson
$1-4$	1

ALEKS is an online mathematics learning system that adapts assessment and tutoring to the student's needs. Subscribe at wwww.k12aleks.com.

Intervention at Home

Log on for student study help.

- For each lesson in the Student Edition, there are Extra Examples and Self-Check Quizzes. www.algebra2.com/extra_examples www.algebra2.com/self_check_quiz
- For chapter review, there is vocabulary review, test practice, and standardized test practice.
www.algebra2.com/vocabulary_review
www.algebra2.com/chapter_test www.algebra2.com/standardized_test

For more information on Intervention and

 Assessment, see pp. T8-T11.
Reading and Writing in Mathematics

Glencoe Algebra 2 provides numerous opportunities to incorporate reading and writing into the mathematics classroom.

Student Edition

- Foldables Study Organizer, p. 5
- Concept Check questions require students to verbalize and write about what they have learned in the lesson. (pp. 8, 14, 24, 30, 37, 43)
- Writing in Math questions in every lesson, pp. 10, 17, 27, 31, 38, 45
- Reading Study Tip, pp. 11, 12, 34, 35
- WebQuest, p. 27

Teacher Wraparound Edition

- Foldables Study Organizer, pp. 5, 47
- Study Notebook suggestions, pp. 8, 15, 19, 24, 30, 37, 43
- Modeling activities, pp. 18, 32
- Speaking activities, pp. 10, 27
- Writing activities, pp. 39, 46
- Differentiated Instruction, (Verbal/Linguistic), p. 29
- ELL Resources, pp. 4, 9, 17, 26, 29, 31, 38, 45, 47

Additional Resources

- Vocabulary Builder worksheets require students to define and give examples for key vocabulary terms as they progress through the chapter. (Chapter 1 Resource Masters, pp. vii-viii)
- Reading to Learn Mathematics master for each lesson (Chapter 1 Resource Masters, pp. 5, 11, 17, 23, 29, 35)
- Vocabulary PuzzleMaker software creates crossword, jumble, and word search puzzles using vocabulary lists that you can customize.
- Teaching Mathematics with Foldables provides suggestions for promoting cognition and language.
- Reading and Writing in the Mathematics Classroom
- WebQuest and Project Resources

For more information on Reading and Writing in Mathematics, see pp. T6-T7.

1 Notes

What You'll Learn

Have students read over the list of objectives and make a list of any words with which they are not familiar.

Why It's Important

Point out to students that this is only one of many reasons why each objective is important. Others are provided in the introduction to each lesson.

The chart below correlates the objectives for each lesson to the NCTM standards 2000. There is also space for you to reference your state andlor local objectives.

Lesson	NCTM Standards	Local Objectives
$1-1$	$1,2,4,8,9$	
$1-2$	$1,8,9$	
$1-2$	$1,3,9,10$	
Follow-Up		
$1-3$	$1,2,4,6,8,9$	
$1-4$	$1,2,8,9,10$	
$1-5$	$1,2,6,8,9$	
$1-6$	$1,2,6,9,10$	

Key to NCTM Standards:

1=Number \& Operations, 2=Algebra,
3=Geometry, 4=Measurement,
5=Data Analysis \& Probability, 6=Problem Solving, 7=Reasoning \& Proof, 8=Communication, 9=Connections, 10=Representation

[^0]
Getting Started

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 1.

For Lessons 1-1 through 1-3

Operations with Rational Numbers
Simplify.

1. $20-0.1619 .84$
2. $12.2+(-8.45) 3.75$
3. $-3.01-14.5-17.51$
4. $-1.8+1715.2$
5. $\frac{1}{4}-\frac{2}{3}-\frac{5}{12}$
6. $\frac{3}{5}+(-6)-5 \frac{2}{5}$
7. $-7 \frac{1}{2}+5 \frac{1}{3}-2 \frac{1}{6}$
8. $-11 \frac{5}{8}-\left(-4 \frac{3}{7}\right)-7 \frac{11}{56}$
9. $(0.15)(3.2) 0.48$
10. $2 \div(-0.4)-5$
11. $(-1.21) \div(-1.1) 1.1$
12. $(-9)(0.036)-0.324$
13. $-4 \div \frac{3}{2}-2 \frac{2}{3}$
14. $\left(\frac{5}{4}\right)\left(-\frac{3}{10}\right)-\frac{3}{8}$
15. $\left(-2 \frac{3}{4}\right)\left(-3 \frac{1}{5}\right) 8 \frac{4}{5}$
16. $7 \frac{1}{8} \div(-2)-3 \frac{9}{16}$

Getting Started

This section provides a review of the basic concepts needed before beginning Chapter 1 . Page references are included for additional student help.

Prerequisite Skills in the Getting Ready for the Next Lesson section at the end of each exercise set review a skill needed in the next lesson.

For Lesson	Prerequisite Skill
$1-2$	Evaluating Square Roots (p. 10)
$1-3$	Evaluating Expressions (p. 18)
$1-4$	Additive Inverses (p. 27)
$1-5$	Solving Equations (p. 32)
$1-6$	Solving Absolute Value Equations (p. 39)

For Lesson 1-5
Compare Real Numbers
Identify each statement as true or false.
25. $-5<-7$ false
26. $6>-8$ true
27. $-2 \geq-2$ true
28. $-3 \geq-3.01$ true
31. $\frac{2}{5} \geq \frac{16}{40}$ true
32. $\frac{3}{4}>0.8$ false
29. $-9.02<-9.2$
30. $\frac{1}{5}<\frac{1}{8}$ false false

Powers
For Lesson 1-1
Evaluate each power.
17. $2^{3} 8$
18. $5^{3} 125$
19. $(-7)^{2} 49$
20. $(-1)^{3}-1$
21. $(-0.8)^{2} 0.64$
22. $-(1.2)^{2}-1.44$
23. $\left(\frac{2}{3}\right)^{2} \frac{4}{9}$
24. $\left(-\frac{4}{11}\right)^{2} \frac{16}{121}$

FOLDABLES

Make this Foldable to help you organize information about relations and functions. Begin with one sheet of notebook paper.
Study Organizer

Step 2 Cut and Label

Reading and Writing As you read and study the chapter, write notes, examples, and graphs in each column.

Chapter 1 Solving Equations and Inequalities

FOLDABLES

 Study Organizer
For more information

 about Foldables, see Teaching Mathematics with Foldables.Note-Taking and Charting Main Ideas Use this Foldable study guide for student notes about equations and inequalities. Notetaking is a skill that is based upon listening or reading for main ideas and then recording those ideas for future reference. In the columns of their Foldable, have students take notes about the processes and procedures that they learn. Encourage students to apply what they know and what they learn as they analyze and solve equations and inequalities.

Foldables ${ }^{\text {TM }}$ are a unique way to enhance students' study skills. Encourage students to add to their Foldable as they work through the
chapter, and use it to review for their chapter test.

1 Focus

5-Minute Check

Transparency 1-1 Use as a quiz or review of prerequisite skills.

Mathematical Background

 notes are available for this lesson on p .4 C .
Building on Prior Knowledge

In previous courses, students have performed operations on integers and used the order of operations. In this lesson, they should realize that using formulas requires these skills.

Vocabulary

order of operations variable
algebraic expression
formula students in the lesson. These the opening problems should also help to answer the question When am l ever
going to use this?" going

1-1 Expressions and Formulas

What Youll Learn

- Use the order of operations to evaluate expressions.
- Use formulas.

How are formulas used by nurses?

Intravenous or IV fluid must be given at a specific rate, neither too fast nor too slow. A nurse setting up an IV must control the flow rate F, in drops per minute. They use the formula $F=\frac{V \times d}{t}$, where V is the volume of the solution in milliliters, d is the drop factor in drops
 Suppose a doctor orders 1500 milliliters of IV saline to be given over 12 hours, or 12×60 minutes. Using a drop factor of 15 drops per milliliter, the expression $\frac{1500 \times 15}{12 \times 60}$ gives the correct flow rate for this patient's IV.

ORDER OF OPERATIONS A numerical expression such as $\frac{1500 \times 15}{12 \times 60}$ must have exactly one value. In order to find that value, you must follow the order of operations.

Key Concept

Step 1 Evaluate expressions inside grouping symbols, such as parentheses, (), brackets, [], braces, \{ \}, and fraction bars, as in $\frac{5+7}{2}$.
Step 2 Evaluate all powers.
Step 3 Do all multiplications and/or divisions from left to right.
Step 4 Do all additions and/or subtractions from left to right.

Grouping symbols can be used to change or clarify the order of operations. When calculating the value of an expression, begin with the innermost set of grouping symbols.

Example 1 Simplify an Expression

Find the value of $\left[2(10-4)^{2}+3\right] \div 5$.
$\left[2(10-4)^{2}+3\right] \div 5=\left[2(6)^{2}+3\right] \div 5$ First subtract 4 from 10 .

$$
\begin{array}{ll}
=[2(36)+3] \div 5 & \\
=(72+3) \div 5 & \\
\text { Then square } 6 . \\
=75 \div 5 & \\
=15 & \text { Add } 72 \text { and } 3 . \\
=\text { Finally, divide } 75 \text { by } 5 .
\end{array}
$$

The value is 15 .

6 Chapter 1 Solving Equations and Inequalities

Resource Manager

Workbook and Reproducible Masters

Chapter 1 Resource Masters

- Study Guide and Intervention, pp. 1-2
- Skills Practice, p. 3
- Practice, p. 4
- Reading to Learn Mathematics, p. 5
- Enrichment, p. 6

School-to-Career Masters, p. 1 Science and Mathematics Lab Manual, pp. 91-96

Transparencies

5-Minute Check Transparency 1-1
Real-World Transparency 1
Answer Key Transparencies

Graphing Calculator Investigation

Order of Operations

Think and Discuss 2, 4, 5. See margin.

1. Simplify $8-2 \times 4+5$ using a graphing calculator. 5
2. Describe the procedure the calculator used to get the answer.
3. Where should parentheses be inserted in $8-2 \times 4+5$ so that the expression has each of the following values?
a. -10 around $4+5$
b. 29 around $8-2$
c. -5 around $2 \times 4+5$
4. Evaluate $18^{2} \div(2 \times 3)$ using your calculator. Explain how the answer was calculated.
5. If you remove the parentheses in Exercise 4, would the solution remain the same? Explain.

Variables are symbols, usually letters, used to represent unknown quantities. Expressions that contain at least one variable are called algebraic expressions. You can evaluate an algebraic expression by replacing each variable with a number and then applying the order of operations.

Study Tip

Common

Misconception A common error in this type of problem is to subtract before multiplying.
$64-1.5(9.5) \neq 62.5(9.5)$
Remember to follow the order of operations.

Example 2 Evaluate an Expression

$$
\begin{aligned}
& \text { Evaluate } x^{2}-y(x+y) \text { if } x=8 \text { and } y=1.5 . \\
& \begin{array}{rlrl}
x^{2}-y(x+y) & =8^{2}-1.5(8+1.5) \\
& =64-1.5(8+1.5) & & \text { Replace } x \text { with } 8 \text { and } y \text { with } 1.5 . \\
& =64-1.5(9.5) \\
& =64-14.25 & & \text { Add } 8 \text { and } 1.5 . \\
& =49.75 & & \text { Multiply } 1.5 \text { and } 9.5 .
\end{array}
\end{aligned}
$$

The value is 49.75

Example 3 Expression Containing a Fraction Bar

Evaluate $\frac{a^{3}+2 b c}{c^{2}-5}$ if $a=2, b=-4$, and $c=-3$.
The fraction bar acts as both an operation symbol, indicating division, and as a grouping symbol. Evaluate the expressions in the numerator and denominator separately before dividing.

$$
\begin{aligned}
\frac{a^{3}+2 b c}{c^{2}-5} & =\frac{2^{3}+2(-4)(-3)}{(-3)^{2}-5} & & a=2, b=-4, \text { and } c=-3 \\
& =\frac{8+(-8)(-3)}{9-5} & & \text { Evaluate the numerator and the denominator separately. } \\
& =\frac{8+24}{9-5} & & \text { Multiply }-8 \text { by }-3 . \\
& =\frac{32}{4} \text { or } 8 & & \text { Simplify the numerator and the denominator. Then divide. }
\end{aligned}
$$

The value is 8 .
www.algebra2.com/extra_examples

Graphing Calculator Investigation

Order of Operations To help find entry errors, have students work in pairs so one of them can watch as their partner performs the keystrokes to enter the expression. Sometimes it is necessary to use parentheses to obtain the correct answer with fractional expressions. For example, to evaluate $\frac{4(12)}{5(4)}$, you must enter $4 * 12 /(5 * 4)$. Ask students why this is so.

2 Teach

ORDER OF OPERATIONS
In-Class Examples
1 Find the value of $\left[384-3(7-2)^{3}\right] \div 3.3$

Evaluate $s-t\left(s^{2}-t\right)$ if $s=2$ and $t=3.4 . \quad-0.04$

3 Evaluate $\frac{8 x y+z^{3}}{y^{2}+5}$ if $x=5$, $y=-2$, and $z=-1 . \quad-9$

Teaching Tip Ask students what sign the cube of a negative number has. negative sign

Answers

Graphing Calculator Investigation

2. The calculator multiplies 2 by 4 , subtracts the result from 8 , and then adds 5.
3. 54; The calculator found the square of 18 and divided it by the product of 2 and 3.
4. No; you would square 18 and then divide it by 2 . The result would then be multiplied by 3.

Interactive

 Chalkboard
PowerPoint ${ }^{\ominus}$

Presentations
This CD-ROM is a customizable Microsoft $®$ PowerPoint $®$ presentation that includes:

- Step-by-step, dynamic solutions of each In-Class Example from the Teacher Wraparound Edition
- Additional, Your Turn exercises for each example
- The 5-Minute Check Transparencies
- Hot links to Glencoe Online Study Tools

FORMULAS A formula is a mathematical sentence that expresses the relationship between certain quantities. If you know the value of every variable in the formula except one, you can find the value of the remaining variable.

Example 4 Use a Formula

GEOMETRY The formula for the area A of a trapezoid is $A=\frac{1}{2} h\left(b_{1}+b_{2}\right)$,
where h represents the height, and b_{1} and b_{2} represent the measures of the bases.
Find the area of the trapezoid shown below.

Substitute each value given into the formula. Then evaluate the expression using the order of operations.
$A=\frac{1}{2} h\left(b_{1}+b_{2}\right) \quad$ Area of a trapezoid
$=\frac{1}{2}(10)(16+52) \quad$ Replace h with $10, b_{1}$ with 16 , and b_{2} with 52.
$=\frac{1}{2}(10)(68) \quad$ Add 16 and 52.
$=5(68) \quad$ Divide 10 by 2.
$=340 \quad$ Multiply 5 by 68 .
The area of the trapezoid is 340 square inches.

About the Exercises... Organization by Objective
 - Order of Operations: 16-37
 - Formulas: 38-54
 Odd/Even Assignments
 Exercises 16-49 are structured so that students practice the
 Guided Practice

 same concepts whether they are assigned odd or even problems.Alert! Exercise 53 involves research on the Internet or other reference materials.

Assignment Guide

Basic: 17-33 odd, 37-47 odd, 53, 55-66
Average: 17-53 odd, 55-66
Advanced: 16-54 even, 55-58, (optional: 59-66)

D A I L Y INIERVENTION

Check for Understanding

Concept Check

1. First, find the sum of c and d. Divide this sum by e. Multiply the quotient by b. Finally, add a.
2. Sample answer: $\frac{14-4}{5}$

GUIDED PRACTICE KEY	
Exercises	Examples
$4-9$	1,3
$10-12$	2
$13-15$	4

1. Describe how you would evaluate the expression $a+b[(c+d) \div e]$ given values for a, b, c, d, and e.
2. OPEN ENDED Give an example of an expression where subtraction is performed before division and the symbols (), [], or \{\} are not used.
3. Determine which expression below represents the amount of change someone would receive from a $\$ 50$ bill if they purchased 2 children's tickets at $\$ 4.25$ each and 3 adult tickets at $\$ 7$ each at a movie theater. Explain.
a. $50-2 \times 4.25+3 \times 7$
b. $50-(2 \times 4.25+3 \times 7)$
c. $(50-2 \times 4.25)+3 \times 7$
d. $50-(2 \times 4.25)+(3 \times 7)$
b; See margin for explanation.

Find the value of each expression.
4. $8(3+6) 72$
5. $10-8 \div 26$
6. $14 \cdot 2-523$
7. $[9+3(5-7)] \div 31$
8. $\left[6-(12-8)^{2}\right] \div 5-2$
9. $\frac{17(2+26)}{4} 119$

Evaluate each expression if $x=4, y=-2$, and $z=6$.
10. $z-x+y 0$
11. $x+(y-1)^{3}-23$
12. $x+[3(y+z)-y] 18$

8 Chapter 1 Solving Equations and Inequalities

Differentiated Instruction

Visual/Spatial Suggest that students first rewrite an expression they are to evaluate and then write the value for each variable on top of that variable before they start to evaluate the expression. Students may find it helpful to use colored pencils to color code the values for the different variables in an expression.

Application
BANKING For Exercises 13-15, use the following information.
Simple interest is calculated using the formula $I=p r t$, where p represents the principal in dollars, r represents the annual interest rate, and t represents the time in years. Find the simple interest I given each of the following values.
13. $p=\$ 1800, r=6 \%, t=4$ years $\$ 432$
14. $p=\$ 5000, r=3.75 \%, t=10$ years $\$ 1875$
15. $p=\$ 31,000, r=2 \frac{1}{2} \%, t=18$ months $\$ 1162.50$

* indicates increased difficulty

Practice and Apply

Homework Help

For	
Exercises	See Examples
$16-37$	1,3
$38-50$	2,3
$51-54$	4

Extra Practice See page 828.

Bicycling
In order to increase awareness and acceptance of bicycling throughout the country, communities, corporations, clubs, and individuals are invited to join in sponsoring bicycling activities during the month of May, National Bike Month.
Source: League of American Bicyclists

Find the value of each expression.
16. $18+6 \div 320$
17. $7-20 \div 53$
18. $3(8+3)-429$
19. $(6+7) 2-125$
20. $2\left(6^{2}-9\right) 54$
21. $-2\left(3^{2}+8\right)-34$
22. $2+8(5) \div 2-319$
24. $[38-(8-3)] \div 311$
26. $1-\{30 \div[7+3(-4)]\} 7$
28. $\frac{1}{3}\left(4-7^{2}\right)-15$
30. $\frac{16(9-22)}{4}-52$
32. $0.3(1.5+24) \div 0.515 .3$
34. $\frac{1}{5}-\frac{20(81 \div 9)}{25}-7$
-36. BICYCLING The amount of pollutants saved by riding a bicycle rather than driving a car is calculated by adding the organic gases, carbon monoxide, and nitrous oxides emitted. To find the pounds of pollutants created by starting a typical car 10 times and driving it for 50 miles, find the value of the expression $\frac{(52.84 \times 10)+(5.955 \times 50)}{454}$. about 1.8 lb
37. NURSING Determine the IV flow rate for the patient described at the beginning of the lesson by finding the value of $\frac{1500 \times 15}{12 \times 60} .31 .25$ drops per min

Evaluate each expression if $w=6, x=0.4, y=\frac{1}{2}$, and $z=-3$.
38. $w+x+z 3.4$
39. $w+12 \div z 2$
40. $w(8-y) 45$
41. $z(x+1)-4.2$
42. $w-3 x+y 5.3$
43. $5 x+2 z-4$
44. $z^{4}-w 75$
45. $(5-w)^{2}+x 1.4$
46. $\frac{5 w x}{z}-4$
47. $\frac{2 z-15 x}{3 y}-8$
\star 48. $(x-y)^{2}-2 w z$ 36.01 $\star 49 . \frac{1}{y}+\frac{1}{w} 2 \frac{1}{6}$
50. GEOMETRY The formula for the area A of a circle with diameter d is $A=\pi\left(\frac{d}{2}\right)^{2}$. Write an expression to represent the area of the circle. $\pi\left(\frac{y+5}{2}\right)^{2}$
\star 51. Find the value of $a b^{n}$ if $n=3, a=2000$, and $b=-\frac{1}{5} . \quad-16$

wwww.algebra2.com/self_check_quiz
Lesson 1-1 Expressions and Formulas 9
3. The sum of the cost of adult and children tickets should be subtracted from 50. Therefore parentheses need to be inserted around this sum to insure that this addition is done before subtraction.

Enrichment, p. 6

Significant Digits
All measurements are approximations. The significant digits of an approximate
number are those which indicate the results of a measurement. For example, the number are those which indicate the results of a measurement. For epample, the
mass of an object, measured to the nearest gram, is 210 grams. The measurement
 1. Nonzero digits and zeros between significant digits are significant. For 1. Nonzero digits and zeros between significant digits are significant. For
example, the measurement 9.071 m has 4 significant digits, $9,0,7$, and 1 . 2. Zeros at the end of a decimal fraction are significant. The measurement
0.050 mm has 2 significant digits, 5 and 0 . 5 and 0 3. Underlined zeros in whole numbers are significant. The measurement In general, a computation involving multiplication or division of measurements
cannot be more accurate than the least accurate measurement in the computaion cannot the more accurate than the eeast accurate measurement in the e
Thus, the result of computation involvivg multipicication or division of messure result of computation inivolving multipitication or division of
measuremens should be rounded to the number of significant digits in the leas

Study Guide and Intervention, p. 1 (shown) and p. 2

Order of Operations

\section*{| Order ot | 1 |
| :--- | :--- |
| Operations | 2 |
| 2 | 4. |}

Examplea1 Evaluate [18-($6+4)]$
$\begin{aligned} & \text { Evaluate }[18-(6+4]+2=[18-10] \div 2 \\ & =8 \div 2\end{aligned}$

Example2 E

Replace ach $y=0.5$ variable wid
. Replace each variable with the given value.
$3 x^{2}+x(y-5)=3 \cdot(3)^{2}$ $\begin{aligned} 3 x^{2}+x(y-5) & =3 \cdot(3)^{2}+3(0.5-5) \\ & =3 \cdot(9)+3(-4.5) \\ & =27-13.5\end{aligned}$

Exercises

Exercises		
Find the value of each expression.		
1. $14+(6 \div 2) 17$	2. $11-(3+2)^{2}-14$	3. $2+(4-2)^{3}-64$
4. $9\left(3^{2}+6\right) 135$	5. $\left(5+2^{33}\right)^{2}-5^{2} 144$	6. $5^{2}+\frac{1}{4}+18 \div 234.25$
7. $\frac{16+2^{3} \times 4}{1-2^{2}}-6$	8. $\left(7-3^{2}\right)^{2}+6^{2} 40$	9. $20 \div 2^{2}+611$
10. $12+6 \div 3-2(4) 6$	11. $14 \div(8-20 \div 2)-7$	12. $6(7)+4 \div 4-538$
13. $8\left(4^{2} \div 8-32\right)-240$	14. $\frac{6+4 \div 2}{4+6-1}-24$	15. $\frac{6+9+3+15}{8-2} 4$
Evaluate each expression if $a=8.2, b=-3, c=4$, and $d=-\frac{1}{2}$.		
16. $\frac{a b}{d} 49.2$	17. $5(6 c-8 b+10 d) 215$	18. $\frac{c^{2}-1}{b-d}-6$
19. $a c-b d 31.3$	20. $(b-c)^{2}+4 a 81.8$	21. $\frac{a}{d}+6 b-5 c-54.4$
22.3($\frac{c}{d}$) $-b-21$	23. $c d+\frac{b}{d} 4$	24. $d(a+c)-6.1$
25. $a+b \div c 7.45$	26. $b-c+4 \div d-15$	27. $\frac{a}{b+c}-d 8.7$

Skills Practice, P. 3 and
 Practice, P. 4 (shown)

Find the value of each expression.

1. $3(4-7)-11-20$
2. $1+2-3(4) \div 2-3$
3. $12-\left[20-2\left(6^{2} \div 3 \times 2^{2}\right]\right) 88$
4. $20 \div(5-3)+5^{2}(3) 85$
5. $(-2)^{3}-(3)(8)+(5)(10) 18$
6. $18-|5-(34-(17-11)]| 41$
7. $[4(5-3)-2(4-8)] \div 161$
8. $\frac{1}{2}\left[6-4^{2}\right]-5 \quad$ 10. $\frac{1}{4}[-5+5(-3)]-5$
9. $\frac{-8(13-37)}{6} 32 \quad$ 12. $\frac{(-8)^{2}}{5-9}-(-1)^{2}+4(-9)-53$

Evaluate each expression if $a=\frac{3}{4}, b=-8, c=-2, d=3$, and $e=\frac{1}{3}$.
13. $a b^{2}-d 45 \quad$ 14. $(c+d) b-8$
15. $\frac{a b}{c}+d^{2} 12 \quad$ 16. $\frac{d(b-c)}{a c} 12$
17. $(b-d e) e^{2}-1 \quad$ 18. $a c^{3}-b^{2} d e-70$
19. $-b\left[a+(c-d)^{2}\right] 206 \quad$ 20. $\frac{a c^{4}}{d}-\frac{c}{e^{2}} 22$
21. $9 b c-\frac{1}{e} 141 \quad$ 22. $2 a b^{2}-\left(d^{3}-c\right) 67$
23. TEMPERATURE The formula $F=\frac{9}{5} C+32$ gives the temperature in degrees Fahrenheit for a given temperature in degrees Celsisus. What is the temperature in
degrees Fahrenheit when the temperature is -40 degres Celsius? $-40^{\circ} F$
24. PHYSICS The formula $h=120 t-16 t^{2}$ gives the height h in feet of an object t seconds

25. AGRICULTURE Faith owns an organic apple orchard. From her experience the last few
seasons, she has developed the formula $P=20 x-0.01 x^{2}-240$ to
predict her profit P in seasons, she has developed the formula $P=20 x-0.01 x^{2}-240$ to predict her profit P
dollars this season if her trees produce x bushels of apples. What is Faith's predicted profit this season if her orchard produces 300 bushels of apples? $\$ 4860$

Reading to Learn

Mathematics, P. 5

ELL

Pre-Activity How are formulas used by nurses? Read the introduction to Lesson $1-1$ at the top of page 6 in your textbook. Nurses use the formula $F=\frac{V \times d}{t}$ to control the flow rate for IVs. Name the quantity that each of the variables in this formula represents and the
 F represents the flow rate and is measured in drops V V represents the volume milliliters
${ }_{d}^{d \text { represents the }}$ per milliliter. drop factor and is measured in drops t represents ___ time and is measured in minutes . Write the expression that a nurse would use to calculate the flow rate
of an IV if doctor orders 1350 milliliters of IV saline to be given over or hans, iva doctor orders 1350 milliliters of IV saline to be given over
8 hot of of 20 drops per milliliter. Do not find the value
of this expression. 1350×20

Reading the Lesson

1. There is a customary order for grouping symbols. Brackets are used outside of
parentheses. Braces are used outside of brackets. Identify the innermost expressi each of the following expressions.
b. $9-[5(8-6)+2(10+7)(8-6)$ and $(10+7)$
c. $\left[14-\left[8+(3-12)^{2}\right] \mid \div\left(6^{3}-100\right)(3-12)\right.$
2. Read the following instructions. Then use grouping sym
can be put in the form of a mathematical expression.
can be put in the torm of a mathematical expression.
Multiply the difference of 1 and 5 by the sum of 9 and 21 . Add the result to 10 . Then
divide what you get by $2 .[(13-5)(9+21)+10] \div 2$
3. Why is it important for everyone to use the same order of operations for evaluating
expressions? Sample answeri If everyone did dot use the same order of operations, different people might get different answers.

Helping You Remember

4. Think of a phrase or sentence to help you remember the order of operations.
exponents; multiplication and division; addition and subtraction)

Lesson 1-1 Expressions and Formulas 9

4 Assess

Open-Ended Assessment

Speaking Ask students to state various formulas they remember using in previous courses, and to explain what each variable represents (for example, $P=2(\ell+w)$ to find the perimeter of a rectangle, where ℓ is the length and w is the width). Then have a volunteer suggest appropriate values for the variables in the formula. Ask the class as a whole to evaluate the given formula using the suggested values.

Intervention
Students may be reluctant to take time to show all the steps they use when evaluating an expression, such as showing the substituted values before doing the computations. Help them see that these steps enable them to self-diagnose errors and to prevent calculation errors that might keep them from getting correct values.

Getting Ready for
 Lesson I-2

PREREQUISITE SKILL Lesson 1-2
presents the properties of real numbers and the subsets of the real numbers, including irrationals. Remind students that the square root of a number is irrational if that number is not a perfect square. Exercises 59-66 should be used to determine your students' familiarity with evaluating square roots.
52. MEDICINE Suppose a patient must take a blood pressure medication that is dispensed in 125-milligram tablets. The dosage is 15 milligrams per kilogram of body weight and is given every 8 hours. If the patient weighs 25 kilograms, how many tablets would be needed for a 30-day supply? Use the formula $n=24 d \div[8(b \times 15 \div 125)]$, where n is the number of tablets, d is the number of days the supply should last, and b is the body weight of the patient in kilograms. 30
53. MONEY In 1950, the average price of a car was about $\$ 2000$. This may sound inexpensive, but the average income in 1950 was much less than it is now. To compare dollar amounts over time, use the formula $V=\frac{A}{S} C$, where A is the old dollar amount, S is the starting year's Consumer Price Index (CPI), C is the converting year's CPI, and V is the current value of the old dollar amount. Buying a car for $\$ 2000$ in 1950 was like buying a car for how much money in 2000? \$8266.03

Online Research Data Update What is the current Consumer Price Index? Visit

Year	Average CPI
1950	421
1960	296
1970	388
1980	824
1990	1307
2000	1740

- 54. FIREWORKS Suppose you are about a mile from a fireworks display. You count 5 seconds between seeing the light and hearing the sound of the firework display. You estimate the viewing angle is about 4°. Using the information at the left, estimate the width of the firework display. 400 ft

55. CRITICAL THINKING Write expressions having values from one to ten using exactly four 4 s . You may use any combination of the operation symbols,,$+- \times$, \div, and/or grouping symbols, but no other numbers are allowed. An example of such an expression with a value of zero is $(4+4)-(4+4)$. See margin.
56. WRITING IN MATH

Answer the question that was posed at the beginning of the lesson. See margin.
How are formulas used by nurses?
Include the following in your answer:

- an explanation of why a formula for the flow rate of an IV is more useful than a table of specific IV flow rates, and
- a description of the impact of using a formula, such as the one for IV flow rate, incorrectly.

Standardized Test Practice (A) B C
57. Find the value of $1+3(5-17) \div 2 \times 6$. C
(A) -4
(B) 109
(C) -107
(D) -144
58. The following are the dimensions of four rectangles. Which rectangle has the same area as the triangle at the right? D
(A) 1.6 ft by 25 ft
(B) 5 ft by 16 ft
(C) 3.5 ft by 4 ft
(D) 0.4 ft by 50 ft

Maintain Your Skills

Getting Ready for the Next Lesson PREREQUISITE SKILL
59. $\sqrt{9} 3$
60. $\sqrt{16} 4$
61. $\sqrt{100} 10$
62. $\sqrt{169} 13$
63. $-\sqrt{4}-2$
64. $-\sqrt{25}-5$
65. $\sqrt{\frac{4}{9}} \frac{2}{3}$
66. $\sqrt{\frac{36}{49}} \frac{6}{7}$

10 Chapter 1 Solving Equations and Inequalities

Answers

55. Sample answer:	$44 \div 4-4=7$
$4-4+4 \div 4=1$	$(4+4) \times(4 \div 4)=8$
$4 \div 4+4 \div 4=2$	$4+4+4 \div 4=9$
$(4+4+4) \div 4=3$	$(44-4) \div 4=10$
$4 \times(4-4)+4=4$	
$(4 \times 4+4) \div 4=5$	
$(4+4) \div 4+4=6$	

$4-4+4 \div 4=1$
$4 \div 4+4 \div 4=2$
$(4+4+4) \div 4=3$
$(4 \times 4+4) \div 4=5$
$(4+4) \div 4+4=6$
56. Nurses use formulas to calculate a drug dosage given a supply dosage and a doctor's drug order. They also use formulas to calculate IV flow rates. Answers should include the following.

- A table of IV flow rates is limited to those situations listed, while a formula can be used to find any IV flow rate.
- If a formula used in a nursing setting is applied incorrectly, a patient could die.

1-2 Properties of Real Numbers

What Youtl Learn

- Classify real numbers.
- Use the properties of real numbers to evaluate expressions.

Vocabulary

- real numbers
rational numbers
irrational numbers

Study Tip

Reading Math A ratio is the comparison of two numbers by division.

How is the Distributive Property useful in calculating store savings?

Manufacturers often offer coupons to get consumers to try their products. Some grocery stores try to attract customers by doubling the value of manufacturers' coupons. You can use the Distributive Property to calculate these savings.

REAL NUMBERS All of the numbers that you use in everyday life are real numbers. Each real number corresponds to exactly one point on the number line, and every point on the number line represents exactly one real number.

Real numbers can be classified as either rational or irrational

Irrational Numbers

- Words A real number that is not rational is irrational. The decimal form of an irrational number neither terminates nor repeats.
- Examples $\sqrt{5}, \pi, 0.010010001 \ldots$

The sets of natural numbers, $\{1,2,3,4,5, \ldots\}$, whole numbers, $\{0,1,2,3,4, \ldots\}$, and integers, $\{\ldots,-3,-2,-1,0,1,2, \ldots\}$ are all subsets of the rational numbers. The whole numbers are a subset of the rational numbers because every whole number n is equal to $\frac{n}{1}$.

1 Focus

5-Minute Check

Transparency 1-2 Use as a quiz or review of Lesson 1-1.

Mathematical Background notes are available for this lesson on p. 4C.

Building on Prior Knowledge

In Lesson 1-1, students simplified and evaluated expressions. In this lesson, they broaden those skills to include using the real numbers and applying the commutative, associative, identity, inverse, and distributive properties of real numbers.

How
 is the Distributive Property useful in calculating store savings?

Ask students:

- In the list of Scanned Coupons and Bonus Coupons shown, what does 0.30 mean? 30¢
- Why is there a negative sign after the decimal numbers? The negative sign indicates that the amount is taken off or subtracted from the price.

Resource Manager

Transparencies

5-Minute Check Transparency 1-2
Answer Key Transparencies

2 Teach

REAL NUMBERS

Teaching Tip Point out that a nonterminating decimal whose digits show a pattern but which has no repeating group of digits, such as the number $0.010010001 \ldots$ given in the Key Concepts examples on p. 11, is irrational. Another example is the number $1.232233222333 \ldots$...

In-Class Example

1 Name the sets of numbers to which each number belongs.
a. $-\frac{2}{3} \mathrm{Q}, \mathrm{R}$
b. 9.999... Q, R
c. $\sqrt{6} \mathrm{I}, \mathrm{R}$
d. $\sqrt{100} \mathrm{~N}, \mathrm{~W}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$
e. -23.3 Q, R

Reading Tip Ask students whether fraction and rational number mean the same thing. (No; 4 is not a fraction but it is a rational number. Fraction refers to the form of a number: $\frac{8}{4}$ is in the form of a fraction but it is a whole number in value.)

The square root of any whole number is either a whole number or it is irrational. For example, $\sqrt{36}$ is a whole number, but $\sqrt{35}$, since it lies between 5 and 6 , must be irrational.

Example 1 Classify Numbers

Name the sets of numbers to which each number belongs.
a. $\sqrt{16}$

PROPERTIES OF REAL NUMBERS

Reading Tip Help students remember the names of properties by connecting the term commutative with "commuting, or moving from one position to another," and by connecting the term associative with "the people you associate with, or your group."

The Venn diagram shows the relationships among these sets of numbers.

$\mathrm{R}=$ reals	$\mathrm{Q}=$ rationals
$\mathrm{I}=$ irrationals	$\mathrm{Z}=$ integers
$\mathrm{W}=$ wholes	$\mathrm{N}=$ naturals

Study Tip

Common

Misconception
Do not assume that a number is irrational because it is expressed using the square root symbol. Find its value first.

Study Tips offer
students helpful
information about the topics they are studying.
$\sqrt{16}=4 \quad$ naturals (N), wholes (W), integers (Z), rationals (Q), reals (R)
b. -185 integers (Z), rationals (Q), and reals (R)
c. $\sqrt{20} \quad$ irrationals (I) and reals (R)
$\sqrt{20}$ lies between 4 and 5 so it is not a whole number.
d. $-\frac{7}{8}$
rationals (Q) and reals (R)
e. $0 . \overline{45}$
rationals (Q) and reals (R)
The bar over the 45 indicates that those digits repeat forever.

PROPERTIES OF REAL NUMBERS The real number system is an example of a mathematical structure called a field. Some of the properties of a field are summarized in the table below.
d. $-\frac{7}{8}$

Study Tip

Reading Math $-a$ is read the opposite of a.

Key Concepts

Real Number Properties
For any real numbers a, b, and c :

For any real numbers a, b, and $c:$		
Property	Addition	Multiplication
Commutative	$a+b=b+a$	$a \cdot b=b \cdot a$
Associative	$(a+b)+c=a+(b+c)$	$(a \cdot b) \cdot c=a \cdot(b \cdot c)$
Identity	$a+0=a=0+a$	$a \cdot 1=a=1 \cdot a$
Inverse	$a+(-a)=0=(-a)+a$	If $a \neq 0$, then $a \cdot \frac{1}{a}=1=\frac{1}{a} \cdot a$.
Distributive	$a(b+c)=a b+a c$ and $(b+c) a=b a+c a$	

Example 2 Identify Properties of Real Numbers

Name the property illustrated by each equation.
a. $(5+7)+8=8+(5+7)$

Commutative Property of Addition
The Commutative Property says that the order in which you add does not change the sum.
b. $3(4 x)=(3 \cdot 4) x$

Associative Property of Multiplication
The Associative Property says that the way you group three numbers when multiplying does not change the product.

Example 3 Additive and Multiplicative Inverses

Identify the additive inverse and multiplicative inverse for each number.
a. $-1 \frac{3}{4}$

Since $-1 \frac{3}{4}+\left(1 \frac{3}{4}\right)=0$, the additive inverse of $-1 \frac{3}{4}$ is $1 \frac{3}{4}$.
Since $-1 \frac{3}{4}=-\frac{7}{4}$ and $\left(-\frac{7}{4}\right)\left(-\frac{4}{7}\right)=1$, the multiplicative inverse of $-1 \frac{3}{4}$ is $-\frac{4}{7}$.
b. 1.25

Since $1.25+(-1.25)=0$, the additive inverse of 1.25 is -1.25 .
The multiplicative inverse of 1.25 is $\frac{1}{1.25}$ or 0.8 .
CHECK Notice that $1.25 \times 0.8=1 . \quad \sqrt{ }$

You can model the Distributive Property using algebra tiles.

Algebra Activity

Distributive Property

- A 1 tile is a square that is 1 unit wide and 1 unit long. Its area is 1 square unit. An x tile is a rectangle that is 1 unit wide and x units long. Its area is x square units.
- To find the product $3(x+1)$, model a rectangle with a width of 3 and a length of $x+1$. Use your algebra tiles to mark off the dimensions on a product mat. Then make the rectangle with algebra tiles.
- The rectangle has $3 x$ tiles and 31 tiles. The area of the rectangle is $x+x+x+1+1+1$ or $3 x+3$. Thus, $3(x+1)=3 x+3$.

Model and Analyze

Tell whether each statement is true or false. Justify your answer with algebra tiles and a drawing. 1-4. See pp. 53A-53B for drawings.

1. $4(x+2)=4 x+2$ false
2. $3(2 x+4)=6 x+7$ false
3. $2(3 x+5)=6 x+10$ true
4. $(4 x+1) 5=4 x+5$ false

Algebra Activity

Materials: algebra tiles, product mat

- Have students verify with their tiles that the length of an x tile is not a multiple of the side length of a 1 tile.
- Suggest that students can verify they have modeled an expression like $2(3 x+5)$ correctly if they read the expression as "2 rows of $3 x$ tiles and 51 tiles." If they arrange their models like the one shown in the book, the rows of tiles can be "read" from left to right just as when reading the text.

2 Name the property illustrated by each equation.
a. $(-8+8)+15=0+15$

Additive Inverse Property
b. $5(8-6)=5(8)-5(6)$ Distributive Property

3 Identify the additive inverse and multiplicative inverse for each number.
a. -7 additive: 7; multiplicative: $-\frac{1}{7}$
b. $\sqrt{\frac{1}{9}}$ additive: $-\sqrt{\frac{1}{9}}$ or $-\frac{1}{3}$;
multiplicative: 3
Teaching Tip Make sure students understand that additive inverses must have a sum of 0 and that multiplicative inverses must have a product of 1 .

in-Class Examples, which are included for every example in the

 Student Edition, exactly parallel the examples in the text. Teaching Tips about the examples in the Student Edition aching Tips a studentaraples in the shere approp
are included wher

4 POSTAGE Audrey went to a post office and bought eight $34 \not \subset$ first-class stamps and eight $21 \notin$ postcard stamps. How much did Audrey spend altogether on stamps? $8(0.34)+8(0.21)$ or 8(0.34 + 0.21)

Simplify $4(3 a-b)+2(b+3 a)$. $18 a-2 b$

5 Reading Tip Help students recall the Distributive Property by connecting the name to "distributing or handing out papers, one to each person." Point out that the factor outside of the parentheses acts as a multiplier for each term within the parentheses.

Answer

2. A rational number is the ratio of

 two integers. Since $\sqrt{3}$ is not an integer, $\frac{\sqrt{3}}{2}$ is not a rational number.

Food Service
Leaving a "tip" began in 18th century English coffee houses and is believed to have originally stood for To Insure Promptness." Today, the American Automobile Association suggests leaving a 15% tip. Source: Market Facts, Inc.

Example 4 Use the Distributive Property to Solve a Problem

FOOD SERVICE A restaurant adds a 20% tip to the bills of parties of 6 or more people. Suppose a server waits on five such tables. The bill without the tip for each party is listed in the table. How much did the server make in tips during this shift?

Party 1	Party 2	Party 3	Party 4	Party 5
18545	20520	19505	24580	26200

There are two ways to find the total amount of tips received.

Method 1

Multiply each dollar amount by 20% or 0.2 and then add.
$T=0.2(185.45)+0.2(205.20)+0.2(195.05)+0.2(245.80)+0.2(262)$
$=37.09+41.04+39.01+49.16+52.40$
$=218.70$

Method 2

Add the bills of all the parties and then multiply the total by 0.2 .

$$
\begin{aligned}
T & =0.2(185.45+205.20+195.05+245.80+262) \\
& =0.2(1093.50) \\
& =218.70
\end{aligned}
$$

The server made $\$ 218.70$ during this shift.
Notice that both methods result in the same answer.

The properties of real numbers can be used to simplify algebraic expressions.

Example 5 Simplify an Expression

Simplify $2(5 m+n)+3(2 m-4 n)$.
$2(5 m+n)+3(2 m-4 n)$
$=2(5 m)+2(n)+3(2 m)-3(4 n) \quad$ Distributive Property
$=10 m+2 n+6 m-12 n \quad$ Multiply.
$=10 m+6 m+2 n-12 n \quad$ Commutative Property (+)
$=(10+6) m+(2-12) n \quad$ Distributive Property
$=16 m-10 n \quad$ Simplify.

Check for Understanding

Concept Check 1. OPEN ENDED Give an example of each type of number. Sample answers given.

a. natural 2
b. whole 5
c. integer $\mathbf{- 1 1}$
d. rational 1.3
e. irrational $\sqrt{2}$
f. real $\mathbf{- 1 . 3}$
3. 0; zero does not have a multiplicative inverse since $\frac{1}{0}$ is undefined.
2. Explain why $\frac{\sqrt{3}}{2}$ is not a rational number. See margin.
3. Disprove the following statement by giving a counterexample. A counterexample is a specific case that shows that a statement is false. Explain.
Every real number has a multiplicative inverse.
14 Chapter 1 Solving Equations and Inequalities

Instructiated
suggestions are keyed to eight commonly-accepted
learning learning styles.

Guided Practice GUIDED PRACTICE KEY

Exercises	Examples
$4-6$	1
$7-9$	2
$10-12$	3
$13-16$	5
17,18	4

Name the sets of numbers to which each number belongs.
4. $-4 \mathrm{Z}, \mathrm{Q}, \mathrm{R}$
5. $45 \mathrm{~N}, \mathrm{~W}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$
6. $6 . \overline{23} \mathrm{Q}, \mathrm{R}$

Name the property illustrated by each equation.
7. $\frac{2}{3} \cdot \frac{3}{2}=1$ Mult. Iden
8. $(a+4)+2=a+(4+2)$ 9. $4 x+0=4 x$ Assoc. (+)
Add. Iden.

Identify the additive inverse and multiplicative inverse for each number.
10. $-88,-\frac{1}{8}$
11. $\frac{1}{3}-\frac{1}{3}, 3$
12. $1.5-1.5, \frac{2}{3}$

Simplify each expression.
13. $3 x+4 y-5 x-2 x+4 y$
14. $9 p-2 n+4 p+2 n 13 p$
15. $3(5 c+4 d)+6(d-2 c) 3 c+18 d$
16. $\frac{1}{2}(16-4 a)-\frac{3}{4}(12+20 a)-17 a-1$

BAND BOOSTERS For Exercises 17 and 18, use the information below and in the table.
Ashley is selling chocolate bars for $\$ 1.50$ each to raise money for the band.
17. Write an expression to represent the total amount of money Ashley raised during this week.
18. Evaluate the expression from Exercise 17 by using the Distributive Property. \$175.50

Application
17. $1.5(10+15+$
$12+8+19+22+$ 31) or 1.5(10) + $1.5(15)+1.5(12)+$ $1.5(8)+1.5(19)+$ $1.5(22)+1.5(31)$ -

夫 indicates increased difficulty

Practice and Apply

Homework Help

For Exercises	See Examples
$19-27$,	1
$40-42$,	
$59-62$	
$28-39$	2
$43-48$	3
$63-65$	4
$49-58$,	5
$66-69$	

Extra Practice See page 828.
Homework Help charts show students which examples to which to refer if they need additional practice. Extra Practice for provided every lesson pages
provided on
$1828-861$.

Name the sets of numbers to which each number belongs. 19-26. See margin.
19. 0
20. $-\frac{2}{9}$
21. $\sqrt{121}$
22. -4.55
23. $\sqrt{10}$
24. -31
25. $\frac{12}{2}$
大 26. $\frac{3 \pi}{2}$
$\star 27$. Name the sets of numbers to which all of the following numbers belong. Then arrange the numbers in order from least to greatest.
$2 . \overline{49}, 2.4 \overline{9}, 2.4,2.49,2 . \overline{9} \mathbf{Q}, \mathbf{R} ; 2.4,2.49,2 . \overline{49}, 2.4 \overline{9}, 2 . \overline{9}$
Name the property illustrated by each equation. 31. Assoc. (+)
28. $5 a+(-5 a)=0$ Add. Inv.
29. $(3 \cdot 4) \cdot 25=3 \cdot(4 \cdot 25)$ Assoc. (\times)
30. $-6 x y+0=-6 x y$ Add. Iden.
31. $[5+(-2)]+(-4)=5+[-2+(-4)]$
32. $(2+14)+3=3+(2+14)$ Comm. $(+)$ 33. $\left(1 \frac{2}{7}\right)\left(\frac{7}{9}\right)=1$ Mult. Inv.
34. $2 \sqrt{3}+5 \sqrt{3}=(2+5) \sqrt{3}$ Dist. 35. $a b=1 a b$ Multi. Iden.

NUMBER THEORY For Exercises 36-39, use the properties of real numbers to answer each question. 37. $-m$; Add. Inv. 38. $\frac{1}{m}$; Multi. Inv.
36. If $m+n=m$, what is the value of n ?
37. If $m+n=0$, what is the value of n ? What is n called with respect to m ?
38. If $m n=1$, what is the value of n ? What is n called with respect to m ? 39. If $m n=m$, what is the value of n ? 1
uvvuw.algebra2.com/self_check_quiz
Lesson 1-2 Properties of Real Numbers 15

D A \| L Y INIERVENIION

Unlocking Misconceptions

Positive Root Remind students that $\sqrt{9}$ means only the positive root, if one exists, so $\sqrt{9}=3$. To indicate both roots of the equation $x^{2}=9$, the mathematical notation is $x= \pm \sqrt{9}$ or $x= \pm 3$.

About the Exercises... Organization by Objective

- Real Numbers: 19-27, 59-62
- Properties of Real

Numbers: 28-58, 63-69
Exercises 19-26, 28-39, and 43-62 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 19-25 odd, 29-39 odd, 40-42, 43-57 odd, 59, 61, 63-64, 65, 67, 69, 70-73, 78-86
Average: 19-39 odd, 40-42,
43-61 odd, 63-65, 67-73, 78-86 (optional: 74-77)
Advanced: 20-38 even, 40-42,
44-62 even, 66-82 (optional: 83-86)
All: Practice Quiz 1 (1-10)

Answers

19. W, Z, Q, R
20. Q, R
21. N, W, Z, Q, R
22. Q, R
23. I, R
24. Z, Q, R
25. N, W, Z, Q, R
26. I, R

Answers
$65.3\left(2 \frac{1}{4}\right)+2\left(1 \frac{1}{8}\right)$
$=3\left(2+\frac{1}{4}\right)+2\left(1+\frac{1}{8}\right)$
Definition of a mixed number
$=3(2)+3\left(\frac{1}{4}\right)+2(1)+2\left(\frac{1}{8}\right)$
Distributive Property
$=6+\frac{3}{4}+2+\frac{1}{4}$ Multiply.
$=6+2+\frac{3}{4}+\frac{1}{4}$ Commutative
Property of Addition
$=8+\frac{3}{4}+\frac{1}{4}$
Add.
$=8+\left(\frac{3}{4}+\frac{1}{4}\right)$
Associative
Property of Addition
$=8+1$ or 9
Add.
71. Answers should include the following.

- Instead of doubling each coupon value and then adding these values together, the Distributive Property could be applied allowing you to add the coupon values first and then double the sum.
- If a store had a $\mathbf{2 5 \%}$ off sale on all merchandise, the Distributive Property could be used to calculate these savings. For example, the savings on a $\$ 15$ shirt, $\$ 40$ pair of jeans, and $\$ 25$ pair of slacks could be calculated as $0.25(15)+0.25(40)+0.25(25)$ or as $0.25(15+40+25)$ using the Distributive Property.

Math History
Pythagoras (572-497 в.c.), was a Greek philosopher whose followers came to be known as the Pythagoreans. It was their knowledge of what is called the Pythagorean Theorem that led to the first discovery of irrational numbers.
Source: A History of Mathematics
59. true
60. false; -3
63. $6.5(4.5+4.25+$
$5.25+6.5+5)$ or
$6.5(4.5)+6.5(4.25)$
$+(6.5) 5.25+$
$6.5(6.5)+6.5(5)$

- MATH HISTORY For Exercises 40-42, use the following information.

The Greek mathematician Pythagoras believed that all things could be described by numbers. By "number" he meant positive integers.
40. To what set of numbers was Pythagoras referring when he spoke of "numbers?" natural numbers
41. Use the formula $c=\sqrt{2 s^{2}}$ to calculate the length of the hypotenuse c, or longest side, of this right triangle using s, the length of one leg. $\sqrt{2}$ units
42. Explain why Pythagoras could not find a "number" to describe the value of c. The square root of 2 is irrational and therefore cannot be described by a natural number.

Name the additive inverse and multiplicative inverse for each number.
43. $-1010 ;-\frac{1}{10}$
44. $2.5-2.5$; 0.4
45. $-0.125 \quad 0.125 ;-8$
46. $-\frac{5}{8} \frac{5}{8} ;-\frac{8}{5}$
47. $\frac{4}{3}-\frac{4}{3}, \frac{3}{4}$
48. $-4 \frac{3}{5} 4 \frac{3}{5} ;-\frac{5}{23}$

Simplify each expression. 55. $-3.4 m+1.8 n \quad 56.4 .4 p-2.9 q$
49. $7 a+3 b-4 a-5 b 3 a-2 b$
50. $3 x+5 y+7 x-3 y 10 x+2 y$
51. $3(15 x-9 y)+5(4 y-x) 40 x-7 y$
52. $2(10 m-7 a)+3(8 a-3 m) 11 m+10 a$
53. $8(r+7 t)-4(13 t+5 r)-12 r+4 t$
54. $4(14 c-10 d)-6(d+4 c) 32 c-46 d$
55. $4(0.2 m-0.3 n)-6(0.7 m-0.5 n)$
56. $7(0.2 p+0.3 q)+5(0.6 p-q)$
57. $\frac{1}{4}(6+20 y)-\frac{1}{2}(19-8 y)-8+9 y \star 58 . \frac{1}{6}(3 x+5 y)+\frac{2}{3}\left(\frac{3}{5} x-6 y\right) \frac{9}{10} x-\frac{19}{6} y$

Determine whether each statement is true or false. If false, give a counterexample.
59. Every whole number is an integer.
60. Every integer is a whole number.
61. Every real number is irrational. false; 6
62. Every integer is a rational number. true

WORK For Exercises 63 and 64, use the information below and in the table. Andrea works as a hostess in a restaurant and is paid every two weeks.
63. If Andrea earns $\$ 6.50$ an hour, illustrate the Distributive Property by writing two expressions representing Andrea's pay last week.
64. Find the mean or average number of hours Andrea worked each day, to the nearest tenth of an hour. Then use this average to predict her pay for a two-week pay period. 3.6; \$327.60

65. BAKING Mitena is making two types of cookies. The first recipe calls for $2 \frac{1}{4}$ cups of flour, and the second calls for $1 \frac{1}{8}$ cups of flour. If Mitena wants to make 3 batches of the first recipe and 2 batches of the second recipe, how many cups of flour will she need? Use the properties of real numbers to show how Mitena could compute this amount mentally. Justify each step. See margin.

16 Chapter 1 Solving Equations and Inequalities

$\frac{10, i}{}$
 Education

Online Lesson Plans

USA TODAY Education's Online site offers resources and interactive features connected to each day's newspaper. Experience TODAY, USA TODAY's daily lesson plan, is available on the site and delivered daily to subscribers. This plan provides instruction for integrating USA TODAY graphics and key editorial features into your mathematics classroom. Log on to wwww.education.usatoday.com.

BASKETBALL For Exercises 66 and 67, use the diagram of an NCAA basketball court below.

68. \$113(0.36 + 0.19); \$113(0.36) + \$113(0.19)
66. Illustrate the Distributive Property by writing two expressions for the area of the basketball court. $50(47+47) ; 50(47)+50(47)$
67. Evaluate the expression from Exercise 66 using the Distributive Property. What is the area of an NCAA basketball court? $4700 \mathrm{ft}^{2}$

SCHOOL SHOPPING For Exercises

 68 and 69 , use the graph at the right.68. Illustrate the Distributive Property by writing two expressions to represent the
69. Yes;
$\frac{6+8}{2}=\frac{6}{2}+\frac{8}{2}=7 ;$ dividing by a number is the same as multiplying by its reciprocal.
standardized Test practice exercises were created to closely parallel state proficiency tests and college entrance exams. Standardized Test Practice (A) (B) CD
amount that the average student spends shopping for school at specialty stores and department stores.
70. Evaluate the expression from Exercise 68 using the Distributive Property. \$62.15
71. CRITICAL THINKING Is the Distributive Property also true for division? In other words, does $\frac{b+c}{a}=\frac{b}{a}+\frac{c}{a}, a \neq 0$? If so, give an example and explain why it is true. If not true, give a counterexample.

71. WRITING IN MATH

 Answer the question that was posed at the beginning of the lesson. See margin.How is the Distributive Property useful in calculating store savings?
Include the following in your answer:

- an explanation of how the Distributive Property could be used to calculate the coupon savings listed on a grocery receipt, and
- an example of how the Distributive Property could be used to calculate the savings from a clothing store sale where all items were discounted by the same percent.

72. If a and b are natural numbers, then which of the following must also be a natural number? B
I. $a-b$
II. $a b$
III. $\frac{a}{b}$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) II and III only
73. If $x=1.4$, find the value of $27(x+1.2)-26(x+1.2)$. \mathbf{C}
(A) 1
(B) -0.4
(C) 2.6
(D) 65

Lesson 1-2 Properties of Real Numbers

Study Guide and Intervention, p. 7 (shown) and p. 8

Real Numbers All real numbers can be classified as either rational or irrational. The of ration
integers.

a. $-\frac{11}{3}$

b. $\sqrt{25}$

Exercises			
Name the sets of numbers to which each number belongs.			
1. $\frac{6}{7} \mathrm{Q}, \mathrm{R}$	2. $-\sqrt{81} \mathrm{Z}, \mathrm{Q}, \mathrm{R}$	$3.0 \mathrm{~W}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$	4. 192.0005 Q, R
5. $73 \mathrm{~N}, \mathrm{~W}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$	6. $34 \frac{1}{2} \mathrm{Q}, \mathrm{R}$	7. $\frac{\sqrt{36}}{9} Q, R$	8. $26.1 \mathrm{Q}, \mathrm{R}$
9. $\pi 1, R$	10. $\frac{15}{3} \mathrm{~N}, \mathrm{~W}$	z, Q, R	11. $-4.17 \mathrm{Q}, \mathrm{R}$
12. $\frac{\sqrt{25}}{5} \mathrm{~N}, \mathrm{~W}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$	13. -1 Z, C		14. $\sqrt{42} \mathrm{I}, \mathrm{R}$
15. -11.2 Q, R	16. $-\frac{8}{13} \mathrm{Q}$,		17. $\frac{\sqrt{5}}{2} \mathrm{I}, \mathrm{R}$
18. $33 . \overline{3} \mathrm{Q}, \mathrm{R}$	19.894,000	N, w, z, Q, R	20. -0.02 Q, R

Reading the Lesson

1. Refer to the Key Concepts box on page 11 . The numbers $2 . \overline{57}$ and $0.010010001 .$. both
involve decimals that "go on forever"' Explain why one of these numbers is rational and the other is irrational. Sample answer: $2.57=2.5757 \ldots$ is a repeating this number is rational. The number $0.010010001 \ldots$ is a non-repeating decimal because, although the digits follow a pattern, there is no block
of digits that repeats. So this number is an irrational number.
2. Write the Associative Property of Addition in symbols. Then illustrate this property by
finding the sum 12+18+45. in twodifferent ways. $(a+b+c=a+(b+c) ;$
Sample answer: $(12+18)+45=30+45=75 ; c)$

3. Consider the equations $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ and $(a \cdot b) \cdot c=c \cdot(a \cdot b)$. One of the equations uses the Associative Property of Multiplication and one uses the Commutati)
Property of Multiplication. How can you tell which roperty is being used in each equation? The firsteation. How equan you tell which property is beeing used in each
Mustiolication. The quantiative Property of Multiplication. The quantities a, b, and c are used in the same order, but equation uses the quantititie in different orders on the two sides of the Multiplication.

Helping You Remember
4. How can the meanings of the words commuter and association help you to remember the difference betwen the commutative and associative properties? Sample answer:
A commuter is someone who rravels back and forth to work or another place, and the commutative property says you can switch the order
two numbers that are being added or multiplied. An association is a group of people who are connected or united, and the associative property says shat yo
added or multiplied.

4 Assess

Open-Ended Assessment

Modeling Ask students to give examples of each of the properties (identity, inverse, commutative, associative, and distributive) and examples for each set of numbers (reals, rationals, irrationals, integers, wholes, and naturals).

Getting Ready for

Lesson I-3
PREREQUISITE SKILL Lesson 1-3 presents translating verbal expressions into algebraic expressions and using the properties of equality to solve equations. After solving an equation, the solution is checked in the original equation by evaluating the expression on each side after replacing the variable with its numerical value. Use Exercises 83-86 to determine your students' familiarity with evaluating expressions.

Assessment Options

Practice Quiz 1 The quiz provides students with a brief review of the concepts and skills in Lessons 1-1 and 1-2. Lesson numbers are given to the right of exercises or instruction lines so students can review concepts not yet mastered.
Quiz (Lessons 1-1 and 1-2) is available on p. 51 of the Chapter 1 Resource Masters.

For Exercises 74-77, use the following information
The product of any two whole numbers is always a whole number. So, the set of whole numbers is said to be closed under multiplication. This is an example of the Closure Property. State whether each statement is true or false. If false, give a counterexample. 75 . False; $0-1=-1$, which is not a whole number.
74. The set of integers is closed under multiplication. true
75. The set of whole numbers is closed under subtraction.
76. The set of rational numbers is closed under addition. true
77. The set of whole numbers is closed under division. False, $2 \div 3=\frac{2}{3}$, which is not a whole number.

Maintain Your Skills

Mixed Review Find the value of each expression. (Lesson 1-1)
78. $9(4-3)^{5} 9$
79. $5+9 \div 3(3)-86$

Evaluate each expression if $a=-5, b=0.25, c=\frac{1}{2}$, and $d=4$. (Lesson 1-1)
80. $a+2 b-c-5$
81. $b+3(a+d)^{3}-2.75$
82. GEOMETRY The formula for the surface area $S A$ of a rectangular prism is $S A=2 \ell w+2 \ell h+2 w h$, where ℓ represents the length, w represents the width, and h represents the height. Find the surface area of the rectangular prism. (Lesson 1-1) $358 \mathrm{in}^{2}$

Getting Ready for PREREQUISITE SKILL Evaluate each expression if $a=2, b=-\frac{3}{4}$, and $c=1.8$.
the Next Lesson

Extending the Lesson

(To review evaluating expressions, see Lesson 1-1.)
83. $8 b-5-11 \quad$ 84. $\frac{2}{5} b+1 \frac{7}{10}$
85. $1.5 c-7-4.3$

$$
\begin{aligned}
& \text { Two Quizzes in each } \\
& \text { chapter review skills and } \\
& \text { concepts } \\
& \text { previous presented and } \\
& \text { presons. }
\end{aligned}
$$

Lessons 1-1 and 1-2

Find the value of each expression. (Lesson 1-1)

1. $18-12 \div 314$
2. $-4+5\left(7-2^{3}\right)-9$
3. $\frac{18+3 \times 4}{13-8} 6$
4. Evaluate $a^{3}+b(9-c)$ if $a=-2, b=\frac{1}{3}$, and $c=-12$. (Lesson 1-1) -1
5. ELECTRICITY Find the amount of current I (in amperes) produced if the electromotive force E is 2.5 volts, the circuit resistance R is 1.05 ohms, and the resistance r within a battery is 0.2 ohm . Use the formula $I=\frac{E}{R+r}$. (Lesson 1-1) 2 amperes

Name the sets of numbers to which each number belongs. (Lesson 1-2)
6. 3.5 Q, R
7. $\sqrt{100} \mathrm{~N}, \mathrm{~W}, \mathrm{Z}, \mathbf{Q}, \mathrm{R}$
8. Name the property illustrated by $b c+(-b c)=0$. (Lesson 1-2) Add. Inv.
9. Name the additive inverse and multiplicative inverse of $\frac{6}{7}$. (Lesson 1-2) $-\frac{6}{7}, \frac{7}{6}$
10. Simplify $4(14 x-10 y)-6(x+4 y)$. (Lesson 1-2) $50 x-64 y$

18 Chapter 1 Solving Equations and Inequalities

D A I L Y INIIERVENIION

Unlocking Misconceptions

Associative or Commutative Students sometimes use inappropriate visual cues to name properties. For example, they may think that an expression can only have two terms to be an example of commutativity. Suggest that students look first at the change from one expression to the other and ask themselves if it is a change in grouping (associativity) or in position (commutativity).

Investigating Polygons and Patterns

Collect the Data

Use a ruler or geometry drawing software to draw six large polygons with $3,4,5,6,7$, and 8 sides. The polygons do not need to be regular. Convex polygons, ones whose diagonals lie in the interior, will be best for this activity.

1. Copy the table below and complete the column labeled Diagonals by drawing the diagonals for all six polygons and record your results.

Figure Name	Sides (\boldsymbol{n})	Diagonals	Diagonals From One Vertex
	3	0	0
	4	2	1
	5	5	2
	6	9	3
	7	14	4
	8	20	5

Analyze the Data

2. Describe the pattern shown by the number of diagonals in the table above. See pp. 53A-53R
3. Complete the last column in the table above by recording the number of diagonals that can be drawn from one vertex of each polygon.
4. Write an expression in terms of n that relates the number of diagonals from one vertex to the number of sides for each polygon. $n-3$
5. If a polygon has n sides, how many vertices does it have? n
6. How many vertices does one diagonal connect? 2

Make a Conjecture

7. Write a formula in terms of n for the number of diagonals of a polygon of n sides. (Hint: Consider your answers to Exercises 2,3 , and 4.) $[n(n-3)] \div 2$
8. Draw a polygon with 10 sides. Test your formula for the decagon. See pp. 53A-53B
9. Explain how your formula relates to the number of vertices of the polygon and the number of diagonals that can be drawn from each vertex. See pp. 53A-53B.

Extend the Activity

10. Draw 3 noncollinear dots on your paper. Determine the number of lines that are needed to connect each dot to every other dot. Continue by drawing 4 dots, 5 dots, and so on and finding the number of lines to connect them. See pp. 53A-53B.
11. Copy and complete the table at the right. See table.
12. Use any method to find a formula that relates the number of dots, x, to the number of lines, $y . y=[x(x-1)] \div 2$ or $y=0.5 x^{2}-0.5 x$
13. Explain why the formula works. See pp. 53A-53B.

Dots (x)	Connection Lines (y)
3	3
4	6
5	10
6	15
7	21
8	28

Resource Manager

Teaching Algebra with Manipulatives

- p. 213 (student recording sheet)

Glencoe Mathematics Classroom Manipulative Kit

- ruler

A Follow-Up of Lesson 1-2

Getting Started

Objective Discover the relationship between the number of sides of a convex polygon and the total number of diagonals that can be drawn in the polygon.

Materials

ruler or geometry drawing software

Teach

- In Exercise 8, suggest to students that they draw a large decagon, draw all of its diagonals, and then carefully mark each diagonal as they count it.
- Guide students to recognize that each figure they create when connecting the dots in Exercises $10-13$ is a polygon with all of its diagonals drawn. Relate this to the work in Exercises 1-9.

Assess

In Exercises 2-6, students should be able to see that there are consistent patterns in these relationships, and they should be able to make the generalizations that will form the parts of the formula. In Exercises 7-9, students should understand that the elements in the formula are not just arbitrary or mysterious, but are derived from the characteristics of the diagonals. They should also be able to apply the formula to a polygon with any number of sides.

Study Notebook

You may wish to have students
summarize this activity and what
they learned from it.

1 Focus

5-Minute Check

Transparency 1-3 Use as a quiz or review of Lesson 1-2.

Mathematical Background notes

 are available for this lesson on p. 4C.
Building on Prior Knowledge

In Lesson 1-2, students evaluated expressions with real numbers. In this lesson, they apply this skill to writing expressions and solving equations.

How can you find the most effective level of intensity for your workout?
Ask students:

- How can the expression $6 \times P \div(220-A)$ be written as a ratio? $\frac{6 P}{220-A}$
- To achieve a 100% intensity level, the numerator and denominator of the ratio you just found must be equal. At what 10 -second pulse count would you achieve a 100% intensity level? Answers will vary.
- Fitness Find your 10-second pulse count P after running in place for 30 seconds. What is your level of intensity for this value of P ? Answers will vary.

1-3 Solving Equations

What Youll Learn

- Translate verbal expressions into algebraic expressions and equations, and vice versa.
- Solve equations using the properties of equality.

How can you find the most effective level of intensity for your workout?

When exercising, one goal is to find the best level of intensity as a percent of your maximum heart rate. To find the intensity level, multiply 6 and P, your 10 -second pulse count. Then divide by the difference of 220 and your age A.

$$
\underbrace{\begin{array}{c}
\text { Multiply } 6 \text { and } \\
\text { your pulse rate }
\end{array}}_{6 \times P} \quad \underbrace{\text { and divide by }}_{\div} \quad \underbrace{\begin{array}{c}
\text { the difference of } \\
220 \text { and your age. }
\end{array}}_{(220-A)}
$$

VERBAL EXPRESSIONS TO ALGEBRAIC EXPRESSIONS Verbal

 expressions can be translated into algebraic or mathematical expressions using the language of algebra. Any letter can be used as a variable to represent a number that is not known.
Example 1 Verbal to Algebraic Expression

Write an algebraic expression to represent each verbal expression.
a. 7 less than a number
$n-7$
b. three times the square of a number
$3 x^{2}$
c. the cube of a number increased by 4 times the same number
$p^{3}+4 p$
d. twice the sum of a number and $5 \quad 2(y+5)$

A mathematical sentence containing one or more variables is called an open sentence. A mathematical sentence stating that two mathematical expressions are equal is called an equation

Example 2 Algebraic to Verbal Sentence

Write a verbal sentence to represent each equation.
a. $\mathbf{1 0}=\mathbf{1 2 - 2} \quad$ Ten is equal to 12 minus 2 .
b. $n+(-8)=-9 \quad$ The sum of a number and -8 is -9 .
c. $\frac{n}{6}=n^{2}$

A number divided by 6 is equal to that number squared.

Open sentences are neither true nor false until the variables have been replaced by numbers. Each replacement that results in a true sentence is called a solution of the open sentence.

20 Chapter 1 Solving Equations and Inequalities

Resource Manager

Workbook and Reproducible Masters

Chapter 1 Resource Masters

- Study Guide and Intervention, pp. 13-14
- Skills Practice, p. 15
- Practice, p. 16
- Reading to Learn Mathematics, p. 17
- Enrichment, p. 18
- Assessment, pp. 51, 53

Graphing Calculator and
Spreadsheet Masters, p. 27
School-to-Career Masters, p. 2
Teaching Algebra With Manipulatives
Masters, pp. 214-215

Transparencies

5-Minute Check Transparency 1-3
Answer Key Transparencies
If Technology

Study Tip

Properties of Equality These properties are also known as axioms of equality.

PROPERTIES OF EQUALITY To solve equations, we can use properties of equality. Some of these equivalence relations are listed in the table below.

Key Concept	Properties of Equality	
Property	Symbols	Examples

Example 3 Identify Properties of Equality

Name the property illustrated by each statement.
a. If $3 m=5 n$ and $5 n=10 p$, then $3 m=10 p$.

Transitive Property of Equality
b. If $-11 a+2=-3 a$, then $-3 a=-11 a+2$.

Symmetric Property of Equality

Sometimes an equation can be solved by adding the same number to each side or by subtracting the same number from each side or by multiplying or dividing each side by the same number.

Key Concept

Properties of Equality

Addition and Subtraction Properties of Equality

- Symbols For any real numbers $a b$, and c, if $a=b$, then $a+c=b+c$ and $a-c=b-c$.
- Examples If $x-4=5$, then $x-4+4=5+4$.

If $n+3=-11$, then $n+3-3=-11-3$.

Multiplication and Division Properties of Equality

- Symbols For any real numbers a, b, and c, if $a=b$, then

$$
a \cdot c=b \cdot c \text { and, if } c \neq 0, \frac{a}{c}=\frac{b}{c} .
$$

- Examples If $\frac{m}{4}=6$, then $4 \cdot \frac{m}{4}=4 \cdot 6$. If $-3 y=6$, then $\frac{-3 y}{-3}=\frac{6}{-3}$.

Example 4 Solve One-Step Equations

Solve each equation. Check your solution.
a. $a+4.39=76$

$$
\begin{aligned}
a+4.39 & =76 & & \text { Original equation } \\
a+4.39-4.39 & =76-4.39 & & \text { Subtract } 4.39 \text { from each side. } \\
a & =71.61 & & \text { Simplify. }
\end{aligned}
$$

The solution is 71.61 .
(continued on the next page)
wwww.algebra2.com/extra_examples
Lesson 1-3 Solving Equations 21

$$
\begin{aligned}
& \text { The Resource Manager lists } \\
& \text { all of the resources available } \\
& \text { for the lesson, including } \\
& \text { workbooks, blackline masters, } \\
& \text { transparencies, and } \\
& \text { technology. }
\end{aligned}
$$

Teaching Tip Suggest that students ask themselves these questions: "What is being shown on the left side of the equation in In-Class Example 4a at the right?" 5.48 is subtracted from s. "What is the opposite or inverse of subtracting 5.48?" Adding 5.48. "What must be done to both sides of the equation $s-5.48=0.02$ to get the variable s alone on one side of the equation?" Add 5.48 to both sides and simplify the resulting equation.

2 Teach

VERBAL EXPRESSIONS TO ALGEBRAIC EXPRESSIONS

In-Class Examples

1 Write an algebraic expression to represent each verbal expression.
a. 3 more than a number $x+3$
b. six times the cube of a number $6 x^{3}$
c. the square of a number decreased by the product of 5 and the number $x^{2}-5 x$
d. twice the difference of a number and $62(x-6)$
(2) Write a verbal sentence to represent each equation.
a. $14+9=23$ The sum of 14 and 9 is 23 .
b. $6=-5+x$ Six is equal to -5 plus a number.
c. $7 y-2=19$ Seven times a number minus 2 is 19 .

PROPERTIES OF EQUALITY

In-Class Examples

Power

Point ${ }^{\circledR}$
3 Name the property illustrated by each statement.
a. If $x y=28$ and $x=7$, then $7 y=28$. Substitution Property of Equality
b. $a-2.03=a-2.03$

Reflexive Property of Equality
Reading Tip Help students remember the name of the Reflexive Property by relating $a=a$ to seeing your reflection in a mirror.

4 Solve each equation. Check your solution.
a. $s-5.48=0.025 .5$
b. $18=\frac{1}{2} t 36$

Solve

$53=3(y-2)-2(3 y-1)$. -19

6 GEOMETRY The area of a trapezoid is $A=\frac{1}{2}\left(b_{1}+b_{2}\right) h$, where A is the area, b_{1} is the length of one base, b_{2} is the length of the other base, and h is the height of the trapezoid. Solve the formula for h.
$h=\frac{2 A}{b_{1}+b_{2}}$

Study Tip

Multiplication and Division Properties of Equality
Example $4 b$ could also have been solved using the Division Property of Equality. Note that dividing each side of the equation by $-\frac{3}{5}$ is the same as multiplying each
side by $-\frac{5}{3}$.

CHECK $\quad a+4.39=76 \quad$ Original equation $71.61+4.39 \stackrel{?}{=} 76 \quad$ Substitute 71.61 for a.
$76=76 \checkmark$ Simplify.
b. $-\frac{3}{5} d=18$

$$
-\frac{3}{5} d=18 \quad \text { Original equation }
$$

$$
-\frac{5}{3}\left(-\frac{3}{5}\right) d=-\frac{5}{3}(18) \quad \text { Multiply each side by }-\frac{5}{3} \text {, the multiplicative inverse of }-\frac{3}{5} \text {. }
$$

$$
d=-30 \quad \text { Simplify }
$$

The solution is -30 .
CHECK

$$
\begin{aligned}
-\frac{3}{5} d & =18 & & \text { Original equation } \\
-\frac{3}{5}(-30) & \stackrel{?}{=} 18 & & \text { Substitute }-30 \text { for } d . \\
18 & =18 \sqrt{ } & & \text { Simplify. }
\end{aligned}
$$

Sometimes you must apply more than one property to solve an equation.

$$
\begin{array}{rlrl}
\text { Example } 5 \text { Solve a Multi-Step Equation } \\
\text { Solve } 2(2 x+3)-3(4 x-5) & =22 . \\
2(2 x+3)-3(4 x-5) & =22 & & \text { Original equation } \\
4 x+6-12 x+15 & =22 & & \text { Distributive and Substitution Properties } \\
-8 x+21 & =22 & & \text { Commutative, Distributive, and Substitution Properties } \\
-8 x & =1 & & \text { Subtraction and Substitution Properties } \\
x & =-\frac{1}{8} & & \text { Division and Substitution Properties }
\end{array}
$$

The solution is $-\frac{1}{8}$.

You can use properties of equality to solve an equation or formula for a specified variable.

Example 6 Solve for a Variable

GEOMETRY The surface area of a cone is $S=\pi r \ell+\pi r^{2}$, where S is the surface area, ℓ is the slant height of the cone, and r is the radius of the base. Solve the formula for ℓ.

$$
\begin{aligned}
S & =\pi r \ell+\pi r^{2} & & \text { Surface area formula } \\
S-\pi r^{2} & =\pi r \ell+\pi r^{2}-\pi r^{2} & & \text { Subtract } \pi r^{2} \text { from each side. } \\
S-\pi r^{2} & =\pi r \ell & & \text { Simplify. } \\
\frac{S-\pi r^{2}}{\pi r} & =\frac{\pi r \ell}{\pi r} & & \text { Divide each side by } \pi r . \\
\frac{S-\pi r^{2}}{\pi r} & =\ell & & \text { Simplify. }
\end{aligned}
$$

D A \| L Y INIERVENTION
 Unlocking Misconceptions

- Solving Equations Students may want to simplify, collect terms, and use the properties of equality to perform an operation on each side of an equation all in one or two steps. Help them see that it is more efficient to write down each step in the solution process than to have to solve the equation again because of a computational error.
- Checking Solutions Explain that checking solutions in order to discover possible errors is a vital procedure when you use math on the job.

Example 7 Apply Properties of Equality

Multiple-Choice Test Item
If $3 n-8=\frac{9}{5}$, what is the value of $3 n-3$?
(A) $\frac{34}{5}$
(B) $\frac{49}{15}$
(C) $-\frac{16}{5}$
(D) $-\frac{27}{5}$

Read the Test Item

You are asked to find the value of the expression $3 n-3$. Your first thought might be to find the value of n and then evaluate the expression using this value. Notice, however, that you are not required to find the value of n. Instead, you can use the Addition Property of Equality on the given equation to find the value of $3 n-3$.

$$
\begin{aligned}
& \text { Solve the Test Item } \\
& \begin{array}{rlrl}
3 n-8 & =\frac{9}{5} & & \text { Original equation } \\
\begin{aligned}
3 n-8+5 & =\frac{9}{5}+5 & & \text { Add } 5 \text { to each side. } \\
3 n-3 & =\frac{34}{5} & & \frac{9}{5}+5=\frac{9}{5}+\frac{25}{5} \text { or } \frac{34}{5}
\end{aligned}
\end{array} \begin{aligned}
\\
3 n-1
\end{aligned}
\end{aligned}
$$

The answer is A .

To solve a word problem, it is often necessary to define a variable and write an equation. Then solve by applying the properties of equality.

Example 8 Write an Equation

HOME IMPROVEMENT Josh and Pam have bought an older home that needs some repair. After budgeting a total of $\$ 1685$ for home improvements, they started by spending $\$ 425$ on small improvements. They would like to replace six interior doors next. What is the maximum amount they can afford to spend on each door?

Explore Let c represent the cost to replace each door.
Plan Write and solve an equation to find the value of c.

7 If $4 g+5=\frac{4}{9}$, what is the value of $4 g-2$? B
A $-\frac{41}{36}$
B $-\frac{59}{9}$
C $-\frac{41}{9}$
D $-\frac{67}{7}$

8 HOME IMPROVEMENT Carl wants to replace the five windows in the 2nd-story bedrooms of his house. His neighbor Will is a carpenter and he has agreed to help install them for $\$ 250$. If Carl has budgeted $\$ 1000$ for the total cost, what is the maximum amount he can spend on each window? \$150

Teaching Tip Students, especially those with math anxiety, tend to omit the planning step. Encourage students to see that this step helps them find a way to write an equation, even if they only do the planning mentally.

Home

Improvement
Previously occupied homes account for approximately 85% of all U.S. home sales Most homeowners remodel within 18 months of purchase. The top two of purchase. The top two kitchens and baths.
Source: National Association of Remodeling Industry

Previously occupied homes

Solve

$$
\begin{aligned}
6 c+425 & =1685 & & \text { Original equation } \\
6 c+425-425 & =1685-425 & & \text { Subtract } 425 \text { from each side. } \\
6 c & =1260 & & \text { Simplify. } \\
\frac{6 c}{6} & =\frac{1260}{6} & & \text { Divide each side by } 6 . \\
c & =210 & & \text { Simplify. }
\end{aligned}
$$

They can afford to spend $\$ 210$ on each door
Examine The total cost to replace six doors at $\$ 210$ each is $6(210)$ or $\$ 1260$. Add the other expenses of $\$ 425$ to that, and the total home improvement bill is $1260+425$ or $\$ 1685$. Thus, the answer is correct.

Standardized Test Practice (B) C D

Example 7 Point out to students that there are several ways to find the specified value. One alternate way would be to first solve the given equation for $3 n$ and then subtract 3 from each side of that equation.
$3 n-8=\frac{9}{5} \Rightarrow 3 n=\frac{49}{5} \Rightarrow 3 n-3=\frac{34}{5}$

Each chapter contains an Each chapter cont gives students practice in solving problems standardized tests. Stagestions
ized Test practice sugg ized Test Practice sugitional
give students addicing give students additional
methods for achieving success methods for achieving 5 .
on standardized tests.

Study Notebook

Have students-	expression you are dividing by does not	
- add the definitions/examples of		
the vocabulary terms to their	equal zero.	
Vocabulary Builder worksheets for	Find the E help stud	
Chapter I.	cises tify and	
- add the properties of equality given	mmon err	
in this lesson to their list of real	they occur.	
number properties from Lesson 1-2.		
- include the formula in Example 6	Guided Practice	
in the list of formulas they began	GUIDED PRACTICE KEY	
in Lesson 1-2.	Exercises	Examples
- use the content of Example 7 to	4, 5	1
start a list of test-taking tips that	6,7 8,9	2
they can review as they prepare	10-15	4, 5
for standardized tests.	16,17 18	6 7

D A I L Y

INIERVENIION
 FIND THE ERROR

 Encouragestudents to use correct mathematical language to state the error. For example, Crystal needed to use the Distributive Property on the right side of the equation before subtracting.

Answer

3. His method can be confirmed by solving the equation using an alternative method.

$$
\begin{aligned}
C & =\frac{5}{9}(F-32) \\
C & =\frac{5}{9} F-\frac{5}{9}(32) \\
C+\frac{5}{9}(32) & =\frac{5}{9} F \\
\frac{9}{5}\left[C+\frac{5}{9}(32)\right] & =F \\
\frac{9}{5} C+32 & =F
\end{aligned}
$$

Check for Understanding
Concept Check 1. OPEN ENDED Write an equation whose solution is -7 .

1. Sample answer: $2 x=-14$
2. Sometimes true; only when the expression you are dividing by does not equal zero.
3. Determine whether the following statement is sometimes, always, or never true. Explain.
Dividing each side of an equation by the same expression produces an equivalent equation.
4. FIND THE ERROR Crystal and Jamal are solving $C=\frac{5}{9}(F-32)$ for F.

$$
\begin{aligned}
& \text { Crystal } \\
& C=\frac{5}{9}(F-32) \\
& C+32=\frac{5}{9} F \\
& \frac{9}{5}(C+32)=F
\end{aligned}
$$

Who is correct? Explain your reasoning. Jamal; see margin for explanation.
Write an algebraic expression to represent each verbal expression.
4. five increased by four times a number $5+4 n$
5. twice a number decreased by the cube of the same number $2 n-n^{3}$

Write a verbal expression to represent each equation. 6-7. Sample answers given.
6. $9 n-3=69$ times a number \quad 7. $5+3 x^{2}=2 x 5$ plus 3 times the decreased by 3 is 6 . square of a number is Name the property illustrated by each statement. twice that number.
8. $(3 x+2)-5=(3 x+2)-5$
9. If $4 c=15$, then $4 c+2=15+2$. Reflexive (=)
Addition (=)

Solve each equation. Check your solution.
10. $y+14=-7-21$
11. $7+3 x=4914$
12. $-4(b+7)=-12-4$
13. $7 q+q-3 q=-24-4.814 .1 .8 a-5=-2.31 .5$
15. $-\frac{3}{4} n+1=-1116$

Solve each equation or formula for the specified variable.
16. $4 y-2 n=9$, for $y y=\frac{9+2 n}{4}$
17. $I=p r t$, for $p p=\frac{l}{r t}$

Standardized
 Test Practice

18. If $4 x+7=18$, what is the value of $12 x+21$? D
(A) 2.75
(B) 32
(C) 33
(D) 54

* indicates increased difficulty

Practice and Apply

Homework Help

For Exercises	See Examples
$19-28$	1
$29-34$	2
$35-40$	3
$41-56$	4,5
$57-62$	6
$63-74$	7

Extra Practice
See page 828.

Write an algebraic expression to represent each verbal expression.
19. the sum of 5 and three times a number $5+3 n$
20. seven more than the product of a number and $1010 n+7$
21. four less than the square of a number $n^{2}-4$
22. the product of the cube of a number and $-6-6 n^{3}$
23. five times the sum of 9 and a number $5(9+n)$
24. twice the sum of a number and $82(n+8)$
\star 25. the square of the quotient of a number and $4\left(\frac{n}{4}\right)^{2}$
\star 26. the cube of the difference of a number and $7(n-7)^{3}$

D A \| L Y
 TNIERVENION

Differentiated Instruction

Interpersonal Have students work in pairs to read, discuss, and plan a solution strategy for real-world problems such as the one given in Example 8. This interaction can help students identify individual difficulties with word problems and also to discover new strategies used by other students.

29-34. Sample answers are given.
29. 5 less than a number is 12 .
30. Twice a number plus 3 is $\mathbf{- 1}$.
31. A number squared is equal to 4 times the number.
32. Three times the cube of a number is equal to the number plus 4.
33. A number divided by 4 is equal to twice the sum of that number and 1.
34. 7 minus half a number is equal to 3 divided by the square of X.

GEOMETRY For Exercises 27 and 28, use the following information.
The formula for the surface area of a cylinder with radius r and height h is π times twice the product of the radius and height plus twice the product of π and the square of the radius.

27. Translate this verbal expression of the formula into an algebraic expression. $2 \pi r h+2 \pi r^{2}$
28. Write an equivalent expression using the Distributive Property. $2 \pi r(h+r)$

Write a verbal expression to represent each equation.
29. $x-5=12$
30. $2 n+3=-1$
31. $y^{2}=4 y$
32. $3 a^{3}=a+4$
33. $\frac{b}{4}=2(b+1)$
丈 $34.7-\frac{1}{2} x=\frac{3}{x^{2}}$

Name the property illustrated by each statement.
35. If $[3(-2)] z=24$, then $-6 z=24$. Substitution $(=)$
36. If $5+b=13$, then $b=8$. Subtraction ($=$)
37. If $2 x=3 d$ and $3 d=-4$, then $2 x=-4$. Transitive (=)
38. If $g-t=n$, then $g=n+t$. Addition $(=)$
39. If $14=\frac{x}{2}+11$, then $\frac{x}{2}+11=14$. Symmetric $(=)$
40. If $y-2=-8$, then $3(y-2)=3(-8)$. Multiplication $(=)$

Solve each equation. Check your solution.
41. $2 p+15=297 \quad$ 42. $14-3 n=-108$
43. $7 a-3 a+2 a-a=163.2$
44. $x+9 x-6 x+4 x=202.5$
45. $\frac{1}{9}-\frac{2}{3} b=\frac{1}{18} \frac{1}{12}$
46. $\frac{5}{8}+\frac{3}{4} x=\frac{1}{16}-\frac{3}{4}$
47. $27=-9(y+5)-8$
48. $-7(p+8)=21-11$
49. $3 f-2=4 f+5-7$
50. $3 d+7=6 d+5 \frac{2}{3}$
51. $4.3 n+1=7-1.7 n 1$
52. $1.7 x-8=2.7 x+4-12$
53. $3(2 z+25)-2(z-1)=78 \frac{1}{4}$
54. $4(k+3)+2=4.5(k+1) 19$
55. $\frac{3}{11} a-1=\frac{7}{11} a+9-\frac{55}{2}$

* 56. $\frac{2}{5} x+\frac{3}{7}=1-\frac{4}{7} x \frac{10}{17}$

Solve each equation or formula for the specified variable.
57. $d=r t$, for $r \frac{d}{t}=r$
58. $x=\frac{-b}{2 a}$, for $a \quad a=\frac{-b}{2 x}$
59. $V=\frac{1}{3} \pi r^{2} h$, for $h \frac{3 V}{\pi r^{2}}=h$
60. $A=\frac{1}{2} h(a+b)$, for $b \frac{2 A}{h}-a=b$

* 61. $\frac{a(b-2)}{c-3}=x$, for $b b=\frac{x(c-3)}{a}+2 \star 62$

22. $x=\frac{y}{y+4}$, for $y \frac{4 x}{1-x}=y$

Define a variable, write an equation, and solve the problem.
63. BOWLING Jon and Morgan arrive at Sunnybrook Lanes with $\$ 16.75$. Find the maximum number of games they can bowl if they each rent shoes. $n=$ number of games; $2(1.50)+n(2.50)=16.75 ; 5$

wwww.algebra2.com/self_check_quiz

About the Exercises... Organization by Objective
 - Verbal Expressions to Algebraic Expressions: 19-34

- Properties of Equality: 35-74

Exercises 19-26 and 29-70 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 19-23 odd, 27-28, 29-39 odd, 41-51 odd, 57, 59, 63-69 odd, 75-89
Average: 19-25 odd, 27-28, 29-69 odd, 75-89
Advanced: 20-26 even, 30-70
even, 71-83 (optional: 84-89)

The Assignment Guides provide suggestions for exercises that are appropriate for basic. average, or advanced students. Many of the homework exercises are paired, 50 that students can do the odds one day and the evens the next day.

For Exercises 64-70, define a variable, write an equation, and solve the problem.
64. GEOMETRY The perimeter of a regular octagon is 124 inches. Find the length of each side. $s=$ length of a side; $8 s=124 ; 15.5 \mathrm{in}$.
65. CAR EXPENSES Benito spent $\$ 1837$ to operate his car last year. Some of these expenses are listed below. Benito's only other expense was for gasoline. If he drove 7600 miles, what was the average cost of the gasoline per mile? $x=$ cost of gasoline per mile; $972+114+105+7600 x=$ 1837; 8.5¢

66. SCHOOL A school conference room can seat a maximum of 83 people. The principal and two counselors need to meet with the school's student athletes to discuss eligibility requirements. If each student must bring a parent with them, what is the maximum number of students that can attend each meeting? $n=$ number of students that can attend each meeting; $2 n+3=83 ; 40$ students
67. FAMILY Chun-Wei's mother is 8 more than twice his age. His father is three years older than his mother is. If all three family members have lived 94 years, how old is each family member? $a=$ Chun-Wei's age; $a+(2 a+8)+$ $(2 a+8+3)=94$; Chun-Wei: 15 yrs old, mother: 38 yrs old, father: 41 yrs old
68. SCHOOL TRIP The Parent Teacher Organization has raised $\$ 1800$ to help pay for a trip to an amusement park. They ask that there be one adult for every five students attending. Adult tickets cost $\$ 45$ and student tickets cost $\$ 30$. If the group wants to take 50 students, how much will each student need to pay so that adults agreeing to chaperone pay nothing?
$c=$ cost per student; $50(30-c)+\frac{50}{5}(45)=1800$; $\$ 3$
69. BUSINESS A trucking company is hired to deliver 125 lamps for $\$ 12$ each. The company agrees to pay $\$ 45$ for each lamp that is broken during transport. If the trucking company needs to receive a minimum payment of $\$ 1364$ for the shipment to cover their expenses, find the maximum number of lamps they can afford to break during the trip. $n=$ number of lamps broken; $12(125)-45 n=1365 ; 3$ lamps
70. PACKAGING Two designs for a soup can are shown at the right. If each can holds the same amount of soup, what is the height of can A ? $h=$ height of can A; $\pi\left(1.2^{2}\right) h=\pi\left(2^{2}\right) 3 ; 8 \frac{1}{3}$ units

71. $15.1 \mathrm{mi} / \mathrm{mo}$

RAILROADS For Exercises 71-73, use the following information.

The First Transcontinental Railroad was built by two companies. The Central Pacific began building eastward from Sacramento, California, while the Union Pacific built westward from Omaha, Nebraska. The two lines met at Promontory, Utah, in 1869, about 6 years after construction began.
71. The Central Pacific Company laid an average of 9.6 miles of track per month Together the two companies laid a total of 1775 miles of track. Determine the average number of miles of track laid per month by the Union Pacific Company.
72. About how many miles of track did each company lay? See margin.
73. Why do you think the Union Pacific was able to lay track so much more quickly than the Central Pacific? See margin.

26 Chapter 1 Solving Equations and Inequalities

Enrichment, p. 18

Venn Diagrams
Relationships among sets can be shown using Venn diagrams. Study the
diagrams below. The e eircles represent sets A and B, which are subsets of set

The union of A and B consists of all elements in either A or B.
The indersection of A and B consist of fll elements in both A and B.
The complement of A consists of all eleme The intersection of A and B consists of all elements in
The complement of A consists of all elements not in A.
You can combine the operations of union, intersection, and finding the complement.

Answers

72. Central: $\mathbf{6 9 0}$ mi.; Union: 1085 mi
73. The Central Pacific had to lay their track through the Rocky Mountains, while the Union Pacific mainly built track over flat prairie.

* 74. MONEY Allison is saving money to buy a video game system. In the first week her savings were $\$ 8$ less than $\frac{2}{5}$ the price of the system. In the second week, she saved 50 cents more than $\frac{1}{2}$ the price of the system. She was still $\$ 37$ short. Find the price of the system.
\$295

75. CRITICAL THINKING Write a verbal expression to represent the algebraic expression $3(x-5)+4 x(x+1)$. See margin.

You can write and solve equations to determine the monthly payment for a home. Visit www.algebra2.com/ webquest to continue work on your WebQuest project.

Standardized
Test Practice
(A) (B) D
76.

WRITING IN MATH
Answer the question that was posed at the beginning of the lesson. See pp. 53A-53B.

How can you find the most effective level of intensity for your workout? Include the following in your answer:

- an explanation of how to find the age of a person who is exercising at an 80% level of intensity I with a pulse count of 27 , and
- a description of when it would be desirable to solve a formula like the one given for a specified variable.

77. If $-6 x+10=17$, then $3 x-5=B$
(A) $-\frac{7}{6}$.
(B) $-\frac{17}{2}$
(C) 2 .
(D) $\frac{19}{3}$.
(E) $\frac{5}{3}$.
78. In triangle $P Q R, \overline{Q S}$ and $\overline{S R}$ are angle bisectors and angle $P=74^{\circ}$. How many degrees are there in angle QSR? D
(A) 106
(B) 121
(C) 125
(D) 127
(E) 143

Maintain Your Skills

Mixed Review Simplify each expression. (Lesson 1-2)

79. $2 x+9 y+4 z-y-8 x$
80. $4(2 a+5 b)-3(4 b-a) 11 a+8 b$
$-6 x+8 y+4 z$
Evaluate each expression if $a=3, b=-2$, and $c=1.2$. (Lesson 1-1)
81. $a-[b(a-c)] 6.6$
82. $c^{2}-a b 7.44$
83. GEOMETRY The formula for the surface area S of a regular pyramid is $S=\frac{1}{2} P \ell+B$, where P is the perimeter of the base, ℓ is the slant height, and B is the area of the base. Find the surface area of the square-based pyramid shown at the right. (Lesson 1-1) $105 \mathrm{~cm}^{2}$

PREREQUISITE SKILL Identify the additive inverse for each number or expression. (To review additive inverses, see Lesson 1-2.)
84. $5-5$
85. -33
86. $2.5-2.5$
87. $\frac{1}{4}-\frac{1}{4}$
88. $-3 x 3 x$
89. $5-6 y-5+6 y$

Lesson 1-3 Solving Equations 27

Answer
 75. the product of 3 and the difference of a number and 5 added to the product of four times the number and the sum of the number and 1

$$
\begin{aligned}
& \text { Assessment Options lists } \\
& \text { the quizzes and tests that }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Assessment Option that } \\
& \text { the quizzes and tests chapter } \\
& \text { are available in the chapers. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { the quizzes able in the Ch } \\
& \text { are available Masters. } \\
& \text { Resource }
\end{aligned}
$$

4 Assess

Open-Ended Assessment

Speaking Have students discuss what difficulties they have with translating verbal problems into algebraic equations, including any anxieties that word problems may create. Ask students to share their strategies for overcoming these difficulties, using specific examples to illustrate their strategies.

Intervention
Explain to students that they can solve verbal problems when they (1) face their anxiety about the words instead of avoiding the task, (2) ask questions about words they do not understand, and (3) take time to read, understand, and plan, using a sketch to help.

Getting Ready for
 Lesson 1-4

PREREQUISITE SKILL Lesson 1-4 presents solving equations that involve absolute value expressions. Solving equations often involves using additive inverses to isolate the variable on one side of an equation. Exercises 84-89 should be used to determine your students' familiarity with finding additive inverses.

Assessment Options

Quiz (Lesson 1-3) is available on p. 51 of the Chapter 1 Resource Masters.
Mid-Chapter Test (Lessons 1-1
through 1-3) is available on p. 53 of the Chapter 1 Resource Masters.

What You'll Learn

1 Focus

5-Minute Check
Transparency 1-4 Use as a quiz or review of Lesson 1-3.

Mathematical Background notes

 are available for this lesson on p. 4D.
Building on Prior Knowledge

In Lesson 1-3, students wrote expressions and solved equations.
In this lesson, they apply key concept boxes $\begin{array}{ll}\text { hose } & \text { Key Concept boxilions, } \\ \text { highlight definitions }\end{array}$ ine skills to equar values. highigh formulas, and other involving absolute values.

Vocabulary

- absolute value
empty set
- Evaluate expressions involving absolute values.
- Solve absolute value equations.

How can an absolute value equation describe
the magnitude of an earthquake?
Seismologists use the Richter scale to express the magnitudes of earthquakes. This scale ranges from 1 to 10,10 being the highest. The uncertainty in the estimate of a magnitude E is about plus or minus 0.3 unit. This means that an earthquake with a magnitude estimated at 6.1 on the Richter scale might actually have a magnitude as low as 5.8 or as high as 6.4. These extremes can be described by the absolute value equation $|E-6.1|=0.3$.

ABSOLUTE VALUE EXPRESSIONS The absolute value of a number is its distance from 0 on the number line. Since distance is nonnegative, the absolute value of a number is always nonnegative. The symbol $|x|$ is used to represent the absolute value of a number x.

Key Concept

Absolute Value

- Words For any real number a, if a is positive or zero, the absolute value of a is a. If a is negative, the absolute value of a is the opposite of a.
- Symbols For any real number $a,|a|=a$ if $a \geq 0$, and $|a|=-a$ if $a<0$.
- Model $|-3|=3$ and $|3|=3$

When evaluating expressions that contain absolute values, the absolute value bars act as a grouping symbol. Perform any operations inside the absolute value bars first.

```
Example 1 Evaluate an Expression with Absolute Value
Evaluate 1.4+ |5y-7| if y=-3.
1.4+ |5y-7| = 1.4+ |5(-3)-7| Replace y with -3.
    =1.4+ |-15-7| Simplify 5(-3) first.
    = 1.4+ |-22 | Subtract 7 from - 15.
    =1.4+22 |-22|=22
    =23.4 Add.
```

The value is 23.4.

28 Chapter 1 Solving Equations and Inequalities

Resource Manager

Workbook and Reproducible Masters

Chapter 1 Resource Masters

- Study Guide and Intervention, pp. 19-20
- Skills Practice, p. 21
- Practice, p. 22
- Reading to Learn Mathematics, p. 23
- Enrichment, p. 24

Graphing Calculator and
Spreadsheet Masters, p. 28

Transparencies

5-Minute Check Transparency 1-4
Answer Key Transparencies
© Technology
Alge2PASS: Tutorial Plus, Lesson 1
Interactive Chalkboard

ABSOLUTE VALUE EQUATIONS Some equations contain absolute value expressions. The definition of absolute value is used in solving these equations. For any real numbers a and b, where $b \geq 0$, if $|a|=b$, then $a=b$ or $-a=b$. This second case is often written as $a=-b$.

Example 2 Solve an Absolute Value Equation

Solve $|x-18|=5$. Check your solutions.

$$
\begin{aligned}
& \text { Case } 1 \quad a=b \quad \text { or } \quad \text { Case } 2 \quad a=-b \\
& x-18=5 \\
& x-18+18=5+18 \\
& x=23 \\
& x-18+18=-5+18 \\
& x=13 \\
& \text { CHECK }|x-18|=5 \\
& |x-18|=5 \\
& |23-18| \stackrel{?}{=} 5 \\
& |5| \stackrel{?}{=} 5 \\
& |13-18| \stackrel{?}{=} 5 \\
& |-5| \stackrel{?}{=} 5 \\
& 5=5 \text { 」 }
\end{aligned}
$$

The solutions are 23 or 13 . Thus, the solution set is $\{13,23\}$.
On the number line, we can see that each answer is 5 units away from 18.

Because the absolute value of a number is always positive or zero, an equation like $|x|=-5$ is never true. Thus, it has no solution. The solution set for this type of equation is the empty set, symbolized by $\}$ or \varnothing.

Example 3 No Solution

Solve $|5 x-6|+9=0$.
$|5 x-6|+9=0 \quad$ Original equation

$$
|5 x-6|=-9 \quad \text { Subtract } 9 \text { from each side. }
$$

This sentence is never true. So the solution set is \varnothing.

It is important to check your answers when solving absolute value equations. Even if the correct procedure for solving the equation is used, the answers may not be actual solutions of the original equation.

Example 4 One Solution

There appear to be two solutions, 4 or -1 .

Differentiated Instruction

ELL

Verbal/Linguistic Some students may think that the absolute value of x is always x. Suggest that they say in words the meaning of $|x|$ as "the distance of x from zero without regard to direction" to see that, for example, the distance of -3 from zero without regard to direction, cannot be -3 . Suggest that they test some positive and negative values for the variable to show that the statement "the absolute value of x is always $x^{\prime \prime}$ is not true.

ABSOLUTE VALUE EXPRESSIONS

In-Class Example
Power
Point ${ }^{\circledR}$
(1) Evaluate $2.7+|6-2 x|$ if $x=4.4 .7$

Teaching Tip Students may find it helpful to read the first absolute value bar as "the distance of" and the last absolute value bar as "from zero, without regard to direction." So, the expression $|6-2 x|$ would be read as "the distance of the value of $6-2 x$ from zero, without regard to direction."

ABSOLUTE VALUE EQUATIONS

In-Class Examples

Power
 Point ${ }^{\text {® }}$

2 Solve $|y+3|=8$. Check your solutions. $\{-11,5\}$

3 Solve $|6-4 t|+5=0 . \varnothing$
Teaching Tip Remind students to think about the meaning of the mathematical sentence before they begin their calculations and again when they evaluate the reasonableness of their solution.

4 Solve $|8+y|=2 y-3$. Check your solutions. \{11\}

Concept Check

Ask students if $-h$ must represent a negative number. No, if h is negative then $-h$ is positive. Have them find a value for h that makes this statement true: $|h|=-h$. Zero and all negative numbers can be values for h.
throughout the chapter
indicate items that can assist English-Language Learners.

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of
the vocabulary terms to their
Vocabulary Builder worksheets for
Chapter I.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..
 Organization by Objective
 - Absolute Values
 Expressions: 17-28
 - Absolute Value Equations: 29-49

Odd/Even Assignments

Exercises 17-48 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 17-25 odd, 29-43 odd, 47, 49, 50-54, 59-79

Average: 17-49 odd, 50-54, 59-79 (optional: 55-58)
Advanced: 18-48 even, 50-73 (optional: 74-79)

Answers

3. Always; since the opposite of 0 is still 0 , this equation has only one case, $a x+b=0$. The solution is $-\frac{b}{a}$.

CHECK $|x+6|=3 x-2$
$|4+6| \stackrel{?}{=} 3(4)-2$
$|10| \stackrel{?}{=} 12-2$
$10=10 \quad \checkmark$
Since $5 \neq-5$, the only solution is 4 . Thus, the solution set is $\{4\}$.

Check for Understanding

Concept Check

1. $|a|=-a$ when a is a negative number and the opposite of a negative number is positive.
2a. $|x|=4$
2b. $|x-6|=2$
2. Explain why if the absolute value of a number is always nonnegative, $|a|$ can equal $-a$.
3. Write an absolute value equation for each solution set graphed below.

4. Determine whether the following statement is sometimes, always, or never true. Explain. See margin.
For all real numbers a and $b, a \neq 0$, the equation $|a x+b|=0$ will have one solution.
5. OPEN ENDED Write and evaluate an expression with absolute value.

Sample answer: $|4-6| ; 2$
Guided Practice

GUIDED PRACTICE KEY

Exercises Examples

$5-7$	1
$8-13$	$2-4$
$14-16$	2

Evaluate each expression if $a=-4$ and $b=1.5$.
5. $|a+12| 8$
6. $|-6 b| 9$
7. $-|a+21|-17$

Solve each equation. Check your solutions.
8. $|x+4|=17\{-21,13\}$
9. $|b+15|=3\{-18,-12\}$
10. $|a-9|=20\{-11,29\}$
11. $|y-2|=34\{-32,36\}$
12. $|2 w+3|+6=2 \varnothing$
13. $|c-2|=2 c-10\{8\}$

Application
FOOD For Exercises 14-16, use the following information.
A meat thermometer is used to assure that a safe temperature has been reached to destroy bacteria. Most meat thermometers are accurate to within plus or minus 2° F. Source: US. Department of Agriculture
14. The ham you are baking needs to reach an internal temperature of 160°. If the thermometer reads $160^{\circ} \mathrm{F}$, write an equation to determine the least and greatest temperatures of the meat. $|x-160|=2$
15. Solve the equation you wrote in Exercise 14. least: $158^{\circ} \mathrm{F}$; greatest: $162^{\circ} \mathrm{F}$
16. To what temperature reading should you bake a ham to ensure that the minimum internal temperature is reached? Explain. $162^{\circ} \mathrm{F}$; This would ensure a minimum internal temperature of $160^{\circ} \mathrm{F}$.
52. Answers should include the following.

- This equation needs to show that the difference of the estimate E from the originally stated magnitude of 6.1 could be plus 0.3 or minus 0.3 , as shown in the graph below. Instead of writing two equations, $E-6.1=0.3$ and $E-6.1=-0.3$, absolute value symbols can be used to account for both possibilities, $|E-6.1|=0.3$.

- Using an original magnitude of 5.9, the equation to represent the estimated extremes would be $|E-5.9|=0.3$.

30 Chapter 1 Solving Equations and Inequalities

Homework Help
For

Exercises | See |
| :---: |
| Examples |

Extra Practice See page 829.

Solve each equation. Check your solutions
29. $|x-25|=17\{8,42\}$
30. $|y+9|=21\{12,-30\}$
31. $|a+12|=33\{-45,21\}$
32. $2|b+4|=48\{-28,20\}$
33. $8|w-7|=72\{-2,16\}$
34. $|3 x+5|=11\left\{2,-\frac{16}{3}\right\}$
35. $|2 z-3|=0\left\{\frac{3}{2}\right\}$
36. $|6 c-1|=-2 \varnothing$
37. $7|4 x-13|=35\left\{2, \frac{9}{2}\right\}$
39. $-12|9 x+1|=144 \varnothing$
38. $-3|2 n+5|=-9\{-4,-1\}$
40. $|5 x+9|+6=1 \varnothing$
41. $|a-3|-14=-6\{-5,11\}$
42. $3|p-5|=2 p\{3,15\}$
43. $3|2 a+7|=3 a+12\left\{-\frac{11}{3},-3\right\}$
44. $|3 x-7|-5=-3\left\{3, \frac{5}{3}\right\}$
45. $4|3 t+8|=16 t\{8\}$
46. $|15+m|=-2 m+3\{-4\}$
47. COFFEE Some say that to brew an excellent cup of coffee, you must have a brewing temperature of $200^{\circ} \mathrm{F}$, plus or minus five degrees. Write and solve an equation describing the maximum and minimum brewing temperatures for an excellent cup of coffee. $|x-200|=5$; maximum: $205^{\circ} \mathrm{F}$; minimum: $195^{\circ} \mathrm{F}$

Meteorology The troposphere is characterized by the density of its air and an average vertical temperature change of $6^{\circ} \mathrm{C}$ per kilometer. All weather phenomena occur within the troposphere. Source: NASA
50. sometimes; true only if $a \geq 0$ and $b \geq 0$ or if $a \leq 0$ and $b \leq 0$
48. MANUFACTURING A machine is used to fill each of several bags with 16 ounces of sugar. After the bags are filled, another machine weighs them. If the bag weighs 0.3 ounce more or less than the desired weight, the bag is rejected. Write an equation to find the heaviest and lightest bag the machine will approve. $|x-16|=0.3$; heaviest: 16.3 oz , lightest: 15.7 oz
49. METEOROLOGY The atmosphere of Earth is divided into four layers based on temperature variations. The troposphere is the layer closest to the planet. The average upper boundary of the layer is about 13 kilometers above Earth's surface. This height varies with latitude and with the seasons by as much as 5 kilometers. Write and solve an equation describing the maximum and minimum heights of the upper bound of the troposphere.
$|x-13|=5$; maximum: 18 km , minimum: 8 km
CRITICAL THINKING For Exercises 50 and 51, determine whether each statement is sometimes, always, or never true. Explain your reasoning.
50. If a and b are real numbers, then $|a+b|=|a|+|b|$
51. If a, b, and c are real numbers, then $c|a+b|=|c a+c b|$.
sometimes; true only if $c \geq 0$
52. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How can an absolute value equation describe the magnitude of an earthquake?
Include the following in your answer:

- a verbal and graphical explanation of how $|E-6.1|=0.3$ describes the possible extremes in the variation of the earthquake's magnitude, and
- an equation to describe the extremes for a different magnitude.

Standardized Test Practice (A) (B) ©
53. Which of the graphs below represents the solution set for $|x-3|-4=0$? \mathbf{B}

(D)

Lesson 1-4 Solving Absolute Value Equations 31
www.algebra2.com/self_check_quiz

Enrichment, p. 24

Considering All Cases in Absolute Value Equations
 symbois have two cases that must be considered. For ex
be broken into $x+3=5$ or $-(x+3)=5$ For an equation
absolute value symbols, four cases must be considered. Consider the problem $|x+2|+3=|x+6|$. First we must write the equations
for the case where $x+6 \geq 0$ and where $x+6<0$. Here are the equations for for the case whe
these two cases:
$|x+2|+3=x+6$
$|x+2|+3=-(x+6)$
Each of these equations also has two cases. By writing the equations for both
cases of each equation above, you end up with the following four equations:
$\begin{array}{ll}x+2+3=x+6 & x+2+3=-(x+6) \\ -(x+2)+3=x+6 & -x-2+3=-(x+6)\end{array}$

Study Guide and Intervention,

p. 19 (shown) and p. 20

Absolute Value Expressions. The absolute value of a number is the number of
units it is from 0 on a number line. The symbol $|x|$ is used to represent the absolute value Absoliti is from 0 on a number line. The symbol $|x|$ is used to represent the absolute value
of a number x.

Exercieses
Evaluate each expression if $w=-4, x=2, y=\frac{1}{2}$, and $z=-6$.

1. $|2 x-8| 4$
$5+|w+z| 15$
2. $|x|-|y|-|z|-4 \frac{1}{2} \quad$ 6. $|7-x|+|3 x| 11$
3. $|w-4 x| 12 \quad$ 8. $|w z|-|x y| 23 \quad$ 9. $|z|-3|5 y z|-39$
$10.5|w|+2|z-2 y| 34 \quad$ 11. $|z|-4|2 z+y|-40 \quad$ 12. $10-|x w| 2$
4. $|6 y+z|+|y z| 6 \quad 14.3|w x|+\frac{1}{4}|4 x+8 y| 27 \quad 15.7|y z|-30-9$
5. $14-2|w-x y| 4 \quad$ 17. $|2 x-y|+5 y \quad$ 18. $|x y z|+|w x z| 54$
6. $z|z|+x|x|-32 \quad 20.12-|10 x-10 y|-3 \quad 21 \cdot \frac{1}{2}|5 z+8 w| 31$
7. $|y z-4 w|-w 17 \quad$ 23. $\frac{3}{4}|w z|+\frac{1}{2}|8 y| 20 \quad$ 24. $x z-|x z|-24$

Skills Practice, p. 21 and Practice, P. 22 (shown)	
Evaluate each expression if $a=-1, b=-8, c=5$, and $d=-1.4$.	
1. $\|6 a\| 6$	2. $\|2 b+4\| 12$
3. $-\|10 d+a\|-15$	4. $\|17 c\|+\|3 b-5\| 114$
5. $-6\|10 a-12\|-132$	6. $\|2 b-1\|-\|-8 b+5\|-52$
7. $\|5 a-7\|+\|3 c-4\| 23$	8. $\|1-7 c\|-\|a\| 33$
9. $-3\|0.5 c+2\|-\|-0.5 b\|-17.5$	10. $\|4 d\|+\|5-2 a\| 12.6$
11. $\|a-b\|+\|b-a\| 14$	12. $\|2-2 d\|-3\|b\|-19.2$
Solve each equation. Check your solutions.	
13. $\|n-4\|=13\{-9,17\}$	14. $\|x-13\|=2\{11,15\}$
15. $\|2 y-3\|=29\{-13,16\}$	16. $7\|x+3\|=42\{-9,3\}$
17. $\|3 u-6\|=42\{-12,16\}$	18. $\|5 x-4\|=-6 \varnothing$
19. $-3\|4 x-9\|=24 \varnothing$	20. $-6\|5-2 y\|=-9\left\{\frac{7}{4}, \frac{13}{4}\right\}$
21. $\|8+p\|=2 p-3\{11\}$	22. $\|44 w-1\|=5 w+37\{-4\}$
$23.4\|2 y-7\|+5=9\{3,4\}$	24. $-2\|7-3 y\|-6=-14\left\{1, \frac{11}{3}\right\}$
25. $2\|4-s\|=-3 s\{-8\}$	26. $5-3\|2+2 w\|=-7\{-3,1\}$
$27.5\|2 r+3\|-5=0\{-2,-1\}$	28. $3-5\|2 d-3\|=4 \varnothing$

EATHER A thermonter comes
 hermometer states that the temperature is 87.4 degrees Fahrenhei.
$-87.4=1.5$; minimum: $85.9^{\circ} \mathrm{F}$, maximum: $88.9^{\circ} \mathrm{F}$
30. OPINION POLLS Public opinion polls reported in newspapers are usually given with a
margin of error For example, a poll with a margin of error of $\pm 5 \%$ is considered accurate to within plus or minus 5% of the actual value. A poll with a stated margin of error of $\pm 3 \%$ predicts that candidate Tonwe will receive 51% of an upcoming vote. Write and
solve an equation describing the minimum and maximum percent of the vote that solve an equation describing the minimum and maximu
candidate Tonve is expected to receive.
$|x-51|=3 ;$ minimum: 48%, maximum: 54%

Reading to Learn

Mathematics, p. 23

ELL

Pre-Activity $\begin{gathered}\text { How can an ab } \\ \text { earthquake? }\end{gathered}$

. describe the magnitude of an
What What is a seismologist and what does magnitude of an earthquake mean?
a scientist who studies earthquakes; a number from 1 to 10 that tells how strong an earthquake is
Why is an absolute value equation rather than an equation without
absolute value used to find the extremes in the actual masgitude of an earthquake in relation to its measured value on the Richter scale? Sample answer: The actual magnitude can vary from the
measured magnitude by up to 0.3 unit in either direction, measured magnitude by up to 0.3 unit in
an absolute value equation is needed.
If the magnitude of an earthquake is estimated to be 6.9 on the Richter scale, it might actually have a magnitude as low as 6.6 or as high
as 7.2 .
Reading the Lesson

1. Explain how $-a$ could represent a positive number. Give an example. Sample
answer: If a is negative, then $-a$ is positive. Example: If $a=-25$, then
$-a=-(-25)=25$. $-a=-(-25)=25$.
2. Explain why the absolute value of a number can never be negative. Sample answer:
The absolute value is the number of units it is from 0 on the number line The number of units is never negative.

3. What does the sent

4. What does the symbol \varnothing mean as a solution set? Sample answer: If a solution set
is \varnothing, then there are no solutions.

Helping You Remember

5. How can the number line model for absolute value that is shown on page 28 of your textbook help you remember that many absolute value equations have two solutionse, there are two numbers that have that number as their absolute value.

4 Assess

Open-Ended Assessment

Modeling Have students draw a number-line diagram like the one shown in Example 2 to model the equation $|x-3|=7$ and another number line to model the equation $|y|=7$. You might suggest that students think of the equation $|y|=7$ as $|y-0|=7$.

Each lesson ends with
Open-Ended Assessment strategies for closing the
lesson. These lesson. These include writing, modeling, and speaking.

Getting Ready for

Lesson 1-5
PREREQUISITE SKILL Lesson 1-5
presents solving inequalities using steps similar to those for solving equations. Exercises 74-79 should be used to determine your students' familiarity with solving equations.
54. Find the value of $-|-9|-|4|-3|5-7|$. A
(A) -19
(B) -11
(C) -7
(D) 11

Extending For Exercises 55-58, consider the equation $|x+1|+2=|x+4|$.
the Lesson 55. To solve this equation, we must consider the case where $x+4 \geq 0$ and the case where $x+4<0$. Write the equations for each of these cases.
55. $|x+1|+2=$ $x+4 ;|x+1|+2=$ $-(x+4)$
56. Notice that each equation you wrote in Exercise 55 has two cases. For each equation, write two other equations taking into consideration the case where $x+1 \geq 0$ and the case where $x+1<0$.
56. $x+1+2=x+4$; $-x-1+2=x+4 ;$ $x+1+2=-x-4 ;$ $-x-1+2=-x-4$
57. Solve each equation you wrote in Exercise 56. Then, check each solution in the original equation, $|x+1|+2=|x+4|$. What are the solution(s) to this absolute value equation? $\{-1.5\}$
58. MAKE A CONJECTURE For equations with one set of absolute value symbols, two cases must be considered. For an equation with two sets of absolute value symbols, four cases must be considered. How many cases must be considered for an equation containing three sets of absolute value symbols? 8

Maintain Your Skills

Mixed Review Write an algebraic expression to represent each verbal expression. (Lesson 1-3)
59. twice the difference of a number and $112(n-11)$
60. the product of the square of a number and $55 n^{2}$

Solve each equation. Check your solution. (Lesson 1-3)
61. $3 x+6=22 \frac{16}{3}$
62. $7 p-4=3(4+5 p)-2$ 63. $\frac{5}{7} y-3=\frac{3}{7} y+1$

Name the property illustrated by each equation. (Lesson 1-2)
64. $(5+9)+13=13+(5+9)$ Comm. $(+)$ 65. $m(4-3)=m \cdot 4-m \cdot 3$ Dist.
66. $(\underline{1}) 4=1$ Mult. Inv.
66. $\left(\frac{1}{4}\right) 4=1$ Mult. Inv.
67. $5 x+0=5 x$ Add. Iden.

Determine whether each statement is true or false. If false, give a counterexample. (Lesson 1-2)
68. Every real number is a rational number. false; $\sqrt{3}$
69. Every natural number is an integer. true
70. Every irrational number is a real number. true
71. Every rational number is an integer. false; 1.2

GEOMETRY For Exercises 72 and 73, use the following information.
The formula for the area A of a triangle is $A=\frac{1}{2} b h$, where b is the measure of the base and h is the measure of the height. (Lesson 1-1)

72. $\frac{1}{2}(x+3)(x+5)$
72. Write an expression to represent the area of the triangle above.
73. Evaluate the expression you wrote in Exercise 72 for $x=23$. $364 \mathrm{ft}^{2}$

Getting Ready for
the Next Lesson
PREREQUISITE SKILL Solve each equation. (To review solving equations, see page 20.)
74. $14 y-3=252$
75. $4.2 x+6.4=408$
76. $7 w+2=3 w-6-2$
77. $2(a-1)=8 a-6 \frac{2}{3}$
78. $48+5 y=96-3 y 6$
79. $\frac{2 x+3}{5}=\frac{3}{10}-\frac{3}{4}$

32 Chapter 1 Solving Equations and Inequalities

What You'll Learn

- Solve inequalities.
- Solve real-world problems involving inequalities.

Vocabulary

- set-builder notation interval notation

Study Tip

Properties of Inequality The properties of inequality are also known as axioms of inequality.

How can inequalities be used to compare phone plans?
Kuni is trying to decide between two rate plans offered by a wireless phone company.

To compare these two rate plans, we can use inequalities. The monthly access fee for Plan 1 is less than the fee for Plan $2, \$ 35<\$ 55$. However, the additional minutes fee for Plan 1 is greater than that of Plan $2, \$ 0.40>\$ 0.35$.

SOLVE INEQUALITIES For any two real numbers, a and b, exactly one of the following statements is true.

$$
a<b \quad a=b \quad a>b
$$

This is known as the Trichotomy Property or the property of order.
Adding the same number to, or subtracting the same number from, each side of an inequality does not change the truth of the inequality.

Key Concept	Properties of Ineq
Addition Property of Inequality	
Words For any real numbers, a, b, and $c:$	Example
If $a>b$, then $a+c>b+c$.	$3<5$
If $a<b$, then $a+c<b+c$.	$3+(-4)<5+(-4)$
	$-1<1$

Subtraction Property of Inequality

- Words For any real numbers, a, b, and c :
- Example

$$
\begin{aligned}
& \text { If } a>b \text {, then } a-c>b-c . \\
& \text { If } a<b \text {, then } a-c<b-c .
\end{aligned}
$$

$$
\begin{aligned}
2 & >-7 \\
2-8 & >-7-8 \\
-6 & >-15
\end{aligned}
$$

These properties are also true for \leq and \geq

These properties can be used to solve inequalities. The solution sets of inequalities in one variable can then be graphed on number lines. Use a circle with an arrow to the left for $<$ and an arrow to the right for $>$. Use and a dot with an arrow to the left for \leq and an arrow to the right for \geq.

Lesson 1-5 Solving Inequalities

1 Focus

5-Minute Check
 Transparency 1-5 Use as a

 quiz or review of Lesson 1-4.Mathematical Background notes are available for this lesson on p. 4D.

Building on Prior Knowledge

In Lessons 1-3 and 1-4, students solved equations. In this lesson, students use similar steps to solve inequalities.

How

can inequalities be used
to compare phone plans?
Ask students:

- If Kuni knows that she will use no more than 150 minutes per month, which plan is best for her? Plan 1
- How much would she pay if she used 350 minutes under Plan 1? under Plan 2? \$115; \$55

$$
\begin{aligned}
& \text { Questions are provided at } \\
& \text { the beginning of each lesson } \\
& \text { to help you use the problem } \\
& \text { provided there to engage } \\
& \text { and inform students. }
\end{aligned}
$$

Workbook and Reproducible Masters Chapter 1 Resource Masters

- Study Guide and Intervention, pp. 25-26
- Skills Practice, p. 27
- Practice, p. 28
- Reading to Learn Mathematics, p. 29
- Enrichment, p. 30
- Assessment, p. 52

Resource Manager

Transparencies

5-Minute Check Transparency 1-5
Answer Key Transparencies
© Technology
Alge2PASS: Tutorial Plus, Lesson 2
Interactive Chalkboard

A Four-step Teaching plan shows you how
to Focus, Practice/Apply, Assess Apply, and

2 Teach

SOLVE INEQUALITIES

In-Class Example

1) Solve $4 y-3<5 y+2$. Graph the solution set on a number line. $y>-5$

Teaching Tip Ask students what difference it makes when you use the Addition and Subtraction Properties of Inequality whether the inequality sign is $<,>, \leq$, or \geq. There is no difference in the calculations but there is a difference in the direction and beginning of the graph of the solution set

Example 1 Solve an Inequality Using Addition or Subtraction
Solve $7 x-5>6 x+4$. Graph the solution set on a number line.

$7 x-5$	$>6 x+4$		Original inequality
$7 x-5+(-6 x)$	$>6 x+4+(-6 x)$		Add $-6 x$ to each side.
$x-5$	>4		Simplify.
$x-5+5$	$>4+5$		Add 5 to each side.
x	>9		Simplify.

Any real number greater than 9 is a solution of this inequality.
The graph of the solution set is shown at the right.

CHECK Substitute 9 for x in $7 x-5>6 x+4$. The two sides should be equal. Then substitute a number greater than 9 . The inequality should be true.

Multiplying or dividing each side of an inequality by a positive number does not change the truth of the inequality. However, multiplying or dividing each side of an inequality by a negative number requires that the order of the inequality be reversed. For example, to reverse \leq, replace it with \geq.

Key Concept

Properties of Inequality

Multiplication Property of Inequality

- Words For any real numbers, a, b, and c, where
- Examples
c is positive:
if $a>b$, then $a c>b c$.
if $a<b$, then $a c<b c$.
if $a>b$, then $a c<b c$.
if $a<b$, then $a c>b c$.
$-2<3$
$4(-2)<4(3)$
$-8<12$
$5>-1$
c is negative:
if $a<b$, then $a c>b c$.
$(-3)(5)<(-3)(1)$
$-15<3$

Division Property of Inequality

- Words For any real numbers, a, b, and c, where
- Examples

$$
-18<-9
$$

c is positive:

$$
\begin{aligned}
& \text { if } a>b \text {, then } \frac{a}{c}>\frac{b}{c} \text {. } \\
& \text { if } a<b \text {, then } \frac{a}{c}<\frac{b}{c} \text {. } \\
& \text { if } a>b \text {, then } \frac{a}{c}<\frac{b}{c} \text {. } \\
& \text { if } a<b \text {, then } \frac{a}{c}>\frac{b}{c} \text {. }
\end{aligned}
$$

$$
\frac{-18}{3}<\frac{-9}{3}
$$

$$
-6<-3
$$

$$
12>8
$$

c is negative:

$$
\frac{12}{-7}<\frac{8}{-2}
$$

$$
-6<-4
$$

$$
\text { These properties are also true for } \leq \text { and } \geq \text {. }
$$

The solution set of an inequality can be expressed by using set-builder notation.

For example, the solution set in Example 1 can be expressed as $\{x \mid x>9\}$.

Example 2 Solve an Inequality Using Multiplication or Division
Solve $-0.25 y \geq 2$. Graph the solution set on a number line.
$-0.25 y \geq 2 \quad$ Original inequality
$\frac{-0.25 y}{-0.25} \leq \frac{2}{-0.25}$ Divide each side by -0.25 , reversing the inequality symbol.

$$
y \leq-8 \quad \text { Simplify. }
$$

The solution set is $\{y \mid y \leq-8\}$.
The graph of the solution set is shown below.

Study Tip
Reading Math The symbol $+\infty$ is read positive infinity, and the symbol $-\infty$ is read negative infinity.

Study Tip

Solutions to
Inequalities
When solving an
inequality,

- if you arrive at a false statement, such as $3>5$, then the solution set for that inequality is the empty set, \varnothing.
- if you arrive at a true statement such as $3>-1$, then the solution set for that inequality is the set of all real numbers.

The solution set of an inequality can also be described by using interval notation The infinity symbols $+\infty$ and $-\infty$ are used to indicate that a set is unbounded in the positive or negative direction, respectively. To indicate that an endpoint is not included in the set, a parenthesis, (or), is used.

interval notation $(-\infty, 2)$

A bracket is used to indicate that the endpoint, -2 , is included in the solution set below. Parentheses are always used with the symbols $+\infty$ and $-\infty$, because they do not include endpoints.

interval notation

$$
[-2,+\infty)
$$

Example 3 Solve a Multi-Step Inequality
Solve $-m \leq \frac{m+4}{9}$. Graph the solution set on a number line.

$$
\begin{aligned}
-m & \leq \frac{m+4}{9} & & \text { Original inequality } \\
-9 m & \leq m+4 & & \text { Multiply each side by } 9 . \\
-10 m & \leq 4 & & \text { Add }-m \text { to each side. } \\
m & \geq-\frac{4}{10} & & \text { Divide each side by }-10, \text { reversing the inequality symbol. } \\
m & \geq-\frac{2}{5} & & \text { Simplify. }
\end{aligned}
$$

The solution set is $\left[-\frac{2}{5},+\infty\right)$ and is graphed below.

www.algebra2.com/extra_examples

Differentiated Instruction

Intrapersonal Have students discuss the differences between solving an equation and solving an inequality and then how the solution processes are the same.

Solve $12 \geq-0.3 p$. Graph the solution set on a number line $\{p \mid p \geq-40\}$

Teaching Tip Remind students that when solving an inequality, in order to keep each intermediate inequality equivalent to the original, they must show both the division by a negative number and the reversal of the inequality sign in the same step.

3 Solve $-x>\frac{x-7}{2}$. Graph the solution set on a number line.

Concept Check

Ask students to name three different ways to show the solution of an inequality. four possible responses: as a graph on a number line, as an inequality, using set-builder notation, using interval notation

REAL-WORLD PROBLEMS WITH INEQUALITIES

In-Class Example Power

Teaching Tip To understand the situation given in Example 4, some students may find it helpful to make a sketch representing the elevator, the boxes, and the person.

4 CONSUMER COSTS Alida has at most $\$ 10.50$ to spend at a convenience store. She buys a bag of potato chips and a can of soda for $\$ 1.55$. If gasoline at this store costs $\$ 1.35$ per gallon, how many gallons of gasoline can Alida buy for her car, to the nearest tenth of a gallon? no more than 6.6 gal

Answer
Graphing Calculator Investigation

1. The graph is of the line $y=1$, for $x \geq-1$.

Answers (p. 37)

4. $(-\infty, 1.5)$
5. $\left(-\infty, \frac{5}{3}\right]$
6. $[3,+\infty)$
7. $(6,+\infty)$
8. $(-\infty,-7)$
9. $(15,+\infty)$
10. $(-\infty,-24]$
11. $(-\infty,+\infty)$

REAL-WORLD PROBLEMS WITH INEQUALITIES Inequalities can be used to solve many verbal and real-world problems.

Example 4 Write an Inequality

DELIVERIES Craig is delivering boxes of paper to each floor of an office building. Each box weighs 64 pounds, and Craig weighs 160 pounds. If the maximum capacity of the elevator is 2000 pounds, how many boxes can Craig safely take on each elevator trip?

Explore Let $b=$ the number of boxes Craig can safely take on each trip. A maximum capacity of 2000 pounds means that this weight

Study Tip

Inequality Phrases
< is less than; is fewer than
$>$ is greater than; is more than
s is at most;
is no more than;
is less than or equal to
\geq is at least;
is no less than;
is greater than or equal to
must be less than or equal to 2000 .
Plan The total weight of the boxes is $64 b$. Craig's weight plus the total weight of the boxes must be less than or equal to 2000. Write an inequality.

Craig's weight	$\underbrace{\text { plus }}$	the weight of the boxes	is less than or equal to	2000.
160	+	$64 b$	\leq	2000
	$0+64$	≤ 2000	Original inequality	
160 -	$0+64$	$\leq 2000-1$	Subtract 160 from each side.	
		≤ 1840	Simplify.	
		$\leq \frac{1840}{64}$	Divide each side by 64.	
		≤ 28.75	Simplify.	

Examine Since he cannot take a fraction of a box, Craig can take no more than 28 boxes per trip and still meet the safety requirements of the elevator.

You can use a graphing calculator to find the solution set for an inequality.

Graphing Calculator Investigation

Solving Inequalities After students enter $11 x+3$, have them press 2 [MATH] 4 to insert the \geq symbol before entering $2 x-6$. The values of x for which 0 is returned (where the inequality is false) are not visible on the screen because they overlay part of the x-axis. To help students realize this fact, have them use the Trace feature to travel from positive values of x to increasingly negative values of x along the graph shown in the window.

Check for Understanding

Concept Check

1. Dividing by a number is the same as multiplying by its inverse.

Guided Practice

Solve each inequality. Describe the solution set using set-builder or interval

GUIDED PRACTICE KEY	
Exercises	Examples
$4-11$	$1-3$
$12-14$	4

$4-11$. See margin for interval notation. See pp. 53A-53B for graphs.

1. Explain why it is not necessary to state a division property for inequalities.
2. Write an inequality using the $>$ symbol whose solution set is graphed below. Sample answer: $-2 n>-6$
3. OPEN ENDED Write an inequality for which the solution set is the empty set. Sample answer: $x+2<x+1$
notation. Then graph the solution set on a number line.
4. $a+2<3.5\{a \mid a<1.5\}$
5. $5 \geq 3 x\left\{x \left\lvert\, x \leq \frac{5}{3}\right.\right\}$
6. $11-c \leq 8\{c \mid c \geq 3\}$
7. $4 y+7>31\{y \mid y>6\}$
8. $2 w+19<5\{w \mid w<-7\}$
9. $-0.6 p<-9\{p \mid p>15\}$
10. $\frac{n}{12}+15 \leq 13\{n \mid n \leq-24\}$
11. $\frac{5 z+2}{4}<\frac{5 z}{4}+2$ all real numbers

Define a variable and write an inequality for each problem. Then solve.
12. The product of 12 and a number is greater than 36 . $12 n>36 ; n>3$
13. Three less than twice a number is at most 5 . $2 n-3 \leq 5$; $n \leq 4$

Application
14. SCHOOL The final grade for a class is calculated by taking 75% of the average test score and adding 25% of the score on the final exam. If all scores are out of 100 and a student has a 76 test average, what score does the student need to make on the final exam to have a final grade of at least 80 ? at least 92

* indicates increased difficulty

Practice and Apply

\section*{Homework Help
 | For
 Exercises | See
 Examples |
| :---: | :---: |
| $15-40$ | $1-3$ |
| $41-51$ | 4 |}

Extra Practice

See page 829.
15-38. See margin for interval notation.
See pp. 53A-53B for graphs.
21. $\{k \mid k \geq-3.5\}$
23. $\{m \mid m>-4\}$
27. $\{n \mid n \geq 1.75\}$
28. $\left\{w \left\lvert\, w>-\frac{1}{20}\right.\right\}$
29. $\{x \mid x<-279\}$
30. $\{c \mid c>-18\}$
31. $\{d \mid d \geq-5\}$
32. $\{z \mid z>2.6\}$
34. $\left\{a \left\lvert\, a \geq \frac{5}{7}\right.\right\}$

Solve each inequality. Describe the solution set using set-builder or interval notation. Then, graph the solution set on a number line.
15. $n+4 \geq-7\{n \mid n \geq-11\}$ 16. $b-3 \leq 15\{b \mid b \leq 18\}$ 17. $5 x<35\{x \mid x<7\}$
18. $\frac{d}{2}>-4\{d \mid d>-8\}$
19. $\frac{g}{-3} \geq-9\{g \mid g \leq 27\} \quad$ 20. $-8 p \geq 24\{p \mid p \leq-3\}$
21. $13-4 k \leq 27$

太 22. $14>7 y-21\{y \mid y<5\} 23 . ~-27<8 m+5$
24. $6 b+11 \geq 15\left\{b \left\lvert\, h \geq \frac{2}{3}\right.\right\}$ 25. $2(4 t+9) \leq 18\{t \mid t \leq 0\}$ 26. $90 \geq 5(2 r+6)\{r \mid r \leq 6\}$
27. $14-8 n \leq 0$
28. $-4(5 w-8)<33$
29. $0.02 x+5.58<0$
30. $1.5-0.25 c<6$
31. $6 d+3 \geq 5 d-2$
32. $9 z+2>4 z+15$
33. $2(g+4)<3 g-2(g-5)\{g \mid g<2\}$
34. $3(a+4)-2(3 a+4) \leq 4 a-1$
35. $y<\frac{-y+2}{9}\left\{y \left\lvert\, y<\frac{1}{5}\right.\right\}$
37. $\frac{4 x+2}{6}<\frac{2 x+1}{3} \varnothing$
36. $\frac{1-4 p}{5}<0.2\{p \mid p>0\}$
38. $12\left(\frac{1}{4}-\frac{n}{3}\right) \leq-6 n\left\{n \left\lvert\, n \leq-\frac{3}{2}\right.\right\}$
39. PART-TIME JOB David earns $\$ 5.60$ an hour working at Box Office Videos. Each week, 25% of his total pay is deducted for taxes. If David wants his take-home pay to be at least $\$ 105$ a week, solve the inequality $5.6 x-0.25(5.6 x) \geq 105$ to determine how many hours he must work. at least 25 h
40. STATE FAIR Juan's parents gave him $\$ 35$ to spend at the State Fair. He spends $\$ 13.25$ for food. If rides at the fair cost $\$ 1.50$ each, solve the inequality $1.5 n+13.25 \leq 35$ to determine how many rides he can afford. no more than
www.algebra2.com/self_check_quiz

Answers

15. $[-11,+\infty)$
16. $[-3.5,+\infty)$
17. $(-\infty, 6]$
18. $[-5,+\infty)$
19. $(0,+\infty)$
20. $(-\infty, 18]$
21. $(-\infty, 5)$
22. $(-\infty, 7)$
23. $(-4,+\infty)$
24. $\left[\frac{2}{3},+\infty\right)$
25. $(-\infty, 0]$
26. $[1.75,+\infty)$
27. $\left(-\frac{1}{20},+\infty\right)$
28. ($-\infty,-279$)
29. $(-18,+\infty)$
30. $(2.6,+\infty)$
31. $(-\infty, 2)$
32. $\left[\frac{5}{7},+\infty\right)$
33. $\left(-\infty, \frac{1}{5}\right)$
$37 . \varnothing$
34. $\left(-\infty,-\frac{3}{2}\right]$

About the Exercises...
 Organization by Objective
 - Solve Inequalities: 15-40
 - Real-World Problems with Inequalities: 41-51

Exercises 15-46 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercises 56-58 require a graphing calculator.

Assignment Guide

Basic: 15-35 odd, 39-43 odd, 47-49, 52-55, 59-72
Average: 15-47 odd, 48-49,
52-55, 59-72 (optional: 56-58)
Advanced: 16-46 even, 48-66 (optional: 67-72)
All: Practice Quiz 2 (1-5)

Study Guide and Intervention,
p. 25 (shown) and p. 26

Skills Practice, P. 27 and Practice, p. 28 (shown)	
Solve each inequality. Describe the solution set using set-builder or interval notation. Then, graph the solution set on a number line.	
1. $8 x-6 \geq 10\{x \mid x \geq 2\}$ or $[2, \infty) \quad 2.23-4 u<11\{u \mid u>3\}$ or $(3, \infty)$	
$\xrightarrow{-3-211}$	
5. $9 x-11>6 x-9\left\{x \left\lvert\, x>\frac{2}{3}\right.\right\}$ or $\left(\frac{2}{3}, \infty\right) \quad$ 6. $-3\left(4 w-11>18\left\{w \left\lvert\, w<-\frac{5}{4}\right.\right\}\right.$	
11. $\frac{4 x-3}{2} \geq-3.5\{x \mid x \geq-1\}$ or $[-1, \infty) 12 . q-2(2-q) \leq 0\left\{q \left\lvert\, q \leq \frac{4}{3}\right.\right\}$ or $\left(-\infty, \frac{4}{3}\right]$	
Define a variable and write an inequality for each problem. Then solve. 15. Twenty less than a number is more than twice the same number $n-20>2 n ; n<-20$	
16. Four times the sum of twice a number and -3 is less than 5.5 times that same number.$4[2 n+(-3)]<5.5 n ; n<4.8$	
17. HOTELS The Lincoln's hotel room costs $\$ 90$ a night. An additional 10% tax is added.Hotel parking is 812 per day The Lincoln's expect to spend $\$ 3$ in tips during their stay Hotel parking is 812 per day. The Lincoln's expect to spend $\$ 30$ in tips during their staySolve the inequality $90 x+900.11 x+12 x+30 \leq 600$ to find how many nights the Lincoln's can stay at the hotel without exceeding total hotel costs of $\$ 600.5$ nights	
balance of at least $\$ 500$. Write and solve an inequality describing how much she canwithdraw and still meet these conditions. $3800-750-w \geq 500 ; w \leq \$ 2550$	
Reading to Learn Mathematics, p. 29	
Pre-Activity How can inequalities be used to compare phone plans? Read the introduction to Lesson 1-5 at the top of page 33 in your textb - Write an inequality comparing the number of minutes per month included in the two phone plans. $150<400$ or $400>150$ - Suppose that in one month you use 230 minutes of airtime on your wireless phone. Find your monthly cost with each plan. Plan 1: $\quad \$ 67$ Plan 2: $\$ 55$ Which plan should you choose? Plan 2	
Reading the Lesson	
1. There are several different ways to write or show inequalities. Write each of the rval notation. a. $\|x\| x<-3 \mid(-\infty,-3)$ b. $\{x \mid x \geq 5\}[5,+\infty)$	
2. Show how you can write an inequality symbol followed by a number to describe each ofthe following situations.	
a. There are fever than 600 students in the senior class, <600	
b. A student may erroll in no more than six courses each semester: ≤ 6	
c. To participate in a concert, you must be willing to attend at east ten rehearsals, z	
165 students in the	in the high school band. ≤ 16
Helping You Remember	
3. One way to remember something is to oxplain it to another person. A common student error in solving inequalities is forgetting to reverse the inequality symbol whenmultiplying or dividing both sides of an inequality by a negative number. Suppose that your classmate is having trouble remembering this rule. How could you explain this ru numbers, for example, 3 and 8 . Then plot their additive inverses, -3 and -8 . Write an inequality that compares the positive numbers and one th order changes when you multiply by -1 .	

Solve each inequality. Describe the solution set using set-builder or interval
notation. Then, graph the solution set on a number line. 1. $8 x-6 \geq 10\{x \mid x \geq 2\}$ or $[2, \infty) \quad 2.23-4 u<11\{u \mid u>3\}$ or $(3, \infty)$
 3. $-16-8 r \geq 0\{r \mid r \leq-2\}$ or $(-\infty,-2]$ 4. $14 s<9 s+5\{s \mid s<1\}$ or $(-\infty, 1)$ 5. $9 x-11>6 x-9\left\{x \left\lvert\, x>\frac{2}{3}\right.\right\}$ or $\left(\frac{2}{3}, \infty\right) \quad$ 6. $-3(4 w-1)>18\left\{w \left\lvert\, w<-\frac{5}{4}\right.\right\}$
 9. $9(2 r-5)-3<7 r-4\{r \mid r<4\} \quad$ 10.1+5(x-8) $\leq 2-(x+5)\{x \mid x \leq 6\}$ 11. $\frac{4 x-3}{2} \geq-3.5\{x \mid x \geq-1\}$ or $[-1, \infty) 12 . q-2(2-q) \leq 0\left\{q \left\lvert\, q \leq \frac{4}{3}\right.\right\}$ or $\left(-\infty, \frac{4}{3}\right]$
 15. Twenty less than a number is more than twice the same number.
$n-20>2 n ; n<-20$
$4[2 n+(-3)]<5.5 n ; n<4.8$
17. HOTELS The Lincoln's hotel room costs $\$ 90$ a night. An additional 10% tax is added.
Hotel parking is $\$ 12$ per day. The Lincoln's expect to spend $\$ 30$ in tips during their stay. Solve the inequality $90 x+90(0.1 x+12 x+30 \leq 600$ to find how many nights the
S. BANKING Jan's account balance is $\$ 3800$. Of this, $\$ 750$ is for rent. Jan wants to keep balance of at least $\$ 500$. Write and solve an inequality describing how much she can
withdraw and still meet these conditions. $3800-750-w \geq 500 ; W \leq \$ 2550$

Reading to Learn ELL used to compare phone plans? Write an inequality comparing the number of minutes per month
included in the two phone plans. $150<400$ or $400>150$ Suppose that in one month you use 230 minutes of airtime on your Plan 1: $\$ 67$ Plan 2: $\$ 55$ Which plan should you choose? Plan 2

Reading the Lesson
There are several different wa
following in in interval notation.
b. $|x| x \geq 5)[5,+\infty)$
c. $\xrightarrow[-5-4-3-2-1]{11} 1+1 \mid 1+(-\infty, 2]$
2. Show how you can write
the following situations.

There are fewer than 600 students in the senior class. <600
A student may enroll in no more than six courses each semester. ≤ 6
There is space for at most 165 students in the high school band. ≤ 16
elping You Remembe
error in solving inequalities sis forgetting to reverse the er person. A common stue nultiplying or dividing both sides of an inequality by a negative number. Suppose that
 -8 . Write an inequality that compares the poositive numbers and one that
compares the negative numbers. Notice that $8>3$, but $-8<-3$. The order changes when you multiply by -1 .

Child Care

In 1995, 55\% of children ages three to five were enrolled in center-based child care programs. Parents cared for 26% of children, relatives cared for 19% of children, and non-relatives cared for 17% of children.
Source: National Center for Education Statistics
43. $\frac{1}{2} n-7 \geq 5$;
$n \geq 24$
44. $-3 n+1<16$;
$n>-5$

52c. For all real numbers a, b, and c, if $a<b$ and $b<c$ then $a<c$.

Define a variable and write an inequality for each problem. Then solve.
41. The sum of a number and 8 is more than 2 . $n+8>2 ; n>-6$
42. The product of -4 and a number is at least 35 . $-4 n \geq 35 ; n \leq 8.75$
43. The difference of one half of a number and 7 is greater than or equal to 5 .
44. One more than the product of -3 and a number is less than 16 .
45. Twice the sum of a number and 5 is no more than 3 times that same number increased by 11. $2(n+5) \leq 3 n+11 ; n \geq-1$
46. 9 less than a number is at most that same number divided by 2 . $n-9 \leq \frac{n}{2} ; n \leq 18$
47. CHILD CARE By Ohio law, when children are napping, the number of children per child care staff member may be as many as twice the maximum listed at the right. Write and solve an inequality to determine how many staff members are required to be present in a room where 17 children are napping and the youngest child is 18 months old. $2(7 m) \geq 17 ; m \geq \frac{17}{14}$; at least 2 child care staff members

Maximum Number of Children Per Child Care Staff Member		
5		
6	12	
6	12	12
7	30	18
8	3	30

Source: Ohio Department of Job and Family Services

CAR SALES For Exercises 48 and 49, use the following information.
Mrs. Lucas earns a salary of $\$ 24,000$ per year plus 1.5% commission on her sales. If the average price of a car she sells is $\$ 30,500$, about how many cars must she sell to make an annual income of at least $\$ 40,000$?
48. Write an inequality to describe this situation. $\$ 24,000+0.015(30,500 n) \geq 40,000$
49. Solve the inequality and interpret the solution. $n \geq 34.97$; She must sell at least 35 cars.

TEST GRADES For Exercises 50 and 51, use the following information.
Ahmik's scores on the first four of five 100-point history tests were 85, 91, 89, and 94.
50. If a grade of at least 90 is an A , write an inequality to find the score Ahmik must receive on the fifth test to have an A test average. See margin.
51. Solve the inequality and interpret the solution. $s \geq 91$; Ahmik must score at least 91 on her next test to have an A test average.
52. CRITICAL THINKING Which of the following properties hold for inequalities? Explain your reasoning or give a counterexample.
a. Reflexive
b. Symmetric
c. Transitive

52a. It holds only for \leq or $\geq ; 2 \nless 2$. $52 \mathrm{~b} .1<2$ but $2 \nless 1$
53. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 53A-53B.
How can inequalities be used to compare phone plans?
Include the following in your answer:

- an inequality comparing the number of minutes offered by each plan, and
- an explanation of how Kuni might determine when Plan 1 might be cheaper than Plan 2 if she typically uses more than 150 but less than 400 minutes.

38 Chapter 1 Solving Equations and Inequalities

Enrichment, p. 30

Equivalence Relations

A relation R on a set A is an equivalence relation if it has the following propertie

$\begin{array}{ll}\text { Reflexive Property } & \text { For any element } a \text { of set } A, a \text { R } a . \\ \text { Symmetric Property } & \text { For all elements } a \text { and } b \text { of set }\end{array}$
Symmetric Property $\quad \begin{aligned} & \text { For all elements } a \text { and } b \text { of set } A \text {, if } \\ & a \mathrm{R} b, \text { then } b \mathrm{R} a .\end{aligned}$
\quad
$\begin{array}{ll}\text { Transitive Property } & \begin{array}{l}\text { For all elements } a, b, \text { and } c \text { of set } A, \\ \text { if } a R b \text { and } b \mathrm{R} c \text {, then } a \mathrm{Rc}\end{array}\end{array}$
Equality on the set of all real numbers is reflexive, symmetric, and transitive
Therefore, it is an equivalence relation.
In each of the following, a relation and a aet are given. Write yes if the
relation is an equivalence relation on the eniven set. If it is not, tell
which of the properties it fails to exhibit.
which of the properties it fails to exhibit.

38 Chapter 1 Solving Equations and Inequalities

Standardized
Test Practice
(A) B C CD
54. If $4-5 n \geq-1$, then n could equal all of the following EXCEPT D
(A) $-\frac{1}{5}$.
(B) $\frac{1}{5}$.
(C) 1 .
(D) 2 .
55. If $a<b$ and $c<0$, which of the following are true? \mathbf{D}
I. $a c>b c$
II. $a+c<b+c$
III. $a-c>b-c$
(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

NGraphing Use a graphing calculator to solve each inequality. Calculator
58. $3(x+3) \geq 2(x+4)$ $x \geq-1$

Maintain Your Skills

Mixed Review
60. $\left\{-\frac{5}{4}, \frac{11}{4}\right\}$
62. $b=$ online browsers each year;
$6 b+19.2=106.6 ;$
about 14.6 million browsers each year
64. N, W, Z, Q, R each number belongs. (Lesson 1-2)
$\begin{array}{lll}\text { 63. } 31 & \text { 64. }-4 . \overline{2} & \text { 65. } \sqrt{7}\end{array}$ Q, R

I, R
66. BABY-SITTING Jenny baby-sat for $5 \frac{1}{2}$ hours on Friday night and 8 hours on Saturday. She charges $\$ 4.25$ per hour. Use the
Distributive Property to write two equivalent expressions that represent how much money
Jenny earned. (Lesson 1-2)
$4.25(5.5+8) ; 4.25(5.5)+4.25(8)$
Getting Ready for the Next Lesson

Solve each equation. Check your solutions. (Lesson 1-4)
59. $|x-3|=17\{-14,20\} 60.8|4 x-3|=64$
62. SHOPPING On average, by how much did the number of people who just browse, but not necessarily buy, online increase each year from 1997 to 2003? Define a variable, write an equation, and solve the problem. (Lesson 1-3)

Name the sets of numbers to which
(To review solving absolute value equations, see Lesson 1-4.)
61. $|x+1|=x \varnothing$

PREREQUISITE SKILL Solve each equation. Check your solutions.
67. $|x|=7\{-7,7\}$
68. $|x+5|=18\{13,-23\}$ 69. $|5 y-8|=12\left\{4,-\frac{4}{5}\right\}$
70. $|2 x-36|=14\{11,25\}$ 71. $2|w+6|=10$ 72. $|x+4|+3=17$ $\{-11,-1\}$

4 Assess

Open-Ended Assessment

Writing Have students write their own list of tips for solving inequalities, including when to reverse the inequality sign and how to tell when the graph begins with a circle or with a dot.

Getting Ready for Lesson I-6

PREREQUISITE SKILL Lesson 1-6 presents solving compound inequalities and absolute value inequalities. The procedure for solving absolute value inequalities are similar to those discussed for solving absolute value equations. Exercises 67-72 should be used to determine your students' familiarity with solving absolute value equations.

Assessment Options

Practice Quiz 2 The quiz provides students with a brief review of the concepts and skills in Lessons 1-3 through 1-5. Lesson numbers are given to the right of exercises or instruction lines so students can review concepts not yet mastered.
Quiz (Lessons 1-4 and 1-5) is available on p. 52 of the Chapter 1 Resource Masters.

Answer (Practice Quiz 2)

5. $\left\{m \left\lvert\, m>\frac{4}{9}\right.\right\}$ or $\left(\frac{4}{9},+\infty\right)$

Online Lesson Plans

USA TODAY Education's Online site offers resources and interactive features connected to each day's newspaper. Experience TODAY, USA TODAY's daily lesson plan, is available on the site and delivered daily to subscribers. This plan provides instruction for integrating USA TODAY graphics and key editorial features into your mathematics classroom. Log on to wwww.education.usatoday.com.

1 Focus

5-Minute Check

Transparency 1-6 Use as a quiz or review of Lesson 1-5.

Mathematical Background notes are available for this lesson on p. 4D.

Building on Prior Knowledge

In Lesson 1-5 students solved inequalities, and in Lesson 1-4 they solved absolute value equations. In this lesson, they expand these skills to solving compound inequalities and absolute value inequalities.

How

 are compound inequalities used in medicine?Ask students:

- If you are scheduled to have a glucose tolerance test at 10 A.M., at what hour should you begin fasting? sometime between 6 p.m. and midnight
- Medicine What does a glucose tolerance test measure? how well the body processes sugar (glucose)

Vocabulary

compound inequality
intersection
union

Solving Compound and Absolute Value Inequalities

What You'll Learn

- Solve compound inequalities.
- Solve absolute value inequalities.

How
 are compound inequalities used in medicine?

One test used to determine whether a patient is diabetic and requires insulin is a glucose tolerance test. Patients start the test in a fasting state, meaning they have had no food or drink except water for at least 10 but no more than 16 hours. The acceptable number of hours h for fasting can be described by the following compound inequality.

$$
h \geq 10 \text { and } h \leq 16
$$

COMPOUND INEQUALITIES A compound inequality consists of two inequalities joined by the word and or the word or. To solve a compound inequality, you must solve each part of the inequality. The graph of a compound inequality containing and is the intersection of the solutions sets of the two inequalities.

Key Concept

"And" Compound Inequalities

- Words A compound inequality containing the word and is true if and only if both inequalities are true.
- Example $x \geq-1$
$x<2$
$x \geq-1$ and $x<2$

Another way of writing $x \geq-1$ and $x<2$ is $-1 \leq x<2$.
Both forms are read x is greater than or equal to -1 and less than 2 .

Example 1 Solve an "and" Compound Inequality

Solve $13<2 x+7 \leq 17$. Graph the solution set on a number line.

Method 1
Write the compound inequality using the word and. Then solve each inequality.

$13<2 x+7$	and	$2 x+7 \leq 17$
$6<2 x$		$2 x \leq 10$
$3<x$		$x \leq 5$

Method 2
Solve both parts at the same time by subtracting 7 from each part. Then divide each part by 2 .

$13<$	$2 x+7$	17
$6<$	$2 x$	10
$3<$	x	≤ 5

Resource Manager

Workbook and Reproducible Masters

Chapter 1 Resource Masters

- Study Guide and Intervention, pp. 31-32
- Skills Practice, p. 33
- Practice, p. 34
- Reading to Learn Mathematics, p. 35
- Enrichment, p. 36
- Assessment, p. 52

Teaching Algebra With Manipulatives
Masters, p. 216

Transparencies

5-Minute Check Transparency 1-6
Answer Key Transparencies

Graph the solution set for each inequality and find their intersection.

$$
\begin{aligned}
& x>3 \\
& x \leq 5 \\
& 3<x \leq 5
\end{aligned}
$$

The solution set is $\{x \mid 3<x \leq 5\}$.

The graph of a compound inequality containing or is the union of the solution sets of the two inequalities.

Key Concept

"Or" Compound Inequalities

- Words A compound inequality containing the word or is true if one or more of the inequalities is true.
- Example $x \leq 1$
$x>4$
$x \leq 1$ or $x>4$

Example 2 Solve an "or" Compound Inequality

Study Tip

Interval Notation In interval notation, the symbol for the union of the two sets is \cup. The compound inequality $y>-1$ or $y \leq-7$ is written as
$(-\infty,-7] \cup(-1,+\infty)$, indicating that all values less than and including -7 are part of the solution set. In addition, all values greater than -1 , not including -1 , are part of the solution set.

Solve $y-2>-3$ or $y+4 \leq-3$. Graph the solution set on a number line.
Solve each inequality separately.
$y-2>-3 \quad$ or $\quad y+4 \leq-3$
$y>-1 \quad y \leq-7$

The solution set is $\{y \mid y>-1$ or $y \leq-7\}$.

COMPOUND INEQUALITIES
In-Class Examples
1 Solve $10 \leq 3 y-2<19$. Graph the solution set on a number line. $\{y \mid 4 \leq y<7\}$

Teaching Tip Remind students that the word and used in Method 1 means the values for $2 x+7$ must meet both conditions. That is, a value must be both greater than 13 and less than or equal to 17 .

2 Solve $x+3<2$ or $-x \leq-4$. Graph the solution set on a number line.
$\{x \mid x<-1$ or $x \geq 4\}$

Reading Tip Students may make the mistake of wanting to associate union with the word and because union often indicates the joining of two or more things. As a memory device, point out that the word or begins with the letter o which is found in the word union, while and begins with the letter a which is not found in union.

ABSOLUTE VALUE INEQUALITIES In Lesson 1-4, you learned that the absolute value of a number is its distance from 0 on the number line. You can use this definition to solve inequalities involving absolute value.

Teacher to Teacher

Ron Millard
Shawnee Mission South H.S., Overland Park, KS
"To help make further work with absolute value more understandable, I teach my students to solve absolute value inequalities by using the definition of absolute value. Using this method, the statement $|3 x-12| \geq 6$ is rewritten as $3 x-12 \geq 6$ or $-(3 x-12) \geq 6 . "$

Teacher to Teacher features contain teaching who are creatively teaching Algebra in their classrooms.

ABSOLUTE VALUE INEQUALITIES

In-Class Examples

Power

Point ${ }^{\circledR}$

3 Solve $3>|d|$. Graph the solution set on a number line. $\{d \mid-3<d<3\}$

4 Solve $3<|d|$. Graph the solution set on a number line. $\{d \mid d<-3$ or $d>3\}$

Reading Tip Make sure students understand the meaning of Examples 3 and 4 before they go on. Have them say the problem in words (for Example 3: "The distance of a from zero without regard to direction is less than 4.") and demonstrate where a can be located on a number line.

5 Solve $|2 x-2| \geq 4$. Graph the solution set on a number line $\{x \mid x \leq-1$ or $x \geq 3\}$
$-3-2-1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$

Example 3 Solve an Absolute Value Inequality ($<$)

Solve $|a|<4$. Graph the solution set on a number line.
You can interpret $|a|<4$ to mean that the distance between a and 0 on a number line is less than 4 units. To make $|a|<4$ true, you must substitute numbers for a that are fewer than 4 units from 0 .

Notice that the graph of $|a|<4$ is the same as the graph of $a>-4$ and $a<4$.

All of the numbers between -4 and 4 are less than 4 units from 0 .
The solution set is $\{a \mid-4<a<4\}$.

Study Tip

Absolute Value Inequalities Because the absolute value of a number is never negative,

- the solution of an inequality like $|a|<-4$ is the empty set.
- the solution of an inequality like
$|a|>-4$ is the set of all real numbers.

Example 4 Solve an Absolute Value Inequality ($>$)

Solve $|a|>4$. Graph the solution set on a number line.
You can interpret $|a|>4$ to mean that the distance between a and 0 is greater than 4 units. To make $|a|>4$ true, you must substitute values for a that are greater than 4 units from 0 .

All of the numbers not between -4 and 4 are greater than 4 units from 0 . The solution set is $\{a \mid a>4$ or $a<-4\}$.

An absolute value inequality can be solved by rewriting it as a compound inequality.

Key Concept Absolute Value Inequalifies

- Symbols For all real numbers a and $b, b>0$, the following statements are true.

1. If $|a|<b$ then $-b<a<b$.
2. If $|a|>b$ then $a>b$ or $a<-b$.

- Examples

If $|2 x+1|<5$, then $-5<2 x+1<5$.
If $|2 x+1|>5$, then $2 x+1>5$ or $2 x+1<-5$

These statements are also true for \leq and \geq, respectively.

Example 5 Solve a Multi-Step Absolute Value Inequality

Solve $|3 x-12| \geq 6$. Graph the solution set on a number line.
$|3 x-12| \geq 6$ is equivalent to $3 x-12 \geq 6$ or $3 x-12 \leq-6$. Solve each inequality.
$3 x-12 \geq 6 \quad$ or $\quad 3 x-12 \leq-6$
$3 x \geq 18 \quad 3 x \leq 6$
$x \geq 6 \quad x \leq 2 \quad$ The solution set is $\{x \mid x \geq 6$ or $x \leq 2\}$.

42 Chapter 1 Solving Equations and Inequalities

D A \| L Y INIERVENTION

Differentiated Instruction

Kinesthetic Have students work in pairs to create a number line on the floor, perhaps using floor tiles and masking tape. Ask one partner to write or say an inequality such as $|x|<5$ and then have the other partner walk from -5 to 5 on the number line to demonstrate the possible values for x.

JOB HUNTING To prepare for a job interview, Megan researches the position's requirements and pay. She discovers that the average starting salary for the position is $\$ 38,500$, but her actual starting salary could differ from the average by as much as $\$ 2450$.
a. Write an absolute value inequality to describe this situation.

Let $x=$ Megan's starting salary.
$\underbrace{\text { Her starting salary could differ from the average }}_{|38,500-x|} \quad \underbrace{\text { by as much as }}_{\leq} \underbrace{\$ 2450 .}_{2450}$

Job Hunting.
When executives in a recent survey were asked to name one quality that impressed them the most about a candidate during a job interview, 32 percent said honesty and integrity. Source: careerexplorer.net

Check for Understanding

Concept Check

1. Write a compound inequality to describe the following situation. Buy a present that costs at least $\$ 5$ and at most $\$ 15.5 \leq c \leq 15$
2. OPEN ENDED Write a compound inequality whose graph is the empty set. Sample answer: $x<-3$ and $x>2$
3. Sabrina; an absolute value inequality of the form $|a|>b$ should be rewritten as an or compound inequality, $a>b$ or $a<b$.
Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4,5,6,7$	$3-5$
$8-13$	$1-5$
14	6

3. FIND THE ERROR Sabrina and Isaac are solving $|3 x+7|>2$.

Sabrina	Isaac
$\|3 x+7\|>2$	$\|3 x+7\|>2$
$3 x+7>2$ or $3 x+7<-2$	$-2<3 x+7<2$
$3 x>25$	$3 x<-9$
$x>-\frac{5}{3}$	$x<-3$

Who is correct? Explain your reasoning.

Write an absolute value inequality for each of the following. Then graph the solution set on a number line. 4-5. See margin for graphs.
4. all numbers between -8 and $8|n|<8$
5. all numbers greater than 3 and less than $-3|n|>3$

Write an absolute value inequality for each graph.

Answers

Study Notebook tips offer suggestions for helping your students keep notes they can use to study this chapter.

Teaching Tip Show students that $|x-38,500| \leq 2450$ will also work as the inequality for Example 6.

6 HOUSING According to a recent survey, the average monthly rent for a onebedroom apartment in one city neighborhood is $\$ 750$. However, the actual rent for any given one-bedroom apartment might vary as much as $\$ 250$ from that average.
a. Write an absolute value inequality to describe this situation. $|750-r| \leq 250$
b. Solve the inequality to find the range of monthly rent. $\{r \mid 500 \leq r \leq 1000\}$; The actual rent falls between $\$ 500$ and $\$ 1000$.

Teaching Tip Suggest that students write some sample situations to help them understand problems that involve absolute value inequalities. In Example 6 for instance, students might ask themselves, "What are some possible salaries that fit this situation?"

Study Notebook

Have students-

- complete the definitions/examples for the remaining terms on their Vocabulary Builder worksheets for Chapter I.
- write a comparison between compound inequalities whose solutions involve the word "and," and compound inequalities whose solutions involve the word "or," including examples of both types.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...

Organization by Objective

- Compound Inequalities:

27-32, 45-47, 49-52

- Absolute Value Inequalities: 15-26, 33-44, 48

Odd/Even Assignments

Exercises 15-44 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercises 57-60 require a graphing calculator.

Assignment Guide

Basic: 15-23 odd, 27-39 odd, 45-47, 53-56, 61-75
Average: 15-45 odd, 46-47, 49-50, 53-56, 61-75 (optional: 57-60)
Advanced: 16-44 even, 48-75

D A I L Y

INIERVENITON
 FIND THE ERROR

Have students use a finger to cover up
" $-2<$ " in the second line of Isaac's solution. Ask them to compare the remaining inequality to the original, emphasizing the direction of the inequality symbols. Stress that Isaac's symbol should point in the same direction as the original symbol.

Answers

8-13. See margin for graphs.
8. $\{y \mid y>4$ or $y<-1\}$

Solve each inequality. Graph the solution set on a number line.
8. $y-3>1$ or $y+2<1$
9. $3<d+5<8\{d \mid-2<d<3\}$
10. $|a| \geq 5\{a \mid a \geq 5$ or $a \leq-5\}$
11. $|g+4| \leq 9\{g \mid-13 \leq g \leq 5\}$
12. $|4 k-8|<20\{k \mid-3<k<7\}$
13. $|w| \geq-2$ all real numbers

Application 14. FLOORING Deion estimates that he will need between 55 and 60 ceramic tiles to retile his kitchen floor. If each tile costs $\$ 6.25$, write and solve a compound inequality to determine what the cost c of the tile could be.
$55 \leq \frac{c}{6.25} \leq 60 ; 343.75 \leq c \leq 375$; between $\$ 343.75$ and $\$ 375$

* indicates increased difficulty

Practice and Apply

Homework Help	
$\begin{gathered} \text { For } \\ \text { Exercises } \end{gathered}$	$\begin{aligned} & \text { See } \\ & \text { xxamples } \end{aligned}$
${ }^{15-26,}$	3-5
33-44	
$27-32$, 51,52	1,2
51,52 $45-50$	

Extra Practice
See page 829 .

Write an absolute value inequality for each of the following. Then graph the solution set on a number line. 15-20. See margin for graphs.
15. all numbers greater than or equal to 5 or less than or equal to $-5|n| \geq 5$
16. all numbers less than 7 and greater than $-7|n|<7$
17. all numbers between -4 and $4|n|<4$
18. all numbers less than or equal to -6 or greater than or equal to $6|n| \geq 6$
19. all numbers greater than 8 or less than $-8|n|>8$
20. all number less than or equal to 1.2 and greater than or equal to $-1.2|n| \leq 1.2$

Write an absolute value inequality for each graph.
27-44. See pp. 53A-53B for graphs.
21.

27. $\{p \mid p \leq 2$ or $p \geq 8\}$
30. $\{c \mid c<-2$ or $c \geq 1\}$
32. all real numbers

$$
|n| \geq 1.5
$$

24.

$\longrightarrow-4$	-4	0	4	6

23.

-2	-1	0	1	2

$|n|^{-6}<6$

Betta Fish
Adult Male Size: 3 inches
Water pH: 6.8-7.4
Temperature: $75-86^{\circ} \mathrm{F}$
Diet: omnivore, prefers live foods
Tank Level: top dweller
Difficulty of Care: easy to intermediate
Life Span: 2-3 years
Source: mw.about.com
$\star 25$.

$\underset{\star}{26}$.

Solve each inequality. Graph the solution set on a number line.
27. $3 p+1 \leq 7$ or $2 p-9 \geq 7$ 28. $9<3 t+6<15\{t \mid 1<t<3\}$
29. $-11<-4 x+5<13\{x \mid-2<x<4\} 30$. $2 c-1<-5$ or $3 c+2 \geq 5$
31. $-4<4 f+24<4\{f \mid-7<f<-5\}$
32. $a+2>-2$ or $a-8<1$
33. $|g| \leq 9\{g \mid-9 \leq g \leq 9\}$
35. $|3 k|<0 \varnothing$
37. $|b-4|>6\{b \mid b>10$ or $b>-2\}$

2m $\geq 8\{m \mid m \geq 4$ or $m \leq-4\}$
36. $|-5 y|<35\{y \mid-7<y<7\}$
38. $|6 r-3|<21\{r \mid-3<r<4\}$
40. $|7 x|+4<0 \varnothing$
39. $|3 w+2| \leq 5\left\{w \left\lvert\,-\frac{7}{3} \leq w \leq 1\right.\right\}$
42. $|n| \leq n\{n \mid n \geq 0\}$
\star 41. $|n| \geq n$ all real numbers
$\star 44$. $|n-3|<n\{n \mid n>1.5\}$

- 45. BETTA FISH A Siamese Fighting Fish, also known as a Betta fish, is one of the most recognized and colorful fish kept as a pet. Using the information at the left, write a compound inequality to describe the acceptable range of water pH levels for a male Betta. $6.8<x<7.4$

44 Chapter 1 Solving Equations and Inequalities
19.
9. $\langle\underset{-8}{+\rightarrow+\mid}|$
20.

53a

53b.

53c.

53d. $3<|x+2| \leq 8$ can be rewritten as $|x+2|>3$ and $|x+2| \leq 8$. The solution of $|x+2|>3$ is $x>1$ or $x<-5$. The solution of $|x+2| \leq 8$ is $-10 \leq x \leq 6$. Therefore, the union of these two sets is $(x>1$ or $x<-5)$ and $(-10 \leq x \leq 6)$. (continued on the next page)

44 Chapter 1 Solving Equations and Inequalities

SPEED LIMITS For Exercises 46 and 47, use the following information.
On some interstate highways, the maximum speed a car may drive is 65 miles per hour. A tractor-trailer may not drive more than 55 miles per hour. The minimum speed for all vehicles is 45 miles per hour.
46. Write an inequality to represent the allowable speed for a car on an interstate highway. $45 \leq s \leq 65$
47. Write an inequality to represent the speed at which a tractor-trailer may travel on an interstate highway. $45 \leq s \leq 55$
48. HEALTH Hypothermia and hyperthermia are similar words but have opposite meanings. Hypothermia is defined as a lowered body temperature. Hyperthermia means an extremely high body temperature. Both conditions are potentially dangerous and occur when a person's body temperature fluctuates by more than 8° from the normal body temperature of $98.6^{\circ} \mathrm{F}$. Write and solve an absolute value inequality to describe body temperatures that are considered potentially dangerous. $|t-98.6| \geq 8 ;\{b \mid b>106.6$ or $b<90.6\}$

MAIL For Exercises 49 and 50, use the following information.
The U.S. Postal Service defines an oversized package as one for which the length L of its longest side plus the distance D around its thickest part is more than 108 inches and less than or equal to 130 inches.
49. Write a compound inequality to describe this situation. $108 \mathrm{in} .<L+D \leq 130 \mathrm{in}$.
50. If the distance around the thickest part of a package you want to mail is 24 inches, describe the range of lengths that would classify your package as oversized. $84 \mathrm{in} .<L \leq 106$ in

GEOMETRY For Exercises 51 and 52, use the

 following information.The Triangle Inequality Theorem states that the sum of the measures of any two sides of a triangle is greater than the measure of the third side.

51. $a+b>c, \quad \star 51$. Write three inequalities to express the relationships among the sides of $\triangle A B C$.

* 52. Write a compound inequality to describe the range of possible measures for side c in terms of a and b. Assume that $a>b>c$. (Hint: Solve each inequality you wrote in Exercise 51 for c.) $\boldsymbol{a}-\boldsymbol{b}<\boldsymbol{c}<\boldsymbol{a}+\boldsymbol{b}$

53. CRITICAL THINKING Graph each set on a number line. a-d. See margin.
a. $-2<x<4$
b. $x<-1$ or $x>3$
c. $(-2<x<4)$ and $(x<-1$ or $x>3$) (Hint: This is the intersection of the graphs in part a and part b.)
d. Solve $3<|x+2| \leq 8$. Explain your reasoning and graph the solution set.
54. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 53A-53B.
How are compound inequalities used in medicine?
Include the following in your answer:

- an explanation as to when to use and and when to use or when writing a compound inequality,
- an alternative way to write $h \geq 10$ and $h \leq 16$, and
- an example of an acceptable number of hours for this fasting state and a graph to support your answer.
www.algebra2.com/self_check_quiz
Lesson 1-6 Solving Compound and Absolute Value Inequalities 45

The union of the graph of $x>1$ or $x<-5$ and the graph of $-10 \leq x \leq 6$ is shown below. From this we can see that the solution can be rewritten as $(-10 \leq x<-5)$ or $(1<x \leq 6)$.

Study Guide and Intervention, p. 31 (shown) and p. 32

Compound Inequalities A compound inequality consists of two inequalities joined the word $a n d$ or the word $o r$. To solve a compound inequality, you must solve each part

 the wordseparately
 absolute value inequality to describe acceptable cal
$|v-14.5| \leq 0.08 ;\{v \mid 14.42 \leq v \leq 14.58\}$

Reading to Learn

$$
\text { Mathematics, p. } 35
$$

Pre-Activity How are compound inequalities used in medicine? Read the introduction to Lesson 1-6 at the top of page 40 in your textbook - Five patients arrive at a medieal laboratory at $11: 30 \mathrm{~A} . \mathrm{M}$ for a plucose
tolerance test. Each of them is asked when they last had something to eat or drink. Some of them is asked when they last had something to eat or drink. Some of the patients are given the test and others are told
that they must come back another day. Each of the patients is listed below with the ememes when they started to fast. (The pat. .t.imes refer to
the night before.) Which of the patients were accepted for the test?

Reading the Lesson

1. a. Write a compound inequality that says, " x is greater than -3 and x is less than or
b. Graph the inequality that you wrote in part a on a number line. $\xrightarrow{1+5-3-2-16+1}$
2. Use a compound inequality and set-builder notation to describe the following graph $\{x \mid x \leq-1$ or $x>3\}$
3. Write a statement equivalent to $|4 x-5|>2$ that does not use the absolute value
symbol. $4 x-5>2$ or $4 x-5<-2$
4. Write a statement equivalent to $|3 x+7|<8$ that does not use the absolute value
symbol. $-8<3 x+7<8$

Helping You Remember

5. Many students have trouble knowing whether an absolute value inequality should be of these applies to an absolute value inequality. Also describe how to recognize the difference from a number line graph. Sample answer: If the absolute value
quantity is followed by a $<$ or \leq symbol, the expression inside the quantity is followed by a <0 or \leq symbol, the expression inside the
absolute avee bars must be between two numbers, so this becomes an and inequality. The number line graph will show a single interval between
two numbers. If the absolute value quantity is followed by a $>$ or \geq two numbers. If the absolute value quantity is followed by a $>$ or \geq
symbol, it become an or inequality, and the graph will show two
disconnected intervals with arrows going in opposite directions.

4 Assess

Open-Ended Assessment

Writing Have students write a summary of the different kinds of inequalities they have seen in this chapter, with examples of each type and graphs of their solution sets.

Assessment Options

Quiz (Lesson 1-6) is available on p. 52 of the Chapter 1 Resource Masters.

Answers

62.

63.

Standardized
 Test Practice

(A) (B) C D
55. SHORT RESPONSE Solve $|2 x+11|>1$ for $x . x>-5$ or $x<-6$
56. If $5<a<7<b<14$, then which of the following best defines $\frac{a}{b}$? \mathbf{D}
(A) $\frac{5}{7}<\frac{a}{b}<\frac{1}{2}$
(B) $\frac{5}{14}<\frac{a}{b}<\frac{1}{2}$
(C) $\frac{5}{7}<\frac{a}{b}<1$
(D) $\frac{5}{14}<\frac{a}{b}<1$

Graphing Calculator

59. $(5 x+2 \geq 3)$ or ($5 x+2 \leq-3$);
$\{x \mid x \geq 0.2$ or $x \leq-1\}$

LOGIC MENU For Exercises 57-60, use the following information. You can use the operators in the LOGIC menu on the TI-83 Plus to graph compound and absolute value inequalities. To display the LOGIC menu, press 2 \qquad -
57. Clear the $Y=$ list. Enter $(5 x+2>12)$ and $(3 x-8<1)$ as Y . With your calculator in DOT mode and using the standard viewing window, press \square . Make a sketch of the graph displayed. See margin for sketch.
58. Using the TRACE function, investigate the graph. Based on your investigation, what inequality is graphed? $2<x<3$
59. Write the expression you would enter for Y 1 to find the solution set of the compound inequality $5 x+2 \geq 3$ or $5 x+2 \leq-3$. Then use the graphing calculator to find the solution set.
60. A graphing calculator can also be used to solve absolute value inequalities Write the expression you would enter for Y 1 to find the solution set of the inequality $|2 x-6|>10$. Then use the graphing calculator to find the solution set. (Hint: The absolute value operator is item 1 on the MATH NUM menu.) abs $(2 x-6)>10 ;\{x \mid x<-2$ or $x>8\}$

Maintain Your Skills

Mixed Review Solve each inequality. Describe the solution set using set builder or interval notation. Then graph the solution set on a number line. (Lesson 1-5)

61-63. See margin for graphs.
61. $2 d+15 \geq 3$
62. $7 x+11>9 x+3$
$d \geq-6$ or $[-6,+\infty)$ $x<4$ or $(-\infty, 4)$
63. $3 n+4(n+3)<5(n+2)$
64. CONTESTS To get a chance to win a car, you must guess the number of keys in a jar to within 5 of the actual number. Those who are within this range are given a key to try in the ignition of the car. Suppose there are 587 keys in the jar. Write and solve an equation to determine the highest and lowest guesses that will give contestants a chance to win the car. (Lesson 1-4) $|x-587|=5$; highest: 592 keys, lowest: 582 keys
Solve each equation. Check your solutions.
65. $5|x-3|=65\{10,16\} 66 .|2 x+7|=15\{-11,4\} 67 .|8 c+7|=-4 \varnothing$

Name the property illustrated by each statement. (Lesson 1-3)
68. If $3 x=10$, then $3 x+7=10+7$. Addition ($=$)
69. If $-5=4 y-8$, then $4 y-8=-5$. Symmetric ($=$)
70. If $-2 x-5=9$ and $9=6 x+1$, then $-2 x-5=6 x+1$. Transitive (=)

Simplify each expression. (Lesson 1-2)
71. $6 a-2 b-3 a+9 b 3 a+7 b$

$$
\text { 72. } \begin{aligned}
& -2(m-4 n)-3(5 n+6) \\
& -2 m-7 n-18
\end{aligned}
$$

Find the value of each expression. (Lesson 1-1)

$$
\text { 73. } 6(5-8) \div 9+42 \quad \text { 74. }(3+7)^{2}-16 \div 292 \quad \text { 75. } \frac{7(1-4)}{8-5}-7
$$

1 Study Guide and Review

Vocabulary and Concept Check

absolute value (p. 28)
Addition Property of Equality (p. 21) of Inequality (p. 33) algebraic expression (p. 7)
Associative Property (p. 12) Commutative Property (p. 12) compound inequality (p. 40) counterexample (p. 14) Distributive Property (p. 12) Division Property of Equality (p. 21) of Inequality (p. 34) empty set (p. 29)

equation (p. 20)
formula (p. 8)
Identity Property (p. 12) intersection (p. 40)
interval notation (p. 35)
Inverse Property (p. 12)
irrational numbers (p. 11) Multiplication Property of Equality (p. 21) of Inequality (p. 34) open sentence (p. 20) order of operations (p. 6) rational numbers (p. 11) real numbers (p. 11)

Reflexive Property (p. 21)
set-builder notation (p. 34)
solution (p. 20)
Substitution Property (p. 21)
Subtraction Property
of Equality (p. 21)
of Inequality (p. 33)
Symmetric Property (p. 21)
Transitive Property (p. 21)
Trichotomy Property (p. 33)
union (p. 41)
variable (p. 7)

Choose the term from the list above that best matches each example.

1. $y>3$ or $y<-2$ compound inequality
2. $0+(-4 b)=-4 b$ Iden. $(+)$
3. $(m-1)(-2)=-2(m-1)$ Comm. (\times)
4. $35 x+56=7(5 x+8)$ Distributive
5. $a b+1=a b+1$ Reflexive (=)
6. If $2 x=3 y-4,3 y-4=7$, then $2 x=7$. Trans. (=)
7. $4(0.25)=1$ Multi. Inv.
8. $2 p+(4+9 r)=(2 p+4)+9 r$ Assoc. $(+)$
9. $|5 n|$ absolute value
10. $6 y+5 z-2(x+y)$ algebraic expression

Lesson-by-Lesson Review

1-1 Expressions and Formulas

$\begin{array}{l:l}\text { See pages } \\ 6-10 & \text { Concept Summary }\end{array}$
6-10.

- Order of Operations

Step 1 Simplify the expressions inside grouping symbols, such as parentheses, (), brackets, [], braces, \{ \}, and fraction bars.

Step 2 Evaluate all powers.
Step 3 Do all multiplications and/or divisions from left to right.
Step 4 Do all additions and / or subtractions from left to right.
Example
Evaluate $\frac{y^{3}}{3 a b+2}$ if $y=4, a=-2$, and $b=-5$.
$\frac{y^{3}}{3 a b+2}=\frac{4^{3}}{3(-2)(-5)+2} \quad y=4, a=-2$, and $b=-5$
$=\frac{64}{3(10)+2} \quad$ Evaluate the numerator and denominator separately.

$$
=\frac{64}{32} \text { or } 2
$$

www.algebra2.com/vocabulary_review

FOLDABLES

Study Organizer
For more information about Foldables, see Teaching Mathematics with Foldables.

Since this is your students' first use of the Foldables, you may want to show some good examples, and ask volunteers to name the main ideas and procedures that they included. Then have everyone add any information they may have overlooked.
Encourage students to refer to their Foldables while completing the Study Guide and Review and to use them in preparing for the Chapter Test.

Vocabulary and Concept Check

- This alphabetical list of vocabulary terms in Chapter 1 includes a page reference where each term was introduced.
- Assessment A vocabulary test/review for Chapter 1 is available on $p .50$ of the Chapter 1 Resource Masters.

Lesson-by-Lesson Review

For each lesson,

- the main ideas are summarized,
- additional examples review concepts, and
- practice exercises are provided.

Vocabulary PuzzleMaker

ELL The Vocabulary PuzzleMaker software improves students' mathematics vocabulary using four puzzle formatscrossword, scramble, word search using a word list, and word search using clues. Students can work on a computer screen or from a printed handout.

MindJogger Videoquizzes

(D)

ELL MindJogger Videoquizzes provide an alternative review of concepts presented in this chapter. Students work in teams in a game show format to gain points for correct answers. The questions are presented in three rounds.
Round 1 Concepts (5 questions)
Round 2 Skills (4 questions)
Round 3 Problem Solving (4 questions)

Exercises Find the value of each expression. See Example 1 on page 6.
11. $10+16 \div 4+822$
12. $[21-(9-2)] \div 27$
13. $\frac{14(8-15)}{2}-49$

Evaluate each expression if $a=12, b=0.5, c=-3$, and $d=\frac{1}{3}$.
See Examples 2 and 3 on page 7 .
14. $6 b-5 c 18$
15. $c^{3}+a d-23$
16. $\frac{9 c+a b}{c} 7$
17. $a\left[b^{2}(b+a)\right] 37.5$

1-2 Properties of Real Numbers

See pages

Concept Summary

- Real numbers (R) can be classified as rational (Q) or irrational (I).
- Rational numbers can be classified as natural numbers (N), whole numbers (W), and/or integers (Z).
- Use the properties of real numbers to simplify algebraic expressions.

Example Simplify $4(2 b+6 c)+3 b-c$.

$$
\begin{aligned}
4(2 b+6 c)+3 b-c & =4(2 b)+4(6 c)+3 b-c & & \text { Distributive Property } \\
& =8 b+24 c+3 b-c & & \text { Multiply. } \\
& =8 b+3 b+24 c-c & & \text { Commutative Property }(+) \\
& =(8+3) b+(24-1) c & & \text { Distributive Property } \\
& =11 b+23 c & & \text { Add } 3 \text { to } 8 \text { and subtract } 1 \text { from } 24 .
\end{aligned}
$$

Exercises Name the sets of numbers to which each value belongs. See Example 1 on page 12.
18. $-\sqrt{9} Z$
$\mathbf{Z}, \mathbf{Q}, \mathbf{R}$ 19. $1 . \overline{6} \mathbf{Q}, \mathbf{R}$
20. $\frac{35}{7} \mathrm{~N}, \mathbf{W}, \mathbf{Z}, \mathbf{Q}, \mathbf{R}$ 21. $\sqrt{18} \mathrm{I}, \mathbf{R}$

Simplify each expression. See Example 5 on page 14.
22. $2 m+7 n-6 m-5 n$
23. $-5(a-4 b)+4 b$
24. $2(5 x+4 y)-3(x+8 y)$
$-4 m+2 n$
$-5 a+24 b$
$7 x-16 y$

1-3 Solving Equations

See pages

20-27.
Concept Summary

- Verbal expressions can be translated into algebraic expressions using the language of algebra, using variables to represent the unknown quantities.
- Use the properties of equality to solve equations.

Example Solve $4(a+5)-2(a+6)=3$.

$$
\begin{aligned}
4(a+5)-2(a+6) & =3 & & \text { Original equation } \\
4 a+20-2 a-12 & =3 & & \text { Distributive Property } \\
2 a+8 & =3 & & \text { Commutative, Distributive, and Substitution Properties } \\
2 a & =-5 & & \text { Subtraction Property (=) } \\
a & =-2.5 & & \text { Division Property (=) }
\end{aligned}
$$

Exercises Solve each equation. Check your solution.
See Examples 3 and 4 on pages 21 and 22.
25. $x-6=-20-14$
26. $-\frac{2}{3} a=14-21$
27. $7+5 n=-58-13$
28. $3 w+14=7 w+23$
29. $5 y+4=2(y-4)-4$
30. $\frac{n}{4}+\frac{n}{3}=\frac{1}{2} \frac{6}{7}$

Solve each equation or formula for the specified variable. See Example 5 on page 22.
31. $A x+B y=C$ for x
32. $\frac{a-4 b^{2}}{2 c}=d$ for a
33. $A=p+p r t$ for p $p=\frac{A}{1+r t}$

1-4 Solving Absolute Value Equations

See pages 28-32.

Concept Summary

- For any real numbers a and b, where $b \geq 0$, if $|a|=b$, then $a=b$ or $a=-b$.

Solve $|2 x+9|=11$.
Case $1 \quad a=b$ or Case $2 \quad a=-b$

$$
\begin{array}{rlrl}
2 x+9 & =11 & 2 x+9 & =-11 \\
2 x & =2 & 2 x & =-20 \\
x & =1 & x & =-10
\end{array}
$$

The solution set is $\{1,-10\}$. Check these solutions in the original equation.
Exercises Solve each equation. Check your solutions.
See Examples 1-4 on pages 28-30.
34. $|x+11|=42\{31,-53$
37. $|x+7|=3 x-5\{6\}$
35. $3|x+6|=36\{6$,
38. $|y-5|-2=10$
36. $|4 x-5|=-25 \varnothing$ $\{-7,17\}$
39. $4|3 x+4|=4 x+8$ $\left\{-\frac{3}{2},-1\right\}$

1-5 Solving Inequalities

See pages
33-39.

Concept Summary

- Adding the same number to, or subtracting the same number from, each side of an inequality does not change the truth of the inequality.
- When you multiply or divide each side of an inequality by a negative number, the direction of the inequality symbol must be reversed.

Example

Solve $5-4 a>8$. Graph the solution set on a number line.
$5-4 a>8 \quad$ Original inequality
$-4 a>3 \quad$ Subtract 5 from each side.
$a<-\frac{3}{4}$ Divide each side by -4 , reversing the inequality symbol.
The solution set is $\left\{a \left\lvert\, a<-\frac{3}{4}\right.\right\}$.
The graph of the solution set is shown at the right.

Chapter 1 Study Guide and Review 49

Answers

41. $\{x \mid x \geq 5\}$ or $[5,+\infty)$

42. $\{n \mid n \leq 24\}$ or $(-\infty, 24]$

43. $\{a \mid a>2\}$ or $(2,+\infty)$

44. $\{z \mid z \geq 6\}$ or $[6,+\infty)$

$$
\begin{array}{llllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12
\end{array}
$$

45. $\{x \mid x>-1.8\}$ or $(-1.8,+\infty)$

46. $\{a \mid-1<a<4\}$

47. $\left\{y \left\lvert\, \frac{5}{3}<y \leq 5\right.\right\}$

48. $\{x \mid x<-11$ or $x>11\}$

49. $\{y \mid-9 \leq y \leq 18\}$

50. all real numbers

51. $\left\{b \mid b<-4\right.$ or $\left.b>-\frac{10}{3}\right\}$

Answers (p. 51)
25. $(-\infty, 3)$

26. [2, $+\infty$)

27. $(-\infty, 3)$

28. [-13, 3]

1 Practice Test

Vocabulary and Concepts

Choose the term that best completes each sentence.

1. An algebraic (equation, expression) contains an equals sign.
2. (Whole numbers, Rationals) are a subset of the set of integers.
3. If $x+3=y$, then $y=x+3$ is an example of the (Transitive, Symmetric) Property of Equality.

Skills and Applications

Find the value of each expression.
4. $\left[(3+6)^{2} \div 3\right] \times 4108$
5. $\frac{20+4 \times 3}{11-3} 4$
6. $0.5(2.3+25) \div 1.59 .1$

Evaluate each expression if $a=-9, b=\frac{2}{3}, c=8$, and $d=-6$.
7. $\frac{d b+4 c}{a}-\frac{28}{9}$
8. $\frac{a}{b^{2}}+c-12.25$
9. $2 b\left(4 a+a^{2}\right) 60$

Name the sets of numbers to which each number belongs.
10. $\sqrt{17} \mathrm{I}, \mathrm{R}$
11. $0.86 \mathbf{Q}, \mathbf{R}$
12. $\sqrt{64} \mathrm{~N}, \mathrm{~W}, \mathrm{Z}, \mathrm{Q}, \mathrm{R}$

Name the property illustrated by each equation or statement. 14. Symm. (=)
13. $(7 \cdot s) \cdot t=7 \cdot(s \cdot t)$ Assoc. (X)
14. If $(r+s) t=r t+s t$, then $r t+s t=(r+s) t$.
15. $\left(3 \cdot \frac{1}{3}\right) \cdot 7=\left(3 \cdot \frac{1}{3}\right) \cdot 7$ Reflex. $(=)$
16. $(6-2) a-3 b=4 a-3 b$ Subst. ($=$)
17. $(4+x)+y=y+(4+x)$ Comm. $(+)$
18. If $5(3)+7=15+7$ and $15+7=22$, then $5(3)+7=22$. Trans. (=)

Solve each equation. Check your solution(s). 21. all reals
19. $5 t-3=-2 t+10 \frac{13}{7}$
20. $2 x-7-(x-5)=02$
21. $5 m-(5+4 m)=(3+m)-8$
22. $|8 w+2|+2=0 \varnothing$
23. $12\left|\frac{1}{2} y+3\right|=6-7,-5$
24. $2|2 y-6|+4=82,4$

Solve each inequality. Describe the solution set using set builder or interval notation. 27. $\{x \mid x<3\}$
Then graph the solution set on a number line. 25-30. See margin for interval notation and graphs.
25. $4>b+1\{b \mid b<3\}$
26. $3 q+7 \geq 13\{q \mid q \geq 2\}$
29. $-12<7 d-5 \leq 9$
$\{d \mid-1<d \leq 2\}$
27. $5(3 x-5)+x<2(4 x-1)+1$
28. $|5+k| \leq 8\{k \mid-13 \leq k \leq 3\}$
30. $|3 y-1|>5$ See margin.

For Exercises 31 and 32, define a variable, write an equation or inequality,
and solve the problem. $31 . m=$ miles traveled; $19.50+0.18 m=33 ; 75 \mathrm{mi}$
31. CAR RENTAL Mrs. Denney is renting a car that gets 35 miles per gallon. The
rental charge is $\$ 19.50$ a day plus $18 \Varangle$ per mile. Her company will reimburse her
for $\$ 33$ of this portion of her travel expenses. If Mrs. Denney rents the car for
1 day, find the maximum number of miles that will be paid for by her company.
32. SCHOOL To receive a B in his English class, Nick must have an average score of at least 80 on five tests. He scored $87,89,76$, and 77 on his first four tests.
What must he score on the last test to receive a B in the class?
32. $s=$ score on last test; $\frac{s+87+89+76+77}{5} \geq 80 ;$
at least 71
33. STANDARDIZED TEST PRACTICE If $\frac{a}{b}=8$ and $a c-5=11$, then $b c=\mathbf{B}$
(A) 93 .
(B) 2 .
(C) $\frac{5}{8}$.
(D) cannot be determined

Portfolio Suggestion

Introduction Translating words into algebraic expressions involves reading the words, deciding what they mean mathematically, and using the correct notation to write the translation. One way to build the skills involved is to go in the opposite direction, translating algebraic expressions into words.

Ask Students Write an expression or equation and create a word problem about it. Exchange your problem with a partner and translate what you receive into an expression or equation. Place your problem in your portfolio.
www.algebra2.com/chapter_test

Assessment Options
Vocabulary Test A vocabulary test/review for Chapter 1 can be found on p. 50 of the Chapter 1 Resource Masters.

Chapter Tests There are six Chapter 1 Tests and an OpenEnded Assessment task available in the Chapter 1 Resource Masters.

Chapter 1 Tests			
Form	Type	Level	Pages
1	MC	basic	$37-38$
2A	MC	average	$39-40$
2B	MC	average	$41-42$
2C	FR	average	$43-44$
2D	FR	average	$45-46$
3	FR	advanced	$47-48$

MC = multiple-choice questions
FR = free-response questions

Open-Ended Assessment

Performance tasks for Chapter 1 can be found on p. 49 of the Chapter 1 Resource Masters. A sample scoring rubric for these tasks appears on p. A26.

This networkable software has three modules for assessment.

- Worksheet Builder to make worksheets and tests.
- Student Module to take tests on-screen.
- Management System to keep student records.

1Test Practice

These two pages contain practice questions in the various formats that can be found on the most frequently given standardized tests.

A practice answer sheet for these two pages can be found on p . A1 of the Chapter 1 Resource Masters.

Standardized Test Practice
Student Recording Sheet, p. A1

Part 3 Quanhifaive Comparison

2000001220000

Additional Practice

See pp. 55-56 in the Chapter 1 Resource Masters for additional standardized test practice.

The items on the Standardized Test Practice pages were parallel those on parallel those on
actual state proficiency tests
and college exams, like pollege entrance exams, like PSAT,
ACT and SAT ACT and SAT.

Part 1 Multiple Choice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. In the square at the right, what is the value of x ? B
(A) 1
(B) 2
(C) 3
(D) 4

2. On a college math test, 18 students earned an A. This number is exactly 30% of the total number of students in the class. How many students are in the class? D
(A) 5
(B) 23
(C) 48
(D) 60
3. A student computed the average of her 7 test scores by adding the scores together and dividing this total by the number of tests. The average was 87 . On her next test, she scored a 79. What is her new test average? D
(A) 83
(B) 84
(C) 85
(D) 86
4. If the perimeter of $\triangle P Q R$ is 3 times the length of $P Q$, then $P R=$ \qquad D

$$
\begin{array}{ll}
\text { (A) } 4 & \text { (B) } 6 \\
\text { (C) } 7 & \text { (D) } 8
\end{array}
$$

Note: Figure not drawn to scale.
5. If a different number is selected from each of the three sets shown below, what is the greatest sum these 3 numbers could have? C
$R=\{3,6,7\} ; S=\{2,4,7\} ; T=\{1,3,7\}$
(A) 13
(B) 14
(C) 17
(D) 21

52 Chapter 1 Solving Equations and Inequalities
6. A pitcher contains a ounces of orange juice. If b ounces of juice are poured from the pitcher into each of c glasses, which expression represents the amount of juice remaining in the pitcher? C
(A) $\frac{a}{b}+c$
(B) $a b-c$
(C) $a-b c$
(D) $\frac{a}{b c}$
7. The sum of three consecutive integers is 135 . What is the greatest of the three integers? D
(A) 43
(B) 44
(C) 45
(D) 46
8. The ratio of girls to boys in a class is 5 to 4 . If there are a total of 27 students in the class, how many are girls? A
(A) 15
(B) 12
(C) 9
(D) 5
9. For which of the following ordered pairs (x, y) is $x+y>3$ and $x-y<-2$? D
(A) $(0,3)$
(B) $(3,4)$
(C) $(5,3)$
(D) $(2,5)$
10. If the area of $\triangle A B D$ is 280 , what is the area of the polygon $A B C D$? \mathbf{B}

(A) 560
(B) 630
(C) 700
(D) 840

The
 Princeton Test-Taking Tip

Question 9 To solve equations or inequalities, you can replace the variables in the question with the values given in each answer choice. The answer chioce that results in true statements is the correct answer choice.

The Princeton Review

$\boldsymbol{L o g} \mathbf{O n}$ for Test Practice

The Princeton Review offers additional test-taking tips and practice problems at their web site. Visit wwww.princetonreview.com or www.review.com

TestCheck and Worksheet Builder

Special banks of standardized test questions similar to those on the SAT, ACT, TIMSS 8, NAEP 8, and Algebra 1 End-of-Course tests can be found on this CD-ROM.

Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

11. In the triangle below, x and y are integers. If $25<y<30$, what is one possible value of x ? $122,124,126$, or 128

12. If n and p are each different positive integers and $n+p=4$, what is one possible value of $3 n+4 p$? 13 or 15
13. In the figure at the right, what is the value of x ? 55

14. One half quart of lemonade concentrate is mixed with $1 \frac{1}{2}$ quarts of water to make lemonade for 6 people. If you use the same proportions of concentrate and water, how many quarts of lemonade concentrate are needed to make lemonade for 21 people? 1.75 or 7/4
15. If 25 percent of 300 is equal to 500 percent of t, then t is equal to what number? 15
16. In the figure below, what is the area of the shaded square in square units? 13

17. There are 140 students in the school band. One of these students will be selected at random to be the student representative. If the probability that a brass player is selected is $\frac{2}{5}$, how many brass players are in the band? 56
wwww.algebra2.com/standardized_test
18. A shelf holds fewer than 50 cans. If all of the cans on this shelf were put into stacks of five cans each, no cans would remain. If the same cans were put into stacks of three cans each, one can would remain. What is the greatest number of cans that could be on the shelf? 40

Part 3 Quantitative Comparison

Compare the quantity in Column A and the quantity in Column B. Then determine whether:
(A) the quantity in Column A is greater;
(B) the quantity in Column B is greater;
(C) the two quantities are equal;
(D) the relationship cannot be determined from the information given.
19.

Column A	Column B
$\frac{\frac{3}{4}}{\left(\frac{3}{4}\right)^{2}}$	$\frac{4}{3}$

C
20.

21.

22.

23. The average (arithmetic mean) of s and t is greater than the average of s and w.

B

Page 13, Algebra Activity
1.

2.

3.

4.

Page 19, Follow-Up of Lesson 1-2

Algebra Activity

2.

$$
0+2=22+3=55+4=9
$$

8.

$$
1010-3 \div 2=35
$$

9.

$$
n
$$

$$
n-3
$$

$$
n n-3
$$

2
2

$$
y=n n-3 \div 2
$$

10.

13.

$$
\begin{gathered}
x \\
y=x x-1 \div 2 \\
y=1 \\
05 x^{2}-15 x+x=05 x^{2}-05 x \quad y=05 x^{2}-05 x
\end{gathered}
$$

Page 27, Lesson 1-3
76.

10-

A

Pages 37-38, Lesson 1-5
4.

5.

6.

7.

8.

9.

10.

11.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

$$
-286-284-282-280-278-276
$$

30.

31.

32.

33.

34.

35.

36.

37.

38.

53.
$150<400$

		1
2	n	1
		3540
	150	$35+04 n-150$
	2400	
55	2	
	$\begin{aligned} 55 & <35+04 n-150 \\ n \mid n & >200 \end{aligned}$	n
200	2	

Pages 44-45, Lesson 1-6
27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

54.
and
or

$$
10 \leq h \leq 16
$$

12
$10 \leq h \leq 16$
$8 \quad 910111213141516171819$

[^0]: 4 Chapter 1 Solving Equations and Inequalities

