UNIT

Notes

Discrete Mathematics

Introduction

In this unit, students explore various topics of discrete mathematics, including arithmetic and geometric sequences and series, as well as recursion and fractals. They also apply the Binomial Theorem, and prove statements using mathematical induction.

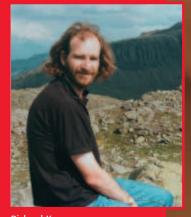
The unit concludes with an investigation of probability and statistics, including permutations, combinations, and the normal distribution. Finally, students apply their mathematical skills in a simulation, as well as to sampling situations and to testing hypotheses.

Assessment Options

Unit 4 Test Pages 773–774 of the *Chapter 12 Resource Masters* may be used as a test or review for Unit 4. This assessment contains both multiple-choice and short answer items.

This CD-ROM can be used to create additional unit tests and review worksheets.

Discrete mathematics is the branch of mathematics that involves finite or discontinuous quantities. In this unit, you will learn about sequences, series, probability, and statistics.



Richard Kaye Professor of Mathematics University of Birmingham

574 Unit 4 Discrete Mathematics



Chapter 11 Sequences and Series

Chapter 12 *Probability and <u>Statistics</u>*

Neb uest Internet Project

'Minesweeper': Secret to Age-Old Puzzle?

Source: USA TODAY, November 3, 2000

"*Minesweeper*, a seemingly simple game included on most personal computers, could help mathematicians crack one of the field's most intriguing problems. The buzz began after Richard Kaye, a mathematics professor at the University of Birmingham in England, started playing *Minesweeper*. After playing the game steadily for a few weeks, Kaye realized that *Minesweeper*, if played on a much larger grid, has the same mathematical characteristics as other problems deemed insolvable." In this project, you will research a mathematician of the past and his or her role in the development of discrete mathematics.

> Log on to **www.algebra2.com/webquest**. Begin your WebQuest by reading the Task.

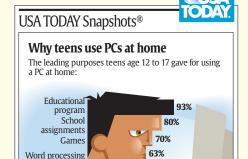
Then continue working on your WebQuest as you study Unit 4.

TODA

🔆 Merijik

×

Lesson	11-7	12-1
Page	616	635



32%

25%

Internet

Source: U.S. Censu

E-mail

Education

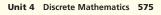
Have students study the USA TODAY Snapshot[®].

- Ask students to name some historical mathematicians (such as Pythagoras, Fibonacci, and Descartes).
- Have students compare their own use of a PC at home to the percents shown in the graph.
- Point out to students that use of the Internet is quickly becoming the main tool for doing research on a given topic.

Additional USA TODAY

Snapshots[®] appearing in Unit 4:

- **Chapter 11** Yosemite visitors peak in '96 (p. 604)
- Chapter 12 Getting ready for bed (p. 658)



urrent Population Report (Sept. '99) By Mark Pearson and Jerry Mosemak, USA TODAY

Web uest Internet Project

A WebQuest is an online project in which students do research on the Internet, gather data, and make presentations using word processing, graphing, page-making, or presentation software. In each chapter, students advance to the next step in their WebQuest. At the end of Chapter 12, the project culminates with a presentation of their findings.

Teaching suggestions and sample answers are available in the *WebQuest and Project Resources.*

ChapterSequences and SeriesChapter Overview and Pacing

			PACINO	i (days)	
		Reg	ular	Blo	ock
LESSON OBJECTIVES		Basic/ Average	Advanced	Basic/ Average	Advanced
 Arithmetic Sequences (pp. 578–582) Use arithmetic sequences. Find arithmetic means. 		1	1	0.5	0.5
 Arithmetic Series (pp. 583–587) Find sums of arithmetic series. Use sigma notation. 		1	1	0.5	0.5
 Geometric Sequences (pp. 588–592) Use geometric sequences. Find geometric means. 		1	1	0.5	0.5
 Geometric Series (pp. 593–598) Preview: Limits Find sums of geometric series. Find specific terms of geometric series. 		2 (with 11-4 Preview)	1	0.5	0.5
 Infinite Geometric Series (pp. 599–604) Find the sum of an infinite geometric series. Write repeating decimals as fractions. 		1	2 (with 11-6 Preview)	0.5	1
 Recursion and Special Sequences (pp. 605–611) Preview: Amortizing Loans Recognize and use special sequences. Iterate functions. Follow-Up: Fractals 		2	3 (with 11-6 Follow-Up	1	1
 The Binomial Theorem (pp. 612–617) Use Pascal's triangle to expand powers of binomials. Use the Binomial Theorem to expand powers of binomials. 		1	1	0.5	0.5
 Proof and Mathematical Induction (pp. 618–621) Prove statements by using mathematical induction. Disprove statements by finding a counterexample. 		2	1	1	0.5
Study Guide and Practice Test (pp. 622–627) Standardized Test Practice (pp. 628–629)		1	1	0.5	0.5
Chapter Assessment		1	1	0.5	0.5
	TOTAL	13	13	6	6

Pacing suggestions for the entire year can be found on pages T20–T21.

Timesaving Tools [eacherWorks™

> **All-In-One Planner** and Resource Center

See pages T12–T13.

Chapter Resource Manager

CHAPTER 11 RESOURCE MASTERS

				UKCE IV	IASTERS			0	
Study G.	Intervention Skille Practic	e and Average) Reading for	Enrice	Assec.	^{Application}	5.Minute 2.	Interact Check	Algezpass. Ph. 255	Iterials
631–632	633–634	635	636			11-1	11-1	20	isometric dot paper, wooden or plastic cubes
637–638	639–640	641	642	693	GCS 48, SM 133–138	11-2	11-2		graphing calculator
643–644	645–646	647	648		SC 21	11-3	11-3		
649–650	651–652	653	654	693, 695	SC 22	11-4	11-4	21	(<i>Preview:</i> graphing calculator)
655–656	657–658	659	660			11-5	11-5		
661–662	663–664	665	666	694	GCS 47	11-6	11-6		(<i>Preview:</i> spreadsheet software) penny, nickel, dime, cardboard (<i>Follow-Up:</i> isometric dot paper)
667–668	669–670	671	672			11-7	11-7		colored pens or pencils
673–674	675–676	677	678	694		11-8	11-8		
				679–692, 696–698					

*Key to Abbreviations: GCS = Graphing Calculator and Speadsheet Masters,

- SC = School-to-Career Masters,
- SM = Science and Mathematics Lab Manual

Mathematical Connections and Background

Continuity of Instruction

chapte.

Prior Knowledge

Students have used formulas for area, volume, and other attributes, and they have used notation such as subscripts, superscripts, and factorials. They have used the output of one function as input for another function, and they have explored proof by deriving particular properties from other properties.

This Chapter

Students study and apply formulas for arithmetic sequences and series, for finite geometric sequences and series, and for infinite geometric series. They use sigma notation and factorial notation to write concise forms of formulas, especially the formula for the Binomial Theorem. Students continue to use formulas and notation as they explore twopart recursive formulas and the three-step process of mathematical induction.

Future Connections

Students will continue to use subscripts, factorials and sigma notation in later math topics, and they will continue to see sequences and series. They will translate between recursive formulas and non-recursive formulas ("explicit formulas"), and they frequently will revisit the powerful idea of mathematical induction.

11-1 Arithmetic Sequences

Throughout this chapter students study notation and formulas. They see how notation allows a formula to be written in a concise form, and they investigate how one formula can be related to or contain another formula. The first lesson uses arithmetic sequences to explore notation and formulas. In an *arithmetic sequence*, each term after the first is found by adding a constant, called the *common difference*, to the previous term. (Students may need to be told that when "arithmetic" is used as an adjective, the accent is on the next-to-last syllable.) Subscripts indicate a particular order for terms, and the formula $a_n = a_1 + (n - 1)d$ is seen as a concise way to represent the *n*th term.

-2 Arithmetic Series

This lesson begins with two ideas, that the average of the first *n* terms in an arithmetic sequence is the mean of the first and *n*th terms, and that the sum of the first *n* terms is the number *n* times the average of these terms. This leads to two formulas for the sum S_n of the terms of an arithmetic series. For one formula, a_1 and $a_1 + (n - 1)d$ are used as the first and *n*th terms; a different formula uses a_1 and a_n as the first and *n*th terms. As in the previous lesson, students investigate the formulas by solving problems that ask them to find the value S_n , n, a_1 , a_n , or d from given information. The lesson also introduces sigma notation. For example,

 $\sum_{n=0}^{6} (x^2 + 2)$ represents a sum of terms where *x* is replaced by each of the seven values 0, 1, 2, 3, 4, 5, and 6. So

 $\sum_{n=0}^{6} (x^2 + 2) = (0^2 + 2) + (1^2 + 2) + (2^2 + 2) + (3^2 + 2) + (4^2 + 2) + (5^2 + 2) + (6^2 + 2).$ The value of this series is 105.

11-3 Geometric Sequences

This lesson introduces sequences whose terms have a constant ratio r; that is, each successive term is the product of r and the previous term. Using r to represent that common ratio, the formula $a_n = a_1 \cdot r^{n-1}$, which includes both subscripts and superscripts, is a concise way to represent the *n*th term. After geometric means are described as numbers that form a geometric sequence, students use the formula for the *n*th term of a geometric sequence to find a given number of geometric means between two given numbers. A *geometric mean* is a number or numbers that are missing terms between two nonsuccessive terms of a geometric sequence.

Geometric Series

The formula for the sum of the first *n* terms of a geometric series is derived by using several ideas, each expressed concisely with subscripts and exponents.

- (1) The (n + 1)st term of a geometric sequence is a_1r^n .
- (2) If you multiply the 1st through *n*th terms of a geometric series by the common ratio, the result is the 2nd through (n + 1)st terms.
- (3) The difference $S_n rS_n$ can be written as the equation $S_n rS_n = a_1 a_1r^n$.

Dividing each side of that equation by 1 - r results in a formula for S_n , the sum of an geometric series. Another formula for S_n can be derived by substituting $a_n r$ for $a_1 r^n$.

11-5 Infinite Geometric Series

A formula for an infinite series can be simpler than a formula for a finite series. If the common ratio r is such that |r| < 1, then as n get larger the value of r^n approaches 0. As a result, the sum of an infinite geometric series can be written as a formula that has no exponents, and the sum is completely determined by the first term and the common ratio. Repeating decimals can be expressed by an infinite geometric series as well as by a fraction.

11-6 Recursion and Special Sequences

This lesson introduces a different kind of formula for the terms of a sequence. The formulas have two parts. One part gives specific values for the first one or more terms of the sequence. The second part describes the "next" term as a function of previous terms. (The formulas from the earlier lessons are often called explicit formulas.) The lesson also introduces a situation in which a function rule and the first term of a sequence are given. Each term of the sequence, as an input value, yields the next term in the sequence. This situation is called iterating a function or generating a sequence using iteration.

The Binomial Theorem

Previously learned formulas are used to develop the Binomial Theorem. The expansion of the expression $(a + b)^n$ for nonnegative values of *n* involves finding the coefficient and the exponents for *a* and *b* for each term. The expansions show many patterns: the sum of the exponents for *a* and *b* is *n*; the coefficients are the entries in Pascal's triangle; and the coefficients are functions of the exponents.

One way to write the Binomial Theorem is to describe each coefficient as a fraction. Another way is to use factorial notation for the coefficients. And another way, using sigma notation as well as factorial notation, illustrates how notation can provide a concise way to write a complex formula. Students should be familiar with factorials, finding powers of monomials, and using sigma notation.

11-8 Proof and Mathematical Induction

Mathematical induction is a powerful idea in mathematics. Much of higher mathematics uses this principle for verification of conjectures. This lesson examines series, divisibility, and finding a counterexample to show that a formula is not true. Students can relate mathematical induction to the two-part recursive formulas of a previous lesson. One part of mathematical induction is to show that a particular property is true for a particular number (often for the number 1). The second part is to prove that if the property holds for some positive integer, then the property holds for the "next" integer. Completing both parts is a proof that the property holds for all positive integers.

Another way to look at mathematical induction is to consider the set *S* of positive integers for which some property is true. If you can show that 1 is in *S* and, for any integer *k* in *S*, that the integer following *k* is in *S*, then *S* contains all positive integers. Since *S* is the set of integers for which the property is true, then the property is true for all positive integers. chapter

DAILY INTERVENTION and Assessment

	Туре	Student Edition	Teacher Resources	Technology/Internet
INTERVENTION	Ongoing	Prerequisite Skills, pp. 577, 582, 587, 592, 598, 604, 610, 617 Practice Quiz 1, p. 592 Practice Quiz 2, p. 617	5-Minute Check Transparencies Quizzes, <i>CRM</i> pp. 693–694 Mid-Chapter Test, <i>CRM</i> p. 695 Study Guide and Intervention, <i>CRM</i> pp. 631–632, 637–638, 643–644, 649–650, 655–656, 661–662, 667–668, 673–674	Alge2PASS: Tutorial Plus www.algebra2.com/self_check_quiz www.algebra2.com/extra_examples
INTE	Mixed Review	pp. 582, 587, 592, 598, 604, 610, 617, 621	Cumulative Review, CRM p. 696	
	Error Analysis	Find the Error, pp. 590, 602	Find the Error, <i>TWE</i> pp. 590, 602 Unlocking Misconceptions, <i>TWE</i> pp. 579, 600 Tips for New Teachers, <i>TWE</i> pp. 582, 587, 592, 598, 604, 610, 617, 620	
	Standardized Test Practice	pp. 582, 587, 588, 591, 592, 598, 603, 610, 616, 621, 627, 628–629	<i>TWE</i> p. 589 Standardized Test Practice, <i>CRM</i> pp. 697–698	Standardized Test Practice CD-ROM www.algebra2.com/ standardized_test
ΝΤ	Open-Ended Assessment	Writing in Math, pp. 582, 587, 592, 598, 603, 610, 616, 621 Open Ended, pp. 580, 586, 590, 596, 602, 608, 615, 619	Modeling: <i>TWE</i> p. 592 Speaking: <i>TWE</i> pp. 582, 587, 610 Writing: <i>TWE</i> pp. 598, 604, 617 Open-Ended Assessment, <i>CRM</i> p. 691	
ASSESSMENT	Chapter Assessment	Study Guide, pp. 622–626 Practice Test, p. 627	Multiple-Choice Tests (Forms 1, 2A, 2B), <i>CRM</i> pp. 679–684 Free-Response Tests (Forms 2C, 2D, 3), <i>CRM</i> pp. 685–690 Vocabulary Test/Review, <i>CRM</i> p. 692	TestCheck and Worksheet Builder (see below) MindJogger Videoquizzes www.algebra2.com/ vocabulary_review www.algebra2.com/chapter_test

Key to Abbreviations: TWE = Teacher Wraparound Edition; CRM = Chapter Resource Masters

Additional Intervention Resources

The Princeton Review's *Cracking the SAT & PSAT* The Princeton Review's *Cracking the ACT* ALEKS

TestCheck and Worksheet Builder

This **networkable** software has three modules for intervention and assessment flexibility:

- Worksheet Builder to make worksheet and tests
- **Student Module** to take tests on screen (optional)
- Management System to keep student records (optional)

Special banks are included for SAT, ACT, TIMSS, NAEP, and End-of-Course tests.

Intervention Technology

Alge2PASS: Tutorial Plus CD-ROM offers a complete, self-paced algebra curriculum.

Algebra 2 Lesson	Alge2PASS Lesson
11-1	20 Finding the Missing Number in a Sequence
11-4	21 Sequences and Series

ALEKS is an online mathematics learning system that adapts assessment and tutoring to the student's needs. Subscribe at www.k12aleks.com.

Intervention at Home

Log on for student study help.

- For each lesson in the Student Edition, there are Extra Examples and Self-Check Quizzes. www.algebra2.com/extra_examples www.algebra2.com/self_check_quiz
- For chapter review, there is vocabulary review, test practice, and standardized test practice. www.algebra2.com/vocabulary_review www.algebra2.com/chapter_test www.algebra2.com/standardized_test

For more information on Intervention and Assessment, see pp. T8-T11.

Reading and Writing in Mathematics

Glencoe Algebra 2 provides numerous opportunities to incorporate reading and writing into the mathematics classroom.

Student Edition

- Foldables Study Organizer, p. 577
- Concept Check questions require students to verbalize and write about what they have learned in the lesson. (pp. 580, 586, 590, 596, 602, 608, 615, 619, 622)
- Writing in Math guestions in every lesson, pp. 582, 587, 592, 598, 603, 610, 616, 621
- Reading Study Tip, pp. 606, 619
- WebQuest, p. 616

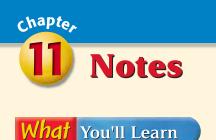
Teacher Wraparound Edition

- Foldables Study Organizer, pp. 577, 622
- Study Notebook suggestions, pp. 580, 585, 590, 596, 602, 605, 608, 611, 615, 619
- Modeling activities, p. 592
- Speaking activities, pp. 582, 587, 610
- Writing activities, pp. 598, 604, 617
- Differentiated Instruction, (Verbal/Linguistic), p. 615
- ELL Resources, pp. 576, 581, 586, 591, 597, 603, 609, 615, 616, 621, 622

Additional Resources

- Vocabulary Builder worksheets require students to define and give examples for key vocabulary terms as they progress through the chapter. (Chapter 11 Resource *Masters*, pp. vii-viii)
- Reading to Learn Mathematics master for each lesson (Chapter 11 Resource Masters, pp. 635, 641, 647, 653, 659, 665, 671, 677)
- Vocabulary PuzzleMaker software creates crossword, jumble, and word search puzzles using vocabulary lists that you can customize.
- Teaching Mathematics with Foldables provides suggestions for promoting cognition and language.
- Reading and Writing in the Mathematics Classroom
- WebQuest and Project Resources

For more information on Reading and Writing in Mathematics, see pp. T6–T7.



Have students read over the list of objectives and make a list of any words with which they are not familiar.

Why It's Important

Point out to students that this is only one of many reasons why each objective is important. Others are provided in the introduction to each lesson.

Lesson	NCTM Standards	Local Objectives
11-1	1, 6, 7, 8, 9	
11-2	1, 6, 7, 8, 9, 10	
11-3	1, 2, 6, 7, 8, 9, 10	
11-4 Preview	1, 6	
11-4	1, 2, 6, 7, 8, 9, 10	
11-5	1, 2, 6, 7, 8, 9, 10	
11-6 Preview	1, 6, 8, 9, 10	
11-6	1, 2, 6, 7, 8, 9, 10	
11-6 Follow-Up	1, 3, 4, 6, 7, 8	
11-7	1, 2, 6, 8, 9, 10	
11-8	2, 6, 7, 8	

Key to NCTM Standards:

1=Number & Operations, 2=Algebra, 3=Geometry, 4=Measurement, 5=Data Analysis & Probability, 6=Problem Solving, 7=Reasoning & Proof, 8=Communication, 9=Connections, 10=Representation Chapter 11

Sequences and Series

What You'll Learn

- **Lessons 11-1 through 11-5** Use arithmetic and geometric sequences and series.
- **Lesson 11-6** Use special sequences and iterate functions.
- **Lesson 11-7** Expand powers by using the Binomial Theorem.
- **Lesson 11-8** Prove statements by using mathematical induction.

Why It's Important

Key Vocabulary

- arithmetic sequence (p. 578)
- arithmetic series (p. 583)
- sigma notation (p. 585)
- geometric sequence (p. 588)
- geometric series (p. 594)

Many number patterns found in nature and used in business can be modeled by sequences, which are lists of numbers. Some sequences are classified by the method used to predict the next term from the previous term(s). When the terms of a sequence are added, a series is formed. In Lesson 11-2, you will learn how the number of seats in the rows of an amphitheater can be modeled using a series.

51 Chapter 11 Sequences and Series

Vocabulary Builder

The Key Vocabulary list introduces students to some of the main vocabulary terms included in this chapter. For a more thorough vocabulary list with pronunciations of new words, give students the Vocabulary Builder worksheets found on pages vii and viii of the *Chapter 11 Resource Masters*. Encourage them to complete the definition of each term as they progress through the chapter. You may suggest that they add these sheets to their study notebooks for future reference when studying for the Chapter 11 test.

Getting Started

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 11.

For Lessons 11-1 and 11-3		Solve Equations
Solve each equation. (For review, see I	Lessons 1-3 and 5-5.)	
1. $36 = 12 + 4x$ 6	2. $-40 = 10 + 5x -10$	
3. $12 - 3x = 27$ -5	4. $162 = 2x^4 \pm 3$	
5. $\frac{1}{8} = 4x^5 \frac{1}{2}$	6. $3x^3 + 4 = -20$ -2	
For Lessons 11-1 and 11-5		Graph Functions

Graph each function. (For review, see Lesson 2-1.) 7-10. See pp. 629A-629F.

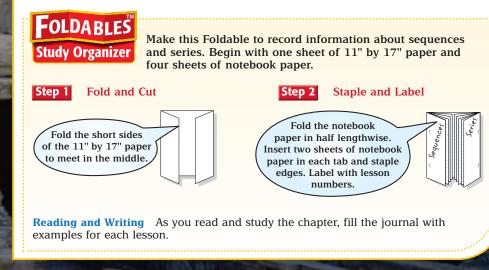
- **7.** {(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)}

8. {(1, -20), (2, -16), (3, -12), (4, -8), (5, -4)} **9.** $\left\{ (1, 64), (2, 16), (3, 4), (4, 1), (5, \frac{1}{4}) \right\}$ **10.** $\left\{ (1, 2), (2, 3), (3, \frac{7}{2}), (4, \frac{15}{4}), (5, \frac{31}{8}) \right\}$

For Lessons 11-1 through 11-5, 11-8

Evaluate Expressions

Evaluate each expression for the given value(s) of the variable(s). (For review, see Lesson 1-1.) **11.** x + (y - 1)z if x = 3, y = 8, and z = 2 **17 12.** $\frac{x}{2}(y + z)$ if x = 10, y = 3, and z = 25 **140 13.** $a \cdot b^{c-1}$ if $a = 2, b = \frac{1}{2}$, and c = 7 $\frac{1}{32}$ **14.** $\frac{a(1-bc)^2}{1-b}$ if a = -2, b = 3, and c = 5 **196 15.** $\frac{a}{1-b}$ if $a = \frac{1}{2}$, and $b = \frac{1}{6}$ $\frac{3}{5}$ **16.** $\frac{n(n+1)}{2}$ if n = 10 **55**



Chapter 11 Sequences and Series 577

For more information about Foldables, see Teaching Mathematics with Foldables.

Questioning and Organizing Data Before beginning each lesson, ask students to preview each lesson and write several questions about what they see on each of the lesson tabs of their Foldable. Encourage students to write different types of questions including factual, open-ended, analytical, and test-like questions. As students read and work through the lesson, ask them to record the answers to their questions in their journal. Students can add questions to their Foldable that arise during reading, taking notes, or doing homework.

Getting Started

This section provides a review of the basic concepts needed before beginning Chapter 11. Page references are included for additional student help.

Prerequisite Skills in the Getting Ready for the Next Lesson section at the end of each exercise set review a skill needed in the next lesson.

For Lesson	Prerequisite Skill
11-2	Evaluating Expressions (p. 582)
11-3	Evaluating Expressions (p. 587)
11-4	Evaluating Expressions (p. 592)
11-5	Evaluating Expressions (p. 598)
11-6	Evaluating Functions (p. 604)
11-8	Evaluating Expressions (p. 617)

Lesson Notes

Focus

5-Minute Check Transparency 11-1 Use as a quiz or review of Chapter 10.

Mathematical Background notes are available for this lesson on p. 576C.

How are arithmetic sequences related to roofing?

Ask students:

- What other sequences have you seen before? Answers will vary, but some may recall the Fibonacci sequence:
 1, 1, 2, 3, 5, 8, 13, 21,
- How can you find the next 5 numbers in the shingles sequence? Add 1 to each successive row.

11-1 Arithmetic Sequences

What You'll Learn

- Use arithmetic sequences.
- Find arithmetic means.

Vocabulary

- sequence
- term

Study Tip

Sequences

The numbers in a

sequence may not be

ordered. For example, the

numbers 33, 25, 36, 40,

sequence that represents

the number of home runs

year beginning with 1993.

Sammy Sosa hit in each

36, 66, 63, 50, ... are a

- arithmetic sequence
- common difference
- arithmetic means

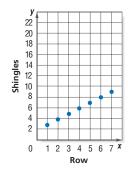
How are arithmetic sequences related to roofing? A roofer is nailing shingles to the roof of a house in overlapping rows. There are three shingles in the top row. Since the roof widens from top to bottom, one additional shingle is needed in each successive row.

Shingles 3 4 5 6 7 8	Row	1	2	3	4	5	6	7
Shingles 5 4 5 0 7 0	Shingles	3	4	5	6	7	8	9

ARITHMETIC SEQUENCES The numbers 3, 4, 5, 6, ..., representing the number of shingles in each row

6, ..., representing the number of shingles in each row, are an example of a sequence of numbers. A **sequence** is a list of numbers in a particular order. Each number in a sequence is called a **term**. The first term is symbolized by a_1 , the second term is symbolized by a_2 , and so on.

The graph represents the information from the table above. A sequence is a function whose domain is the set of positive integers. You can see from the graph that a sequence is a discrete function.



Many sequences have patterns. For example, in the sequence above for the number of shingles, each term can be found by adding 1 to the previous term. A

sequence of this type is called an arithmetic sequence. An **arithmetic sequence** is a sequence in which each term after the first is found by adding a constant, called the **common difference** d, to the previous term.

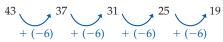
Example 🚺 Find the Next Terms

Find the next four terms of the arithmetic sequence 55, 49, 43,

Find the common difference d by subtracting two consecutive terms.

49 - 55 = -6 and 43 - 49 = -6 So, d = -6.

Now add -6 to the third term of the sequence, and then continue adding -6 until the next four terms are found.



The next four terms of the sequence are 37, 31, 25, and 19.

There is a pattern in the way the terms of an arithmetic sequence are formed. It is possible to develop a formula for each term of an arithmetic sequence in terms of the first term a_1 and the common difference *d*. Look at the sequence in Example 1.

578 Chapter 11 Sequences and Series

Resource Manager

Workbook and Reproducible Masters

Chapter 11 Resource Masters

- Study Guide and Intervention, pp. 631–632
- Skills Practice, p. 633
- Practice, p. 634
- Reading to Learn Mathematics, p. 635
- Enrichment, p. 636

Teaching Algebra With Manipulatives Masters, pp. 282, 283

Transparencies

5-Minute Check Transparency 11-1 Answer Key Transparencies

Technology

Alge2PASS: Tutorial Plus, Lesson 20 Interactive Chalkboard

Sequence	numbers	55	49	43	37	
Sequence	symbols	a ₁	a ₂	a ₃	a ₄	 a _n
Expressed in	numbers	55 + 0(-6)	55 + 1(-6)	55 + 2(-6)	55 + 3(-6)	 55 + (n-1)(-6)
Terms of <i>d</i> and the First Term	symbols	$a_1 + 0 \cdot d$	$a_1 + 1 \cdot d$	$a_1 + 2 \cdot d$	$a_1 + 3 \cdot d$	 $a_1 + (n-1)d$

The following formula generalizes this pattern for any arithmetic sequence.

Key Concept

Plan

Solve

nth Term of an Arithmetic Sequence

The *n*th term a_n of an arithmetic sequence with first term a_1 and common difference *d* is given by

 $a_n = a_1 + (n - 1)d,$

where *n* is any positive integer.

More About. .

Construction •-----

The table below shows typical costs for a construction company to rent a crane for one, two, three, or four months.

Months	Cost (\$)
1	75,000
2	90,000
3	105,000
4	120,000
Courses	ourstuffuerlys cor

Source: www.howstuffworks.com

Example 2 Find a Particular Term

CONSTRUCTION Refer to the information at the left. Assuming that the arithmetic sequence continues, how much would it cost to rent the crane for twelve months?

Explore Since the difference between any two successive costs is \$15,000, the costs form an arithmetic sequence with common difference 15,000.

You can use the formula for the *n*th term of an arithmetic sequence with $a_1 = 75,000$ and d = 15,000 to find a_{12} , the cost for twelve months.

$a_n = a_1 + (n-1)d$	Formula for <i>n</i> th term
$a_{12} = 75,000 + (12 - 1)15,000$	$n = 12, a_1 = 75,000, d = 15,000$
$a_{12} = 240,000$	Simplify.
It would east \$240,000 to most t	ha grang for twolve months

It would cost \$240,000 to rent the crane for twelve months

Examine You can find terms of the sequence by adding 15,000. a_5 through a_{12} are 135,000, 150,000, 165,000, 180,000, 195,000, 210,000, 225,000, and 240,000. Therefore, \$240,000 is correct.

Example 3 Write an Equation for the nth Term

Write an equation for the *n*th term of the arithmetic sequence 8, 17, 26, 35, In this sequence, $a_1 = 8$ and d = 9. Use the *n*th term formula to write an equation.

σιαάλ μιδ
Arithmetic
Sequences
An equation for an
arithmetic sequence is
always linear.

1 1		
$a_n = a_1 + (n-1)d$	Formula for <i>n</i> th term	
$a_n = 8 + (n-1)9$	$a_1 = 8, d = 9$	
$a_n = 8 + 9n - 9$	Distributive Property	
$a_n = 9n - 1$	Simplify.	
An equation is $a_n = 9n - 1$.		

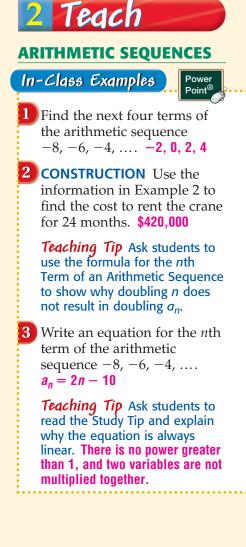
www.algebra2.com/extra_examples

Lesson 11-1 Arithmetic Sequences 579

DAILY INTERVENTION

Unlocking Misconceptions

Subscripts Make sure that all students understand that the subscript in a_n names a term and that it is not an exponent.



This CD-ROM is a customizable Microsoft® PowerPoint® presentation that includes:

- Step-by-step, dynamic solutions of each In-Class Example from the Teacher Wraparound Edition
- Additional, Your Turn exercises for each example
- The 5-Minute Check Transparencies
- Hot links to Glencoe Online Study Tools

ARITHMETIC MEANS

In-Class Example

4 Find the three arithmetic means between 21 and 45. 27, 33, 39

Power

Teaching Tip Ask students to create their own questions similar to Example 4. Lead them to see that, for the value of *d* to be an integer, the number of arithmetic means must evenly divide the difference between the first and last terms given.

Practice/Apply

Study Notebook

Have students-

in this lesson.

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter II.
- include any other item(s) that they find helpful in mastering the skills

Study Tip

Alternate Method You may prefer this method. The four means will be 16 + d, 16 + 2d, 16 + 3d, and 16 + 4d. The common difference is d = 91 - (16 + 4d)or *d* = 15.

Algebra Activity

Arithmetic Sequences

Study the figures below. The length of an edge of each cube is 1 centimeter.

Model and Analyze 1. See margin.

- 1. Based on the pattern, draw the fourth figure on a piece of isometric dot paper.
- 2. Find the volumes of the four figures. 1 cm³, 3 cm³, 5 cm³, 7 cm³
- 3. Suppose the number of cubes in the pattern continues. Write an equation that gives the volume of Figure *n*. $V_n = 2n - 1$
- 4. What would the volume of the twelfth figure be? 23 cm³

ARITHMETIC MEANS Sometimes you are given two terms of a sequence, but they are not successive terms of that sequence. The terms between any two nonsuccessive terms of an arithmetic sequence are called arithmetic means. In the sequence below, 41, 52, and 63 are the three arithmetic means between 30 and 74.

19, 30, 41, 52, 63, 74, 85, 96, ...

3 arithmetic means between 30 and 74

Example 4 Find Arithmetic Means

Find the four arithmetic means between 16 and 91.

You can use the <i>n</i> th term formula to find the common difference. In the sequence 16, <u>?</u> , <u>?</u> , <u>?</u> , <u>?</u> , <u>91</u> ,, a_1 is 16 and a_6 is 91.		
$a_n = a_1 + (n-1)d$	Formula for the <i>n</i> th term	
$a_6 = 16 + (6 - 1)d$	$n = 6, a_1 = 16$	
91 = 16 + 5d	a ₆ = 91	
75 = 5d	Subtract 16 from each side.	

15 = dDivide each side by 5.

Now use the value of *d* to find the four arithmetic means.

$$16 \underbrace{}_{+15} 31 \underbrace{}_{+15} 46 \underbrace{}_{+15} 61 \underbrace{}_{+15} 76$$

The arithmetic means are 31, 46, 61, and 76. **CHECK** $76 + 15 = 91 \sqrt{100}$

About the Exercises... **Organization by Objective**

- Arithmetic Sequences: 15 - 51
- Arithmetic Means: 52–55

Odd/Even Assignments

Exercises 15-40, 43-48, and 52–55 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15, 17, 23, 25, 29, 31, 33, 37-43 odd, 47, 49-51, 53, 55-67 Average: 15–47 odd, 49–51, 53, 55-67

Advanced: 16–48 even, 49–51, 52, 54, 56–64 (optional: 65–67)

Check for Understanding

Concept Check 1. Explain why the sequence 4, 5, 7, 10, 14, ... is not arithmetic. See margin. 3. Sample answer: 1, **2.** Find the 15th term in the arithmetic sequence -3, 4, 11, 18, 95 -4, -9, -14, ... **3. OPEN ENDED** Write an arithmetic sequence with common difference -5.

Guided **Practice** Find the next four terms of each arithmetic sequence. **4.** 12, 16, 20, ... **24, 28, 32, 36**

5. 3, 1, -1, ... **-3**, **-5**, **-7**, **-9**

Find the first five terms of each arithmetic sequence described. **6.** $a_1 = 5, d = 3$ **5, 8, 11, 14, 17**

7. $a_1 = 14, d = -2$ 14, 12, 10, 8, 6

580 Chapter 11 Sequences and Series

Algebra Activity

Materials: isometric dot paper

- Point out that this activity does not stack cubes but keeps them on a plane.
- Suggest that students explore by repeating this activity using a different initial arrangement of three cubes.

Answer

Algebra Activity

GUIDED PRACTICE KEY		
Examples		
1		
2		
3		
4		

12. $a_n = 11n - 37$

Answer

are not constant.

1. The differences between the terms

8.	Find a_{13} for the arithmetic sequence $-17, -12, -7, \dots$. 43		
Fin	Find the indicated term of each arithmetic sequence.		
9.	$a_1 = 3, d = -5, n = 24$ -112 10. $a_1 = -5, d = 7, n = 13$ 79		
11.	11. Complete: 68 is the 2 th term of the arithmetic sequence $-2, 3, 8, \dots$. 15		
12.	Write an equation for the <i>n</i> th term of the arithmetic sequence -26 , -15 , -4 , 7 ,		

13. Find the three arithmetic means between 44 and 92. 56, 68, 80

Application 14. ENTERTAINMENT A basketball team has a halftime promotion where a fan gets to shoot a 3-pointer to try to win a jackpot. The jackpot starts at \$5000 for the first game and increases \$500 each time there is no winner. Ken has tickets to the fifteenth game of the season. How much will the jackpot be for that game if no one wins by then? **\$12,000**

★ indicates increased difficulty Practice and Apply

Homework Help	Find the next four terms of each arithmetic sequence.	
For See Exercises Examples	15. 9, 16, 23, 30, 37, 44, 51 16. 31, 24, 17, 10, 3, -4, -11	
15-28, 49 1	17. -6, -2, 2, 6, 10, 14, 18 18. -8, -5, -2, 1, 4, 7, 10	
29-45, 51 2	* 19. $\frac{1}{3}$, 1, $\frac{5}{3}$,, $\frac{7}{3}$, 3, $\frac{11}{3}$, $\frac{13}{3}$ * 20. $\frac{18}{5}$, $\frac{16}{5}$, $\frac{14}{5}$,, $\frac{12}{5}$, 2, $\frac{8}{5}$, $\frac{6}{5}$	
46-48, 50 3 52-55 4		
	★ 21. 6.7, 6.3, 5.9, 5.5, 5.1, 4.7, 4.3 ★ 22. 1.3, 3.8, 6.3, 8.8, 11.3, 13.8, 16.3	
Extra Practice See page 851.	Find the first five terms of each arithmetic sequence described.	
See page 051.	23. $a_1 = 2, d = 13$ 2, 15, 28, 41, 54 24. $a_1 = 41, d = 5$ 41, 46, 51, 56, 61	
	25. $a_1 = 6, d = -4$ 6, 2, -2, -6, -10 26. $a_1 = 12, d = -3$ 12, 9, 6, 3, 0	
	★ 27. $a_1 = \frac{4}{3}, d = -\frac{1}{3}, \frac{4}{3}, 1, \frac{2}{3}, \frac{1}{3}, 0$ ★ 28. $a_1 = \frac{5}{8}, d = \frac{3}{8}, \frac{5}{8}, 1, \frac{11}{8}, \frac{7}{4}, \frac{17}{8}$	
	$20. u_1 - 3. u_1 - 3. 3. 3. 3. 3. 3. 3. 0. 20. u_1 - 8. u - 8. 8. 1. 8. 4. 8$	
More About	29. Find a_8 if $a_n = 4 + 3n$. 28	
More ADoul	30. If $a_n = 1 - 5n$, what is a_{10} ? -49	
(TER)	$u_n = u_n$	
SUMMALD	Find the indicated term of each arithmetic sequence.	
HAAAAAAA	31. $a_1 = 3, d = 7, n = 14$ 94 32. $a_1 = -4, d = -9, n = 20$ -175	
A AND A A A A A A A A A A A A A A A A A	33. $a_1 = 35, d = 3, n = 101$ 335 34. $a_1 = 20, d = 4, n = 81$ 340	
A AND	★ 35. $a_1 = 5, d = \frac{1}{3}, n = 12 \frac{26}{3}$ ★ 36. $a_1 = \frac{5}{2}, d = -\frac{3}{2}, n = 11 -\frac{25}{2}$	
HIMMAN	37. a_{12} for -17 , -13 , -9 , 27 38. a_{12} for 8, 3, -2 , -47	
	39. a_{21} for 121, 118, 115, 61 40. a_{43} for 5, 9, 13, 17, 173	
Tower of Pisa •·····	41. GEOLOGY Geologists estimate that the continents of Europe and North	
Upon its completion in	America are drifting apart at a rate of an average of 12 miles every 1 million	
1370, the Leaning Tower	years, or about 0.75 inch per year. If the continents continue to drift apart at that rate, how many inches will they drift in 50 years? (<i>Hint</i> : $a_1 = 0.75$) 37.5 in .	
of Pisa leaned about		
1.7 meters from vertical. Today, it leans about	42. TOWER OF PISA To prove that objects of different weights fall at the same	
5.2 meters from vertical.	rate, Galileo dropped two objects with different weights from the Leaning Tower of Pisa in Italy. The objects hit the ground at the same time. When an	
Source: Associated Press	object is dropped from a tall building, it falls about 16 feet in the first second,	
48 feet in the second second, and 80 feet in the third second, regardless of its		
weight. How many feet would an object fall in the tenth second? 304 ft		
C www.algebra2.	.com/self_check_quiz Lesson 11-1 Arithmetic Sequences 581	

Enrichment, p. 636

1. Newborn rabbits become adults in one month. 2. Each pair of rabbits produces one pair each month

Leonardo Fibonacci first discovered the sequence of numbers named for him while studying rabbits. He wanted to know how many pairs of rabbits would be produced in *m* months, starting with a single pair of newborn rabbits. He made the following assumptions.

Let F_n represent the number of pairs of rabbits at the end of n months. If you begin with one pair of newborn rabbits, $F_0=F_1=1$. This pair of rabbits would produce one pair at the end of the second month, so $F_2=1+1$, or 2. At the end of the third month, the first pair of rabbits would produce another pair. Thus, $F_2=2+1$, or 3. The chart below shows the number of rabbits each month for several month

Fibonacci Sequence

3. No rabbits die.

Study Guide and Intervention, p. 631 (shown) and p. 632 Arithmetic Sequences An arithmetic sequence is a sequence of numbers in which each term after the first term is found by adding the common difference to the preceding term. Example 1 Find the next four terms of the arithmetic sequence 7, 11, 15, ... Find the common difference by subtracting two consecutive terms. **Example 2** Find the thirteenth term of the arithmetic sequence with $a_1 = 21$ and d = -6. and d = -6. Use the formula for the *n*th term of an arithmetic sequence with $a_1 = 21$, n = 13, and d = -6. 11 - 7 = 4 and 15 - 11 = 4, so d = 4. $\begin{array}{ll} {\rm and}\; d=-6,\\ a_n=a_1+(n-1)d & {\rm Formula\; for \; nh\; term}\\ a_{13}=21+(13-1)(-6) & n=13, a_i=21, \, d=-6\\ a_{13}=-51 & {\rm Simply.}\\ \end{array}$ The thirteenth term is -51. Now add 4 to the third term of the sequence, and then continue adding 4 until the four terms are found. The next four terms of the sequence are 19, 23, 27, and 31.
 Example 3
 Write an equation for the *n*th term of the arithmetic sequence $-14, -5, 4, 13, \dots$

 In this sequence $a_1 = -14$ and d = 9. Use the formula for a_n to write an equation.
 Exercises Find the next four terms of each arithmetic sequence. **1.** 106, 111, 116, ... **2.** -28, -31, -34, ... **3.** 207, 194, 181, ... 121, 126, 131, 136 -37, -40, -43, -46 168, 155, 142, 129 Find the first five terms of each arithmetic sequence described. Find the indicated term of each arithmetic sequence.
7. $a_1 = 4, d = 6, n = 14$ **82 8.** $a_1 = -4, d = -2, n = 12$ **26 9.** $a_1 = 80, d = -8, n = 21$ **-80 10.** a_{10} for 0, -3, -6, -9, ...
 -27
Write an equation for the *n*th term of each arithmetic sequence.

 11. 18, 25, 32, 39, ...
 12. -110, -85, -60, -35, ...
 13. 6.2, 8.1, 10.0, 11.9, ...

 7n + 11
 25n - 135
 1.9n + 4.3

Skills Practice, p. 633 and Practice, p. 634 (shown)

Find the next four terms of each arithmetic sequence. **2.** -4, -6, -8, ... -10, -12, -14, -16 **1.** 5, 8, 11, ... **14, 17, 20, 23 3.** 100, 93, 86, ... **79, 72, 65, 58** 4. -24. -19. -14. ... -9. -4. 1. 6 5. ⁷/₂, 6, ¹⁷/₂, 11, ... ²⁷/₂, 16, ³⁷/₂, 21 6. 4.8, 4.1, 3.4, ... 2.7, 2, 1.3, 0.6 Find the first five terms of each arithmetic sequence described. $7.a_1 = 7, d = 7$ 8. $a_1 = -8, d = 2$ 7, 14, 21, 28, 35 -8, -6, -4, -2, 0 **9.** $a_1 = -12, d = -4$ 10. $a_1 = \frac{1}{2}, d = \frac{1}{2}$ -12, -16, -20, -24, -28 $\frac{1}{2}$, 1, $\frac{3}{2}$, 2, $\frac{5}{2}$ $11. a_1 = -\frac{5}{6}, d = -\frac{1}{3} \\ -\frac{5}{6}, -\frac{7}{6}, -\frac{3}{2}, -\frac{11}{6}, -\frac{13}{6}$ **12.** $a_1 = 10.2, d = -5.8$ 10.2. 4.4. -1.4. -7.2. -13 Find the indicated term of each arithmetic sequence **14.** *a*₁ = 9, *d* = 3, *n* = 29 **93 13.** $a_1 = 5, d = 3, n = 10$ **32 15.** *a*₁₈ for -6, -7, -8, **-23 16.** *a*₃₇ for 124, 119, 114, **-56** $17. a_1 = \frac{9}{5}, d = -\frac{3}{5}, n = 10 -\frac{18}{5}$ **18.** *a*₁ = 14.25, *d* = 0.15, *n* = 31 **18.75** Complete the statement for each arithmetic seque 19. 166 is the _?_th term of 30, 34, 38, ... 35 20. 2 is the _?_th term of $\frac{3}{5}, \frac{4}{5}, 1, ... 8$

	5 5
Write an equation for the <i>n</i> th term of	f each arithmetic sequence.
215, -3, -1, 1, a _n = 2n - 7	228, -11, -14, -17, a _n = -3n - 5
23. 1, -1, -3, -5, a _n = -2n + 3	24. -5, 3, 11, 19, a _n = 8 n - 13
Find the arithmetic means in each se	mance

- Find the arithmetic means in each sequence.

 25. -5, <u>?</u>, <u>?</u>, <u>?</u>, <u>?</u>, 11 -1, 3, 7

 26. 82, <u>?</u>, <u>?</u>, <u>?</u>, 18 66, 50, 34
 27. EDUCATION Trevor Koba has opened an English Language School in Isehara, Japan. He began with 26 students. If he enrolls 3 new students each week, in how many weeks will he have 101 students? 26 wk
- 28. SALARIES Yolanda interviewed for a job that promised her a starting salary of \$32,000 with a \$1250 raise at the end of each year. What will her salary be during her sixth year if she accepts the job? \$38,250

Reading to Learn ELL Mathematics, p. 635

Pre-Activity How are arithmetic sequences related to roofing? How are arithmetic sequences related to roofing? Read the introduction to Lesson 11-1 at the top of page 75s in your textbook. Describe how you would find the number of baingles needed for the fifteenth row (Db not actually calculate this number) Explain why your needed will work as been as the first row has 2 shingles and 3 more are added 14 times to go from the first row to the fifteenth row.

Reading the Lesson

- 1. Consider the formula $a_n = a_1 + (n 1)d$. a. What is this formula used to find? a particular term of an arithmetic sequence
- b. What do each of the following represent?
- a.: the nth term
- a,: the first term
- n: a positive integer that indicates which term you are finding d: the common difference
- 2. Consider the equation $a_n = -3n + 5$.
- a. What does this equation represent? Sample answer: It gives the nth term of an arithmetic sequence with first term 2 and common difference -3.
- b. Is the graph of this equation a straight line? Explain your answer. Sample answer: No; the graph is a set of points that fall on a line, but the points do not fill the line.
- . The functions represented by the equations $a_{\pm}=-3n+5$ and f(x)=-3x+5 are alike in that they have the same formula. How are they different? Sample answer: They have different domains. The domain of the first function is the set of positive integers. The domain of the second function is the set of all real numbers.

Helping You Remember

Transmit FOR Retirements 3. A good way to remember something is to explain it to someone else. Suppose that your elasamate Shala has trouble remembering the formula $a_a = a_a + (n - 1 M \text{ correctly}. Shal$ $thinks that the formula should be <math>a_a^- = a_a + M$ how would you explain to ber that she should use (n - 1M rather than nd in the formula? Sample answer: Each term after the first in an arithmetic sequence is found by adding d to the previous term. You would add d once to get to the second term, twice to get to the third term, and so on. So d is added n - 1 times, not n times, to get the *n*th term.

Open-Ended Assessment

Speaking Have students explain what an arithmetic sequence is and how to find a specified term without repeatedly adding the common difference.

Intervention Make sure students understand that an arithmetic

sequence is a list of numbers that share a certain characteristic, but not all lists of numbers are arithmetic sequences. This will prepare them for Lesson 11-3 on geometric sequences.

Getting Ready for Lesson II-2

PREREQUISITE SKILL Students will use sigma notation in Lesson 11-2. This will involve their evaluating variable expressions for different values as they find values in a series. Use Exercises 65-67 to determine your students' familiarity with evaluating variable expressions for given values.

Answer

- 57. Arithmetic sequences can be used to model the numbers of shingles in the rows on a section of roof. Answers should include the following.
 - One additional shingle is needed in each successive row.
 - One method is to successively add 1 to the terms of the sequence: $a_8 = 9 + 1$ or 10, $a_9 = 10 + 1 \text{ or } 11, a_{10} = 11 + 1$ or 12, $a_{11} = 12 + 1$ or 13, $a_{12} = 13 + 1$ or 14, $a_{13} = 14 + 1$ or 15, *a*₁₄ = 15 + 1 or 16, $a_{15} = 16 + 1$ or 17. Another method is to use the formula for the *n*th term: $a_{15} = 3 + (15 - 1)1$ or 17.

Complete the statement for each arithmetic sequence.

- **43.** 170 is the ? term of -4, 2, 8, **30th**
- **44.** 124 is the _____ term of -2, 5, 12, **19th**
- **★ 45.** -14 is the <u>?</u> term of $2\frac{1}{5}$, 2, $1\frac{4}{5}$, ... **82nd**

	Write an equation for the <i>n</i> th term of each arithmetic sequence.
	46. 7, 16, 25, 34, 47. 18, 11, 4, -3, 48. -3, -5, -7, -9,
	$a_n = 9n - 2$ $a_n = -7n + 25$ $a_n = -2n - 1$ GEOMETRY For Exercises 49–51, refer to the first three arrays of numbers below.
49. 13, 17, 21; See pp.	49. Make drawings to find the next
629A-629F for drawings.	three numbers in this pattern.
50. $p_n = 4n - 3$	50. Write an equation representing the <i>n</i> th number in this pattern.
51. Yes; it corresponds to	51. Is 397 a number in this pattern? Explain.
<i>n</i> = 100.	Find the arithmetic means in each sequence.
	52. 55, <u>?</u> , <u>?</u> , <u>?</u> , 115 70, 85, 100 53. 10, <u>?</u> , <u>?</u> , -8 4, -2
545, -2, 1, 4	54. -8, ?, ?, ?, ?, ?, ?, ?, 7 55. 3, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?,
55. 7, 11, 15, 19, 23	56. CRITICAL THINKING The numbers <i>x</i> , <i>y</i> , and <i>z</i> are the first three terms of an arithmetic sequence. Express <i>z</i> in terms of <i>x</i> and <i>y</i> . $z = 2y - x$
	57. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin .
	How are arithmetic sequences related to roofing?
	Include the following in your answer:
	 the words that indicate that the numbers of shingles in the rows form an arithmetic sequence, and
	• explanations of at least two ways to find the number of shingles in the fifteenth row.
Standardized	58. What number follows 20 in this arithmetic sequence? B
Test Practice	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	59. Find the first term in the arithmetic sequence. B $\underline{\qquad}, 8\frac{1}{3}, 7, 5\frac{2}{3}, 4\frac{1}{3}, \dots$
	(A) 3 (B) $9\frac{2}{3}$ (C) $10\frac{1}{3}$ (D) 11
Maintain Your	Skills
Mixed Review	60. COMPUTERS Suppose a computer that costs \$3000 new is only worth \$600 after 3 years. What is the average annual rate of depreciation? <i>(Lesson 10-6)</i> about 26.7%
	Solve each equation. (Lesson 10-5)
	61. $3e^x - 2 = 0$ -0.4055 62. $e^{3x} = 4$ 0.4621 63. $\ln(x + 2) = 5$ 146.4132
	64. If <i>y</i> varies directly as <i>x</i> and $y = 5$ when $x = 2$, find <i>y</i> when $x = 6$. (Lesson 9-4) 15
Getting Ready for the Next Lesson	PREREQUISITE SKILL Evaluate each expression for the given values of the variable. (<i>To review evaluating expressions</i> , see Lesson 1-1.)
582 Chapter 11 Sequences	65. $3n - 1; n = 1, 2, 3, 4$ 66. $6 - j; j = 1, 2, 3, 4$ 67. $4m + 7; m = 1, 2, 3, 4, 5$ 11. $15, 19, 23, 27$
Joz Chapter II Sequences	and series

DAILY **Differentiated Instruction INTERVENTION Kinesthetic** Have students use wooden or plastic cubes (or ones they make themselves out of paper with a net for a cube drawn on it) to model the Algebra Activity in this lesson.

Vocabulary

arithmetic series

sigma notation

index of summation

series

Study Tip

Indicated Sum

indicated sum is the

the terms + or -.

The sum of a series is the

result when the terms of the series are added. An

expression that illustrates the series, which includes

11-2 Arithmetic Series

What You'll Learn

- Find sums of arithmetic series.
- Use sigma notation.

do arithmetic series apply to amphitheaters?

The first amphitheaters were built for contests between gladiators. Modern amphitheaters are usually used for the performing arts. Amphitheaters generally get wider as the distance from the stage increases. Suppose a small amphitheater can seat 18 people in the first row and each row can seat 4 more people than the previous row.

ARITHMETIC SERIES The numbers of seats in the rows of the amphitheater form an arithmetic sequence. To find the number of people who could sit in the first four rows, add the first four terms of the sequence. That sum is 18 + 22 + 26 + 30 or 96. A series is an indicated sum of the terms of a sequence. Since 18, 22, 26, 30 is an arithmetic sequence, 18 + 22 + 26 + 30 is an **arithmetic series**. Below are some more arithmetic sequences and the corresponding arithmetic series.

Arithmetic Sequence	Arithmetic Series
5, 8, 11, 14, 17	5 + 8 + 11 + 14 + 17
-9, -3, 3	-9 + (-3) + 3
<u>3 8 13 18</u>	$\frac{3}{8} + \frac{8}{8} + \frac{13}{8} + \frac{18}{8}$
8' 8' 8' 8	8 8 8 8 8

 S_n represents the sum of the first *n* terms of a series. For example, S_4 is the sum of the first four terms. For the series 5 + 8 + 11 + 14 + 17, S_4 is 5 + 8 + 11 + 14 or 38.

To develop a formula for the sum of any arithmetic series, consider the series below. $S_9 = 4 + 11 + 18 + 25 + 32 + 39 + 46 + 53 + 60$

Suppose we write S_{q} in two different orders and add the two equations.

An arithmetic sequence S_n has *n* terms, and the sum of the first and last terms is $a_1 + a_n$. Thus, the formula $S_n = \frac{n}{2}(a_1 + a_n)$ represents the sum of any arithmetic series.

Sum of an Arithmetic Series

The sum S_n of the first *n* terms of an arithmetic series is given by $S_n = \frac{n}{2}[2a_1 + (n-1)d] \text{ or } S_n = \frac{n}{2}(a_1 + a_n).$

Lesson 11-2 Arithmetic Series 583

Workbook and Reproducible Masters

Key Concept

Chapter 11 Resource Masters

- Study Guide and Intervention, pp. 637-638
- Skills Practice, p. 639
- Practice, p. 640
- Reading to Learn Mathematics, p. 641
- Enrichment, p. 642
- Assessment, p. 693

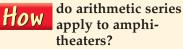
Graphing Calculator and Spreadsheet Masters, p. 48 Science and Mathematics Lab Manual. pp. 133-138

Lesson

Focus

5-Minute Check Transparency 11-2 Use as a quiz or review of Lesson 11-1.

Mathematical Background notes are available for this lesson on p. 576C.



Ask students:

- What is the value of *a*₁ in the sequence of seats? 18
- What is the value of *d*? 4
- How would you determine the number of people who could be seated in 15 rows? Answers will vary.

Resource Manager

Transparencies

5-Minute Check Transparency 11-2 Answer Key Transparencies

🧐 Technology Interactive Chalkboard

2 Teach

ARITHMETIC SERIES

In-Class Examples

Find the sum of the first
 20 even numbers, beginning
 with 2. 420

Power Point[®]

Teaching Tip Discuss the difference between a sequence and a series, and ask students to suggest ways to remember which is which.

RADIO Refer to Example 2 in the Student Edition. Suppose the radio station decided to give away another \$124,000 during the next month, using the same plan. How much should they give away on the first day of September, rounded to the nearest cent? **\$2683.33**

Teaching Tip Remind students that September is one day shorter than August.

3 Find the first four terms of an arithmetic series in which $a_1 = 14$, $a_n = 29$, and $S_n = 129$. **14**, **17**, **20**, **23**

Answer

Graphing Calculator Investigation

1. The index of summation is always replaced by specific values, so the letter that is used does not affect the value of the sum.

99.0% of teens ages 12–17 listen to the radio at least once a week. 79.1% listen at least once a day. **Source:** Radio Advertising Bureau

Example 1) Find the Sum of an Arithmetic Series

Find the sum of the first 100 positive integers.

The series is 1 + 2 + 3 + ... + 100. Since you can see that $a_1 = 1$, $a_{100} = 100$, and d = 1, you can use either sum formula for this series.

Method 1		Method 2
$S_n = \frac{n}{2}(a_1 + a_n)$	Sum formula	$S_n = \frac{n}{2} [2a_1 + (n-1)d]$
$S_{100} = \frac{100}{2}(1+100)$	$n = 100, a_1 = 1, a_{100} = 100, d = 1$	$S_{100} = \frac{100}{2} [2(1) + (100 - 1)1]$
$S_{100} = 50(101)$	Simplify.	$S_{100} = 50(101)$
$S_{100} = 5050$	Multiply.	$S_{100} = 5050$
The sum of the first 100 positive integers is 5050		

The sum of the first 100 positive integers is 5050.

Example 2) Find the First Term

• **RADIO** A radio station considered giving away \$4000 every day in the month of August for a total of \$124,000. Instead, they decided to increase the amount given away every day while still giving away the same total amount. If they want to increase the amount by \$100 each day, how much should they give away the first day?

You know the values of n, $S_{n'}$ and d. Use the sum formula that contains d.

$S_n = \frac{n}{2} [2a_1 + (n-1)d]$	Sum formula
$S_{31} = \frac{31}{2} [2a_1 + (31 - 1)100]$	n = 31, d = 100
$124,000 = \frac{31}{2}(2a_1 + 3000)$	$S_{31} = 124,000$
$8000 = 2a_1 + 3000$	Multiply each side by $\frac{2}{31}$.
$5000 = 2a_1$	Subtract 3000 from each side.
$2500 = a_1$	Divide each side by 2.
The set of the state of the set of the second	the first days

The radio station should give away \$2500 the first day.

Sometimes it is necessary to use both a sum formula and the formula for the nth term to solve a problem.

Example 3 Find the First Three Terms

Find the first three terms of an arithmetic series in which $a_1 = 9$, $a_n = 105$, and $S_n = 741$. **Step 1** Since you know a_1, a_n , and S_n , Step 2 Find *d*. use $S_n = \frac{n}{2}(a_1 + a_n)$ to find *n*. $a_n = a_1 + (n-1)d$ $S_n = \frac{n}{2}(a_1 + a_n)$ 105 = 9 + (13 - 1)d96 = 12d $741 = \frac{n}{2}(9 + 105)$ 8 = d741 = 57n13 = n**Step 3** Use *d* to determine a_2 and a_3 . $a_2 = 9 + 8 \text{ or } 17$ $a_3 = 17 + 8 \text{ or } 25$ The first three terms are 9, 17, and 25.

584 Chapter 11 Sequences and Series

584 Chapter 11 Sequences and Series

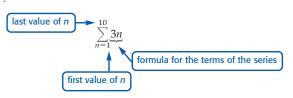
Study Tip

Sigma Notation There are many ways to represent a given series.

$$\sum_{r=4}^{3} (r-3)$$

= $\sum_{s=2}^{7} (s-1)$
= $\sum_{i=0}^{5} (j+1)$

SIGMA NOTATION Writing out a series can be time-consuming and lengthy. For convenience, there is a more concise notation called **sigma notation**. The series 3 + 6 + 9 + 12 + ... + 30 can be expressed as $\sum_{n=1}^{10} 3n$. This expression is read *the sum* of 3n as n goes from 1 to 10.



The variable, in this case *n*, is called the **index of summation**.

To generate the terms of a series given in sigma notation, successively replace the index of summation with consecutive integers between the first and last values of the index, inclusive. For the series above, the values of n are 1, 2, 3, and so on, through 10.

Method 2 Since the sum is an arithmetic series,

Lesson 11-2 Arithmetic Series 585

use the formula $S_n = \frac{n}{2}(a_1 + a_n)$. There are 4 terms, $a_1 = 3(5) - 4$ or 11,

and $a_4 = 3(8) - 4$ or 20.

 $S_4 = \frac{4}{2}(11 + 20)$

 $S_4 = 62$

Example 4 Evaluate a Sum in Sigma Notation

Evaluate
$$\sum_{j=5}^{8} (3j - 4)$$
.

Find the terms by replacing j with 5, 6, 7, and 8. Then add.

Method 1

$$\sum_{j=5}^{8} (3j-4) = [3(5)-4] + [3(6)-4] + [3(7)-4] + [3(8)-4] = 11 + 14 + 17 + 20 = 62$$

The sum of the series is 62.

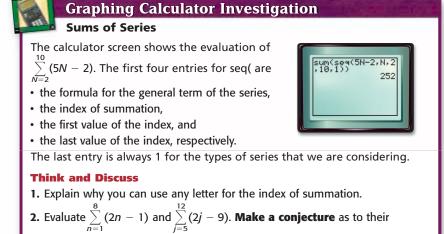
You can use the sum and sequence features on a graphing calculator to find the sum of a series.

Study Tip

Graphing

Calculators On the TI-83 Plus, sum(is located on the LIST MATH menu. The function seq(is located on the LIST OPS menu.

1. See margin. 2. 64; They represent the same series. Any series can be written in many ways using sigma notation.



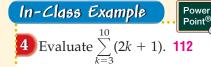
www.algebra2.com/extra_examples

Graphing Calculator Investigation

relationship and explain why you think it is true.

When the calculator is in **Seq** mode, the variable will automatically be *n* rather than *x*. To select **Seq** mode, press **MODE**, move the cursor down to **FUNC** and over to **Seq** and press **ENTER**.

SIGMA NOTATION



Teaching Tip Help students become comfortable with sigma notation by having them read aloud several expressions written in this notation. Explain that sigma is simply the upper case letter S in the Greek alphabet. Ask them what other mathematical notation uses Greek letters. **Sample answer:** π

3 Practice/Apply

Study Notebook

Have students—

- add the definitions/examples of
- the vocabulary terms to their
- Vocabulary Builder worksheets for Chapter II.
- keep a list of study tips for the graphing calculator, including the
- one in this lesson.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises... Organization by Objective

- Arithmetic Series: 15–32, 39–45
- Sigma Notation: 33–38

Odd/Even Assignments

Exercises 15–26, 29–38, and 41–44 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15–23 odd, 27–35 odd, 39–45 odd, 46–50, 54–65 **Average:** 15–45 odd, 46–50, 54–65 (optional: 51–53) **Advanced:** 16–46 even, 47–62 (optional: 63–65)

Study Guide and Intervention,

p. 637 (shown) a	and p. 638	
Arithmetic Series An arithmetic series is the sum of consecutive terms of an arithmetic sequence.		
Sum of an Arithmetic Series The sum S_n of the first n terms of it $S_n = \frac{n}{2}[2s_1 + (n-1)d]$ or $S_n = \frac{n}{2}$	an arithmetic series is given by the formula $(a_1 + a_n)$	
$\label{eq:starting} \begin{array}{ c c c c c } \hline {\bf Ernd} S_{1} \mbox{ for the mrithmetic service with } a_{1} = 14, \\ a_{n} = 101, \mbox{ and } n = 30. \\ Use the sum formula for an arithmetic series. \\ \hline S_{n} = \frac{n}{2}(a_{1} + a_{n}) \mbox{ for main} \\ S_{30} = \frac{30}{2}(14 + 101) \mbox{ $n = 50, a_{1} = 14, a_{n} = 101$} \\ = 15(115) \mbox{ margin} \\ = 1725 \mbox{ Margin}. \\ \hline {\bf The sum of the series is 1725}. \end{array}$	$\label{eq:constraints} \left\{ \begin{array}{ll} \underbrace{CMMP(k^2)}_{p \in \mathcal{M}} & Find \ the \ sum \ of \ all \ positive \ odd \ integers \ tess \ than \ 180, \\ \\ The \ serviss \ ist \ ist \ seq \ seq \ seq \ odd \ ist \ seq \ $	
(Exercises		
Find S_n for each arithmetic series descri		
1. $a_1 = 12, a_n = 100,$ n = 12 672 2. $a_1 = 50, a_2$ n = 15 0	$a_n = -50,$ 3. $a_1 = 60, a_n = -136,$ n = 50 - 1900	
7. $a_1 = 42, n = 8, d = 6$ 8. $a_1 = 4, n = 100$	2 1	
504 555 Find the sum of each arithmetic series.	1917	
10. $8 + 6 + 4 + + -10 - 10$	11. 16 + 22 + 28 + + 112 1088	
10. $8 + 6 + 4 + \dots + -10 - 10$ 11. $16 + 22 + 28 + \dots + 112$ 1088 12. $-45 + (-41) + (-37) + \dots + 35 - 105$		
Find the first three terms of each arithmetic series described.		
	$ \begin{array}{ll} a_n = -115, \\ 5 \ 80, \ 65, \ 50 \end{array} \qquad \begin{array}{ll} 15. \ a_1 = 6.2, \ a_n = 12.6, \\ S_n = 84.6 \ 6.2, \ 7.0, \ 7.8 \end{array} $	
Skills Practice, p	. 639 and	

Practice, p. 640 (shown)

Find S_n for each arithmetic series desc	ribed.
1. $a_1 = 16, a_n = 98, n = 13$ 741	2. $a_1 = 3, a_n = 36, n = 12$ 234
3. $a_1 = -5, a_n = -26, n = 8$ -124	4. $a_1 = 5, n = 10, a_n = -13$ -40
5. $a_1 = 6, n = 15, a_n = -22$ -120	6. $a_1 = -20, n = 25, a_n = 148$ 1600
7. <i>a</i> ₁ = 13, <i>d</i> = −6, <i>n</i> = 21 −987	8. $a_1 = 5, d = 4, n = 11$ 275
9. $a_1 = 5, d = 2, a_n = 33$ 285	10. $a_1 = -121, d = 3, a_n = 5$ -2494
11. $d = 0.4, n = 10, a_n = 3.8$ 20	12. $d = -\frac{2}{3}, n = 16, a_n = 44$ 784
Find the sum of each arithmetic series.	
13. 5 + 7 + 9 + 11 + + 27 192	14. -4 + 1 + 6 + 11 + + 91 870
15. 13 + 20 + 27 + + 272 5415	16. 89 + 86 + 83 + 80 + + 20 1308
17. $\sum_{n=1}^{4} (1-2n)$ -16 18. $\sum_{j=1}^{6} (5+3)$	n) 93 19. $\sum_{n=1}^{5} (9-4n)$ -15
20. $\sum_{k=4}^{10} (2k+1)$ 105 21. $\sum_{n=3}^{8} (5n-1)^{n}$	10) 105 22. $\sum_{n=1}^{101} (4 - 4n)$ -20,200
Find the first three terms of each arithmetic	metic series described.

23. $a_1 = 14$, $a_2 = -85$, $S_2 = -1207$ **24.** $a_1 = 1$, $a_2 = 19$, $S_2 = 100$

14, 11, 8	1, 3, 5
25. $n = 16, a_n = 15, S_n = -120$	26. $n = 15, a_n = 5\frac{4}{5}, S_n = 45$
-30, -27, -24	$\frac{1}{5}, \frac{3}{5}, 1$

27. STACKING A health club rolls its towels and stacks them in layers on a shelf. Each layer of towels has one less towel than the layer below it. If there are 20 towels on the bottom layer and one towel on the top layer, how many towels are stacked on the shelf? 210 towels

28. BUSINESS A merchant places \$1 in a jackpct on August 1, then draws the name of a regular customer. If the customer is present, he or she wins the \$1 in the jackpct. If the customer is no present, the merchant adds \$2 to the jackpt on August 2 and draws another name. Each day the merchant adds an amount equal to the day of the month. If the first person to win the jackpot wins \$496, on what day of the month was her or his name draws? August 31

Reading to Learn Mathematics, p. 641

Pre-Activity How do arithmetic series apply to amphitheaters?

Read the introduction to Lesson 11-2 at the top of page 583 in your textbook Suppose that an amphitheater can seat 50 people in the first row and that each row thereafter can seat 9 more people than the previous row. Using the vocabulary of arithmetic sequences, describe how you would find the the vocatulary of arithmetic sequences, describe how you would find the number of people who could be setted in the first 10 www. Do not actually calculate the again.) Sample answer: Find the first 10 terms of an arithmetic sequence with first term 50 and common difference 9. Then add these 10 terms.

ELL

Reading the Lesson

- What is the relationship between an arithmetic sequence and the corresponding arithmetic series? Sample answer: An arithmetic sequence is a list of terms with a common difference between successive terms. The corresponding arithmetic series is the sum of the terms of the sequence.
- 2. Consider the formula $S_a=\frac{n}{2}(a_1+a_4)$. Explain the meaning of this formula in words. Sample answer: To find the sum of the first *n* terms of an arithmetic sequence, find half the number of terms you are adding. Multiply this number by the sum of the first term and the *n*th term.
- 3. a. What is the purpose of sigma notation? Sample answer: to write a series in a concise form b. Consider the expression ∑¹²_{i=2} (4i − 2). This form of writing a sum is called _____
- sigma notation The variable *i* is called the <u>index of summation</u>.
- The first value of *i* is _____ 2____ The last value of *i* is 12
- How would you read this expression? The sum of 4i 2 as i goes from 2 to 12.
- Helping You Remember

4. A good way to remember something is to relate it to something you already know. How can your knowledge of how to find the average of two numbers help you remember the formula $S_n = \frac{n}{2}(a_1 + a_n)$? Sample answer: Rewrite the formula as $S_n = n \cdot \frac{a_1^2 + a_n}{2}$. The average of the first and last terms is given by the expression $\frac{a_1 + a_n}{a_n}$. The sum of the first *n* terms is the average of the first and last terms multiplied by the number of terms.

Check for Understanding

- Concept Check 1. Explain the difference between a sequence and a series.
- 1-3. See margin.
- **2. OPEN ENDED** Write an arithmetic series for which $S_5 = 10$.
- **3. OPEN ENDED** Write the series 7 + 10 + 13 + 16 using sigma notation.

GUIDED PRACTICE KEY			
Exercises	Examples		
4–9	1, 2		
10, 11	4		
12, 13	3		
14	1		

Guide	d Practice	Find S_n for each arithmetic series described as $100 - 25 + 1000$	
		4. $a_1 = 4, a_n = 100, n = 25$ 1300	5. $a_1 = 40, n = 20, d = -3$ 230
UIDED PF	ACTICE KEY	6. $a_1 = 132, d = -4, a_n = 52$ 1932	7. $d = 5, n = 16, a_n = 72$ 552
xercises	Examples	Find the sum of each arithmetic series.	
4–9	1, 2	8. 5 + 11 + 17 + + 95 800	9. 38 + 35 + 32 + + 2 260
10, 11 12, 13 14	4 3 1	10. $\sum_{n=1}^{7} (2n+1)$ 63	11. $\sum_{k=3}^{7} (3k+4)$ 95
	1	Find the first three terms of each arithme	etic series described.
		12. $a_1 = 11, a_n = 110, S_n = 726$ 11, 20, 2	9 13. $n = 8, a_n = 36, S_n = 120$ -6, 0, 6
-	Application	involving candles. The first night, a can night, a new candle and the candle fr	nerican festival of <i>Kwanzaa</i> includes a ritual andle is lit and then blown out. The second om the previous night are lit and blown ndle and relighting all the candles from the

previous nights is continued for seven nights. Use a formula from this lesson to find the total number of candle lightings during the festival. 28

★ indicates increased difficulty

Practice and Apply

For Exercises	See Examples
15–32, 39,	1, 2
40, 45	
33-38	4
41-44	3

See page 851.

Find S_n for each arithmetic series described. **15.** $a_1 = 7, a_n = 79, n = 8$ **344 ★ 25.** $d = \frac{1}{5}, n = 10, a_n = \frac{23}{10}$ **14**

16. $a_1 = 58, a_n = -7, n = 26$ **663**

 17. $a_1 = 43, n = 19, a_n = 115$ 1501
 18. $a_1 = 76, n = 21, a_n = 176$ 2646

 19. $a_1 = 7, d = -2, n = 9$ 20. $a_1 = 3, d = -4, n = 8$ 20. $a_1 = 3, d = -4, n = 8$ 21. $a_1 = 5, d = \frac{1}{2}, n = 13$ 104
 22. $a_1 = 12, d = \frac{1}{3}, n = 13$ 182

 23. $d = -3, n = 21, a_n = -64$ -714
 24. $d = 7, n = 18, a_n = 72$ 225

 25. $d = \frac{1}{5}, n = 10, a_n = \frac{23}{10}$ 14
 \star 26. $d = -\frac{1}{4}, n = 20, a_n = -\frac{53}{12}$ $-\frac{245}{6}$

27. TOYS Jamila is making a triangular wall with building blocks. The top row has one block, the second row has three, the third has five, and so on. How many rows can she make with a set of 100 blocks? **10 rows**

28. CONSTRUCTION A construction company will be fined for each day it is late completing its current project. The daily fine will be \$4000 for the first day and will increase by \$1000 each day. Based on its budget, the company can only afford \$60,000 in total fines. What is the maximum number of days it can be late? 8 days

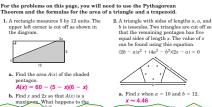
Find the sum of each arithmetic series.

29.
$$6 + 13 + 20 + 27 + \dots + 97$$
30. $7 + 14 + 21 + 28 + \dots + 98$ **73531.** $34 + 30 + 26 + \dots + 2$ **16232.** $16 + 10 + 4 + \dots + (-50)$ **-20433.** $\sum_{n=1}^{6} (2n + 11)$ **10834.** $\sum_{n=1}^{5} (2 - 3n)$ **-3535.** $\sum_{k=7}^{11} (42 - 9k)$ **-19536.** $\sum_{t=19}^{23} (5t - 3)$ **510★ 37.** $\sum_{i=1}^{300} (7i - 3)$ **315,150★ 38.** $\sum_{k=1}^{150} (11 + 2k)$ **24,300**

586 Chapter 11 Sequences and Series

Enrichment, p. 642

Geometric Puzzlers



Answers

- 1. In a series, the terms are added. In a sequence, they are not.
- 2. Sample answer: 0 + 1 + 2 + 3 + 4
- 3. Sample answer: $\sum_{n=1}^{\infty} (3n+4)$

- **39.** Find the sum of the first 1000 positive even integers. **1,001,000**
- **★ 40.** What is the sum of the multiples of 3 between 3 and 999, inclusive? **166,833**

41. $a_1 = 17, a_n = 197, S_n = 2247$	42. $a_1 = -13, a_n = 427, S_n = 18,423$
43. $n = 31, a_n = 78, S_n = 1023$	44. $n = 19, a_n = 103, S_n = 1102$

45. AEROSPACE On the Moon, a falling object falls just 2.65 feet in the first second after being dropped. Each second it falls 5.3 feet farther than in the previous second. How far would an object fall in the first ten seconds after being dropped? 265 ft

CRITICAL THINKING State whether each statement is *true* or *false*. Explain.

- **46.** Doubling each term in an arithmetic series will double the sum.
- **47.** Doubling the number of terms in an arithmetic series, but keeping the first term and common difference the same, will double the sum.
- **48.** WRITING IN MATH Answer the question that was posed at the beginning of the lesson. **See pp. 629A–629F.**

How do arithmetic series apply to amphitheaters?

Include the following in your answer:

- explanations of what the sequence and the series that can be formed from the given numbers represent, and
- two ways to find the amphitheater capacity if it has ten rows of seats.

49. 18 + 22 + 26 +	$30 + \ldots + 50 = ?$ ()	
A 146	B 272	C 306	D 340
		thmetic sequence. If asure of the largest a	
A 60°		B 72°	
C 84°		D 144°	<u>36°</u>

41. 17, 26, 35

44. 13, 18, 23

46. True: for any

series, $2a_1 + 2a_2 +$

 $2(a_1 + a_2 + a_3^{"} + ...$

example, 7 + 10 + 13

+ 16 = 46, but 7 +

10 + 13 + 16 + 19 +

22 + 25 + 28 = 140.

Standardized

Test Practice

 $2a_3 + ... + 2a_n =$

 $+ a_n$).

47. False; for

42. -13, -8, -3

43. -12, -9, -6

1	Use a graphing calculato	r to find the sum of each a	rithmetic series.
r	51. $\sum_{n=1}^{75} (2n+5)$ 5555	52. $\sum_{n=1}^{50} (3n-1)$ 3649	53. $\sum_{n=1}^{60} (4n+3)$ 6683
	n=21	n=10	n=20

Maintain Your Skills

Mixed Review	Find the indicated term of each arithmetic sequence. (Lesson 11-1) 54. $a_1 = 46, d = 5, n = 14$ 111 55. $a_1 = 12, d = -7, n = 22$ -135
57. $-\frac{9}{2}$	56. RADIOACTIVITY The decay of Radon-222 can be modeled by the equation $y = ae^{-0.1813t}$, where <i>t</i> is measured in days. What is the half-life of Radon-222? (<i>Lesson 10-6</i>) about 3.82 days
58. $-\frac{16}{3}$	Solve each equation by completing the square. (Lesson 6-4)
50. $\frac{3}{3}$ 59. $\frac{3\pm\sqrt{89}}{2}$	57. $x^2 + 9x + 20.25 = 0$ 58. $9x^2 + 96x + 256 = 0$ 59. $x^2 - 3x - 20 = 0$
2	Simplify. (Lesson 5-6)
	60. $5\sqrt{3} - 4\sqrt{3}\sqrt{3}$ 26. $\sqrt{26} \cdot \sqrt{39} \cdot \sqrt{14}$ 26. $(\sqrt{10} - \sqrt{6})(\sqrt{5} + \sqrt{3})$ 26. $\sqrt{21}$ 27. $\sqrt{2}$
Getting Ready for	PREREQUISITE SKILL Evaluate the expression $a \cdot b^{n-1}$ for the given values of
the Next Lesson	<i>a</i> , <i>b</i> , and <i>n</i> . (To review evaluating expressions, see Lesson 1-1.)
The second s	63. $a = 1, b = 2, n = 5$ 16 64. $a = 2, b = -3, n = 4$ 65. $a = 18, b = \frac{1}{3}, n = 6$ $\frac{2}{27}$
www.algebra2.co	om/self_check_quiz Lesson 11-2 Arithmetic Series 587

DAILY INTERVENTION

Auditory/Musical Have musical students explore and explain how the keys from octave to octave on a piano might relate to a sequence such as A_1 , A_2 , A_3 .

Differentiated Instruction

4 Assess

Open-Ended Assessment

Speaking Have students explain what sigma notation means, and why it is a useful way to write a series.

Intervention Make sure that all students can demonstrate understanding

of sigma notation by asking them to write out the terms of a series described in sigma notation.

Getting Ready for Lesson 11-3

PREREQUISITE SKILL Students will find terms in geometric sequences in Lesson 11-3. This will involve their evaluating variable expressions for different values as they find values in a sequence. Use Exercises 63–65 to determine your students' familiarity with evaluating variable expressions for given values.

Assessment Options

Quiz (Lessons 11-1 and 11-2) is available on p. 693 of the

Chapter 11 Resource Masters.

Focus

5-Minute Check Transparency 11-3 Use as a quiz or review of Lesson 11-2.

Mathematical Background notes are available for this lesson on p. 576C.

How

do geometric sequences apply to a bouncing ball?

Ask students:

- Why is this sequence not an arithmetic sequence? There is no common difference between terms.
- Compare a common difference and a common ratio. The first involves addition; the second, multiplication.

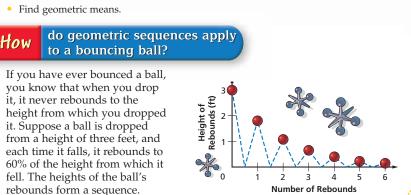
11-3 Geometric Sequences

What You'll Learn

Use geometric sequences.

Vocabulary

- geometric sequence
- common ratio geometric means



GEOMETRIC SEQUENCES The height of the first rebound of the ball is 3(0.6) or 1.8 feet. The height of the second rebound is 1.8(0.6) or 1.08 feet. The height of the third rebound is 1.08(0.6) or 0.648 feet. The sequence of heights, 1.8, 1.08, 0.648, ..., is an example of a geometric sequence. A geometric sequence is a sequence in which each term after the first is found by multiplying the previous term by a constant rcalled the **common ratio**.

As with an arithmetic sequence, you can label the terms of a geometric sequence as a_1, a_2, a_3 , and so on. The *n*th term is a_n and the previous term is a_{n-1} . So, $a_n = r(a_{n-1})$. Thus, $r = \frac{a_n}{a_{n-1}}$. That is, the common ratio can be found by dividing any term by its previous term.

Example 1) Find the Next Term

Multiple-Choice Test Item

Find the missing term in the geometric sequence: 8, 20, 50, 125,					
A 75	B 200	C 250	D 312.5		

The Princeton Review

Standardized **Test Practice**

Test-Taking Tip Since the terms of this sequence are increasing. the missing term must be greater than 125. You can immediately eliminate 75

as a possible answer.

Read the Test Item

Since $\frac{20}{8} = 2.5$, $\frac{50}{20} = 2.5$, and $\frac{125}{50} = 2.5$, the sequence has a common ratio of 2.5.

Solve the Test Item

To find the missing term, multiply the last given term by 2.5: 125(2.5) = 312.5.

The answer is D.

You have seen that each term of a geometric sequence can be expressed in terms of *r* and its previous term. It is also possible to develop a formula that expresses each term of a geometric sequence in terms of r and the first term a_1 . Study the patterns shown in the table on the next page for the sequence 2, 6, 18, 54,

588 Chapter 11 Sequences and Series

Resource Manager

Workbook and Reproducible Masters

Chapter 11 Resource Masters

- Study Guide and Intervention, pp. 643-644
- Skills Practice, p. 645
- Practice, p. 646
- Reading to Learn Mathematics, p. 647
- Enrichment, p. 648

School-to-Career Masters, p. 21

Transparencies

5-Minute Check Transparency 11-3 Answer Key Transparencies

🧐 Technology Interactive Chalkboard

Sequence	numbers	2	6	18	54	
	symbols	a ₁	a ₂	a ₃	a ₄	 a _n
Expressed in Terms of <i>r</i> and	numbers	2	2(3)	6(3)	18(3)	
the Previous Term	symbols	a ₁	a₁ · r	a₂ · r	a ₃ · r	 $a_{n-1} \cdot r$
Expressed in Terms of <i>r</i> and the First Term		2	2(3)	2(9)	2(27)	
	numbers	2(3 ⁰)	2(3 ¹)	2(3 ²)	2(3 ³)	
	symbols	а ₁ · <i>г</i> ⁰	$a_1 \cdot r^1$	$a_1 \cdot r^2$	$a_1 \cdot r^3$	 $a_1 \cdot r^{n-1}$

The three entries in the last column of the table all describe the *n*th term of a geometric sequence. This leads us to the following formula for finding the *n*th term of a geometric sequence.

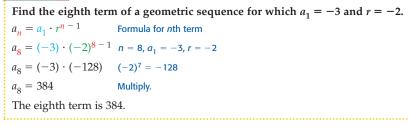
nth Term of a Geometric Sequence

Key Concept

The *n*th term a_n of a geometric sequence with first term a_1 and common ratio *r* is given by

 $a_n = a_1 \cdot r^{n-1}$, where *n* is any positive integer.

Example 2 Find a Particular Term



Example 3 Write an Equation for the nth Term

Write an equation for the *n*th term of the geometric sequence 3, 12, 48, 192, In this sequence, $a_1 = 3$ and r = 4. Use the *n*th term formula to write an equation. $a_n = a_1 \cdot r^{n-1}$ Formula for *n*th term $a_n = 3 \cdot 4^{n-1}$ $a_1 = 3, r = 4$

An equation is $a_n = 3 \cdot 4^{n-1}$.

You can also use the formula for the *n*th term if you know the common ratio and one term of a geometric sequence, but not the first term.

Example 4 Find a Term Given the Fourth Term and the Ratio

Find the tenth term of a geometric sequence for which $a_4 = 108$ and r = 3.First, find the value of a_1 .Now find a_{10} . $a_n = a_1 \cdot r^{n-1}$ Formula for *n*th term $a_4 = a_1 \cdot 3^{4-1}$ n = 4, r = 3 $108 = 27a_1$ $a_4 = 108$ $4 = a_1$ Divide each side by 27.

www.algebra2.com/extra_examples

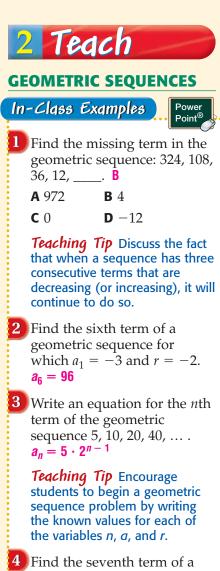
Lesson 11-3 Geometric Sequences 589

Teacher to Teacher

Holly K. Plunkett

University H.S., Morgantown, WV

"I have my students investigate the problem presented at the beginning of this lesson using a CBL."



Find the seventh term of a geometric sequence for which $a_3 = 96$ and r = 2. **1536**

Teaching Tip Emphasize the importance of writing every step of the calculations as an equation, so that each numeric value found during the process is clearly identified.

Example 1 In discussing the Test-Taking Tip for Example 1, point out that a geometric sequence with a negative common ratio is neither increasing nor decreasing.

GEOMETRIC MEANS

In-Class Example

5 Find three geometric means between 3.12 and 49.92. 6.24, 12.48, 24.96 or -6.24, 12.48, -24.96

Power Point®

Practice/Apply

Study Notebook

 add the definitions/examples of
the vocabulary terms to their
Vocabulary Builder worksheets for
Chapter II.
• include any other item(s) that they
find helpful in mastering the skills
in this lesson.

DAILY INTERVENTION

FIND THE ERROR

Help students see that if the first term is greater than 1, then a decreasing sequence must have a common ratio less than 1.

About the Exercises... **Organization by Objective**

• Geometric Sequences: 13–42

• Geometric Means: 43–46

Odd/Even Assignments

Exercises 13-24, 27-36, and 39-46 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Alert! Exercise 47 requires the Internet or other reference materials.

Assignment Guide

Basic: 13, 15, 21–29 odd, 33-47 odd, 48-61 Average: 13–47 odd, 48–61 Advanced: 14-46 even, 47-58 (optional: 59–61) All: Practice Quiz 1 (1–5)

Study Tip

Alternate Method You may prefer this method. The three means will be 2.25r, 2.25r², and 2.25r³. Then the common ratio is $r = \frac{576}{2.25r^3}$ or $r^4 = \frac{576}{2.25}$. Thus, r = 4.

GEOMETRIC MEANS In Lesson 11-1, you learned that missing terms between two nonsuccessive terms in an arithmetic sequence are called *arithmetic means*. Similarly, the missing terms(s) between two nonsuccessive terms of a geometric sequence are called **geometric means**. For example, 6, 18, and 54 are three geometric means between 2 and 162 in the sequence 2, 6, 18, 54, 162, You can use the common ratio to find the geometric means in a given sequence.

Example 5 Find Geometric Means

Find three geometric means between 2.25 and 576.

Use the *n*th term formula to find the value of *r*. In the sequence 2.25, ___, ___, <u>?</u>, 576, *a*₁ is 2.25 and *a*₅ is 576.

$a_n = a_1 \cdot r^{n-1}$	Formula for <i>n</i> th term
$a_5 = 2.25 \cdot r^{5-1}$	<i>n</i> = 5, <i>a</i> ₁ = 2.25
$576 = 2.25r^4$	<i>a</i> ₅ = 576
$256 = r^4$	Divide each side by 2.25.
$\pm 4 = r$	Take the fourth root of each
There are true pass	ible common ratios of th

There are two possible common ratios, so there are two possible sets of geometric means. Use each value of *r* to find three geometric means.

side.

b. 1, -2, -5, -8, ...

= 6561

r = 4	r = -4
$a_2 = 2.25(4) \text{ or } 9$	$a_2 = 2.25(-4)$ or -9
$a_3 = 9(4) \text{ or } 36$	$a_3 = -9(-4)$ or 36
$a_4 = 36(4) \text{ or } 144$	$a_4 = 36(-4)$ or -144
The geometric means are 9, 36, and 144,	or -9, 36, and -144.

Check for Understanding

Concept Check 1. Decide whether each sequence is *arithmetic* or *geometric*. Explain.

1a. Geometric; the terms have a common ratio of -2. 1b. Arithmetic; the terms have a common difference of -3. 2. Sample answer: 1,

2 4 8 <u>3</u>, <u>9</u>, <u>27</u>, ... geometric sequence 9, 3, 1, Marika 1 ori $r = \frac{3}{9} \text{ or } \frac{1}{3}$ $a_7 = 9 \left(\frac{1}{3}\right)^{7-1}$ $r = \frac{9}{3} \text{ or } 3$ $a_7 = 9 \cdot 3^{7-1}$ $=\frac{1}{81}$

2. **OPEN ENDED** Write a geometric sequence with a common ratio of $\frac{2}{3}$.

3. FIND THE ERROR Marika and Lori are finding the seventh term of the

Marika; Lori divided in the wrong order when finding r. *Guided Practice* Find the next two terms of each geometric sequence.

```
4. 20, 30, 45, ... 67.5, 101.25
```

Who is correct? Explain your reasoning.

a. 1, -2, 4, -8, ...

```
5. -\frac{1}{4}, \frac{1}{2}, -1, \dots 2, -4
```

6. Find the first five terms of the geometric sequence for which $a_1 = -2$ and r = 3. -2, -6, -18, -54, -162

DAILY **INTERVENTION**

Differentiated Instruction

Interpersonal Have students in small groups discuss any confusions they may have about the language, formulas, and definitions for arithmetic and geometric sequences and series. Suggest that they help each other organize their notes and thinking to make these topics clear.

ExercisesExamples4-6, 1217, 829310411511.	36 20 6 3	Study Guide and Intervention, budded and budd
Practice and App		4. 0.8, -2.4, 7.2, 5. 80, 60, 45, 6. 3, 16.5, 90.75, -21.6, 64.8 33.75, 25.3125 499.125, 2745.1875
Flactice and App	ny	Find the first five terms of each geometric sequence described. 7. $a_1 = \frac{1}{9}$, $r = 3$ 8. $a_1 = 240$, $r = -\frac{3}{4}$ 9. $a_1 = 10$, $r = \frac{5}{2}$
For Exercises See Examples 13. 13-24 1 15. 25-30, 33- 2 38, 47, 48 ★ 17. 31, 32 4 4	ad the next two terms of each geometric sequence.405, 135, 45, 15, 514. 81, 108, 144, 192, 256 16, 24, 36, 54, 8116. 162, 108, 72, 48, 32 $\frac{5}{2}, \frac{5}{3}, \frac{10}{9},$ $\frac{20}{27}, \frac{40}{81}$ \star 18. $\frac{1}{3}, \frac{5}{6}, \frac{25}{12},$ $\frac{125}{24}, \frac{625}{48}$ 1.25, -1.5, 1.8,2.16, 2.592 \star 20. 1.4, -3.5, 8.75,21.875, 54.6875	$\frac{1}{9}, \frac{1}{3}, 1, 3, 9$ $\frac{400, -180, 135, 10, 25, 62\frac{1}{2}, 156\frac{1}{4}, -101\frac{1}{4}, 75\frac{15}{16}$ $390\frac{5}{8}$ Find the indicated term of each geometric sequence. $10, a_1 = -10, r = 4, n = 2$ $11, a_1 = -6, r = -\frac{1}{2}, n = 8$ $12, a_3 = 9, r = -3, n = 7$ -40 $\frac{3}{64}$ 729 $13, a_4 = 16, r = 2, n = 10$ $14, a_4 = -54, r = -3, n = 6$ $15, a_1 = 8, r = \frac{2}{3}, n = 5$ 1024 -486 $\frac{128}{61}$ Write an equation for the <i>n</i> th term of each geometric sequence. $16, 500, 350, 245, \dots$ $17, 8, 32, 128, \dots$ $18, 11, -242, 53.24, \dots$ $500, 0.7r^{-1}$ $8, 4^{n-1}$ $11, (-2.2)r^{-1}$
Extra PracticeFinSee page 852.23.	ad the first five terms of each geometric sequence described. $a_1 = 2, r = -3$ 2, -6, 18, -54, 162 22. $a_1 = 1, r = 4$ 1, 4, 16, 64, 256 $a_1 = 243, r = \frac{1}{3}$ 243, 81, 27, 9, 3 24. $a_1 = 576, r = -\frac{1}{2}$ Find a_7 if $a_n = 12(\frac{1}{2})^{n-1}$. $\frac{3}{16}$ 576, -288, 144, -72, 36	Solution State If (12.2) Skills Practice, p. 645 and Practice, p. 646 (shown) Find the next two terms of each geometric sequence. 1. $-15, -30, -60,, -120, -240$ 2. 80, 40, 20, 10, 5 3. 90, 30, 10, $\frac{10}{3}, \frac{10}{9}$ 4. $-1458, 486, -182, 54, -18$ 5. $\frac{1}{3}, \frac{3}{8}, \frac{7}{16}, \frac{27}{32}, \frac{61}{64}$ 6. 216, 144, 96, $64, \frac{128}{3}$
Fin 27. 29. ★ 31. 33. 35. • 37. Art • The largest ever ice construction was an ice palace built for a carnival in St. Paul, Minnesota, in 1992. It contained 10.8 million pounds of ice.	If $a_n = \frac{1}{3} \cdot 6^{n-1}$, what is a_6 ? 2592 and the indicated term of each geometric sequence. $a_1 = \frac{1}{3}, r = 3, n = 8$ 729 $a_1 = 16,807, r = \frac{3}{7}, n = 6$ 243 $a_4 = 16, r = 0.5, n = 8$ 1 $a_6 = 3, r = 2, n = 12$ 192 a_9 for $\frac{1}{5}, 1, 5,$ 78,125 a_8 for 4, -12, 36,8748 36. a_6 for 540, 90, 15, $\frac{5}{72}$ ART A one-ton ice sculpture is melting so that it loses one-fifth of its weight per hour. How much of the sculpture will be left after five hours? Write the answer in pounds. 655.36 lb SALARIES Geraldo's current salary is \$40,000 per year. His annual pay raise is always a percent of his salary at the time. What would his salary be if he got four consecutive 4% increases? \$46,794.34 ite an equation for the <i>n</i>th term of each geometric sequence. $36, 12, 4,, a_n = 36(\frac{1}{3})^{n-1}$ $-2, 10, -50,, a_n = -2(-5)^{n-1}$ 42. 4, -12, 36, $a_n = 4(-3)^{n-1}$	For the first first even so calculate sequence described. $1 \rightarrow (-1, -2) \rightarrow ($
43. ±18, 36, ±72 44. ±12, 36, ±108 45. 16, 8, 4, 2 43.	ad the geometric means in each sequence. 46. 6, 12, 24, 48 9, ?, ?, ?, ?, 144 44. 4, ?, ?, ?, ?, 324 32, ?, ?, ?, ?, ?, 1 46. 3, ?, ?, ?, ?, 96	 falls, it bounces back to 74% of the height from which it fell. Describe how would you find the height of the hird bounce. (Do not actually calculate the height of the hird bounce.) Sample answer: Multiply 4 by 0.74 three times. Reading the Lesson Explain the difference between an arithmetic sequence and a geometric sequence. Sample answer: In an arithmetic sequence, each term after the first is found by adding the common difference to the previous term. In a geometric sequence, each term after the first is found by multiplying the previous term by the common ratio. Consider the formula a_n = a₁ : rⁿ⁻¹. What is this formula used to find? a particular term of a geometric sequence. Is what is the term

Enrichment, p. 648

Suppose you are 200 feet from a fixed point, P. Suppose that you are able to move to the halfway point in one minute, to the next halfway point one minute after that, and so on.

200 feet

An interesting sequence results because according to the problem, you never actually reach the point P, although you do get arbitrarily close to it. You can compute how long it will take to get within some specified small distance of the point. On a calculator, you enter the distance to be covered and then count the number of successive divisions by 2 necessary to get within the desired distance.

100 150 1st minute J 2nd minute J

175 P 3rd minute

Half the Distance

Å

- a_n: the nth term
 - a₁: the first term
 - r: the common ratio

- n: a positive integer that indicates which term you are finding
- $\begin{array}{c} \textbf{3. a. In the sequence 5, 8, 11, 14, 17, 20, the numbers 8, 11, 14, and 17 are \\ \hline \\ \underline{arithmetic means} \\ \textbf{b. In the sequence 12, 4, \frac{4}{3}, \frac{4}{9}, \frac{4}{27}, the numbers 4, \frac{4}{3}, and \frac{4}{9} are \\ \end{array}$ **geometric means** between 12 and $\frac{4}{27}$.

Helping You Remember

- A suppose that your classmate Ricardo has trouble remembering the formula $a_n = a_1 \cdot r^{n-1}$ correctly. He thinks that the formula should be $a_n = a_1 \cdot r^{n-1}$. How would you explain to him that he should use r^{n-1} rather than r^n in the formula? Sample answer: Each term after the first in a geometric sequence is found by multiplying the provious term by *r*. There are n 1 terms before the *r*th term, so you would need to multiply by *r* a total of n 1 times, not *n* times, to get the *r*th term.

455855

Open-Ended Assessment

Modeling With manipulatives or sketches, have students use various geometric elements (for example, numbers of sides and diagonals) to model problems involving arithmetic and geometric sequences.

Intervention Make sure that students understand the difference between

arithmetic and geometric sequences by asking them to create a simple example of each one.

Getting Ready for Lesson II-4

PREREOUISITE SKILL Students will find the sum of the first *n* terms of geometric series in Lesson 11-4. This will involve evaluating rational expressions for different values. Use Exercises 59-61 to determine your students' familiarity with evaluating rational expressions.

Assessment Options

Practice Quiz 1 The quiz provides students with a brief review of the concepts and skills in Lessons 11-1 through 11-3. Lesson numbers are given to the right of exercises or instruction lines so students can review concepts not yet mastered.

MEDICINE For Exercises 47 and 48, use the following information. Iodine-131 is a radioactive element used to study the thyroid gland.

- **47. RESEARCH** Use the Internet or other resource to find the *half-life* of Iodine-131, rounded to the nearest day. This is the amount of time it takes for half of a sample of Iodine-131 to decay into another element. 8 days
- 48. How much of an 80-milligram sample of Iodine-131 would be left after 32 days? 5 ma

CRITICAL THINKING Determine whether each statement is *true* or *false*. If true, explain. If false, provide a counterexample.

- 49. Every sequence is either arithmetic or geometric.
- 50. There is no sequence that is both arithmetic and geometric.
- 51. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.

How do geometric sequences apply to a bouncing ball?

Include the following in your answer:

• the first five terms of the sequence of heights from which the ball falls, and

Lessons 11-1 through 11-3

• any similarities or differences in the sequences for the heights the ball rebounds and the heights from which the ball falls.

49. False; the

geometric.

50. False, the

sequence 1, 4, 9, 16,

neither arithmetic nor

sequence 1, 1, 1, 1,

..., for example, is

geometric (r = 1).

arithmetic (d = 0) and

..., for example, is

- **52.** Find the missing term in the geometric sequence: -5, 10, -20, 40, ____. (A) - 80**B** −35 \bigcirc 80 **D** 100
- 53. What is the tenth term in the geometric sequence: 144, 72, 36, 18, ...? C **B** $\frac{9}{64}$ $\bigcirc \frac{9}{32}$ $D_{\frac{9}{16}}$ $\bigcirc 0$

Maintain Your Skills

Mixed Review	Find S_n for each arithmetic series described. (Lesson 11-2) 54. $a_1 = 11, a_n = 44, n = 23$ 632.5 55. $a_1 = -5, d = 3, n = 14$ 203
57. –12, –16, –20	Find the arithmetic means in each sequence. (Lesson 11-1) 56. 15, _?_, _?_, 27 19, 23 578, _?_, _?_, _?_, -24
	58. GEOMETRY Find the perimeter of a triangle with vertices at (2, 4), (-1, 3) and (1, -3). (Lesson 8-1) $5\sqrt{2} + 3\sqrt{10}$ units
Getting Ready for	PREREQUISITE SKILL Evaluate each expression. (To review expressions, see Lesson 1-1.)
the Next Lesson	59. $\frac{1-2^7}{1-2}$ 127 60. $\frac{1-\left(\frac{1}{2}\right)^6}{1-\left(\frac{1}{2}\right)}$ 63 61. $\frac{1-\left(-\frac{1}{3}\right)^5}{1-\left(-\frac{1}{3}\right)}$ 61

Practice Quiz 1

Find the indicated term of each arithmetic sequence. (Lesson 11-1)			
1. $a_1 = 7, d = 3, n = 14$ 46 2. $a_1 = 2, d = \frac{1}{2}, n = 8$ 11			
Find the sum of each arithmetic series described. (Lesson 11-2)			
3. $a_1 = 5, a_n = 29, n = 11$ 187 4. $6 + 12 + 18 + \dots + 96$ 816			
5. Find a_7 for the geometric sequence 729, -243, 81, (Lesson 11-3) 1			

592 Chapter 11 Sequences and Series

Answer

- 51. The heights of the bounces of a ball and the heights from which a bouncing ball falls each form geometric sequences. Answers should include the following.
 - 3, 1.8, 1.08, 0.648, 0.3888
 - The common ratios are the same, but the first terms are different. The sequence of heights from which the ball falls is the sequence of heights of the bounces with the term 3 inserted at the beginning.

Graphing Calculator Investigation

A Preview of Lesson 11-4

Limits

You may have noticed that in some geometric sequences, the later the term in the sequence, the closer the value is to 0. Another way to describe this is that as nincreases, a_n approaches 0. The value that the terms of a sequence approach, in this case 0, is called the **limit** of the sequence. Other types of infinite sequences may also have limits. If the terms of a sequence do not approach a unique value, we say that the limit of the sequence does not exist.

Find the limit of the geometric sequence $1, \frac{1}{3}, \frac{1}{9}, \dots$.

Step 1 Enter the sequence.

- The formula for this sequence is $a_n = \left(\frac{1}{3}\right)^{n-1}$.
- Position the cursor on L1 in the STAT EDIT Edit ... screen and enter the formula seq(N,N,1,10,1). This generates the values 1, 2, ..., 10 of the index N.
- Position the cursor on L2 and enter the formula seq((1/3)^(N-1),N,1,10,1). This generates the first ten terms of the sequence.
 - **KEYSTROKES:** Review sequences in the Graphing Calculator Investigation on page 585.

Notice that as n increases, the terms of the given sequence get closer and closer to 0. If you scroll down, you can see that for $n \ge 8$ the terms are so close to 0 that the calculator expresses them in scientific notation. This suggests that the limit of the sequence is 0.

Exercises

Use a graphing calculator to find the limit, if it exists, of each sequence.

1.
$$a_n = \left(\frac{1}{2}\right)^n \mathbf{0}$$

4. $a_n = \frac{1}{n^2} \mathbf{0}$

2. $a_n = \left(-\frac{1}{2}\right)^n$ **0 3.** $a_n = 4^n$ does not exist **5.** $a_n = \frac{2^n}{2^n + 1}$ **1 6.** $a_n = \frac{n^2}{n+1}$ does not exist

www.algebra2.com/other_calculator_keystrokes

Step 2 Graph the sequence.

- Use a STAT PLOT to graph the sequence. Use L1 as the Xlist and L2 as the Ylist.
 - **KEYSTROKES:** Review STAT PLOTs on page 87.

[0, 10] scl: 1 by [0, 1] scl: 0.1

The graph also shows that, as *n* increases, the terms approach 0. In fact, for $n \ge 6$, the marks appear to lie on the horizontal axis. This strongly suggests that the limit of the sequence is 0.

593 Graphing Calculator Investigation Limits

Graphing Calculator Investigation

A Preview of Lesson 11-4

Entering Sequences To enter the formula seq (N,N,1,10,1) in Step 1, use the keystrokes 2nd

[LIST] ▶ 5 ALPHA [N] , ALPHA [N] , 1 , 10 , 1). Follow a similar procedure to enter the

Graphing Sequences Stat plots for sequences are graphed in the same way as any other stat plot. It is essential that lists L₁ and L₂ contain the same number of elements.

Graphing Window The *x*-axis settings are determined by the values in L1. The *y*-axis settings are determined by the values in L₂.

Teach

formula for L₂.

Ask: Does the sequence 3, 9, 27, 81, ... have a limit? **no** Does 0.1, 0.01, 0.001, 0.0001, ...? yes

55855

Ask the students:

- Describe the graph in the example in terms of asymptotes. The graph has the x-axis as an asymptote.
- Does every decreasing geometric sequence have a limit? Explain. No; A sequence such as -2, -4, -8, -16, ... is decreasing and has no limit.

Lesson Notes

Focus

5-Minute Check Transparency 11-4 Use as a quiz or review of Lesson 11-3.

Mathematical Background notes are available for this lesson on p. 576D.

How is e-mailing a joke like a geometric series?

Ask students:

How many people have read your joke at the end of Monday?
at the end of Tuesday? 12 at the end of Wednesday? 39 at the end of Thursday? 120

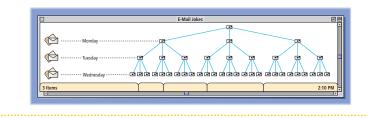
11-4 Geometric Series

What You'll Learn

- Find sums of geometric series.
- Find specific terms of geometric series.

fow is e-mailing a joke like a geometric series?

Suppose you e-mail a joke to three friends on Monday. Each of those friends sends the joke on to three of their friends on Tuesday. Each person who receives the joke on Tuesday sends it to three more people on Wednesday, and so on.



GEOMETRIC SERIES Notice that every day, the number of people who read your joke is three times the number that read it the day before. By Sunday, the number of people, including yourself, who have read the joke is 1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187 or 3280!

The numbers 1, 3, 9, 27, 81, 243, 729, and 2187 form a geometric sequence in which $a_1 = 1$ and r = 3. Since 1, 3, 9, 27, 81, 243, 729, 2187 is a geometric sequence, 1 + 3 + 9 + 27 + 81 + 243 + 729 + 2187 is called a **geometric series**. Below are some more examples of geometric sequences and their corresponding geometric series.

Geometric Sequences	Geometric Series
1, 2, 4, 8, 16	1 + 2 + 4 + 8 + 16
4, -12, 36	4 + (-12) + 36
$5, 1, \frac{1}{5}, \frac{1}{25}$	$5 + 1 + \frac{1}{2} + \frac{1}{22}$
5 25	5 25

To develop a formula for the sum of a geometric series, consider the series given in the e-mail situation above.

 $S_8 = \frac{1 - 6561}{1 - 3}$ or 3280 last term in series multiplied by common ratio; in this case, a_9

The expression for S_8 can be written as $S_8 = \frac{a_1 - a_1 r^8}{1 - r}$. A rational expression like this can be used to find the sum of any geometric series.

594 Chapter 11 Sequences and Series

Study Tip Terms of

Geometric Sequences

Remember that a_9 can also be written as a_1r^8 .

Vocabulary

geometric series

Resource Manager

Workbook and Reproducible Masters

Chapter 11 Resource Masters

- Study Guide and Intervention, pp. 649–650
- Skills Practice, p. 651
- Practice, p. 652
- Reading to Learn Mathematics, p. 653
- Enrichment, p. 654
- Assessment, pp. 693, 695

School-to-Career Masters, p. 22

Transparencies

5-Minute Check Transparency 11-4 Answer Key Transparencies

🧐 Technology

Alge2PASS: Tutorial Plus, Lesson 21 Interactive Chalkboard

Key Concept

Sum of a Geometric Series

The sum S_n of the first *n* terms of a geometric series is given by

 $S_n = \frac{a_1 - a_1 r^n}{1 - r}$ or $S_n = \frac{a_1 (1 - r^n)}{1 - r}$, where $r \neq 1$.

You cannot use the formula for the sum with a geometric series for which r = 1 because division by 0 would result. In a geometric series with r = 1, the terms are constant. For example, 4 + 4 + 4 + ... + 4 is such a series. In general, the sum of *n* terms of a geometric series with r = 1 is $n \cdot a^1$.

Example 1) Find the Sum of the First n Terms

GENEALOGY In the book *Roots*, author Alex Haley traced his family history back many generations to the time one of his ancestors was brought to America from Africa. If you could trace your family back for 15 generations, starting with your parents, how many ancestors would there be?

Counting your two parents, four grandparents, eight great-grandparents, and so on gives you a geometric series with $a_1 = 2$, r = 2, and n = 15.

$$S_n = \frac{a_1(1 - r^n)}{1 - r} \quad \text{Sum formula}$$
$$S_{15} = \frac{2(1 - 2^{15})}{1 - 2} \quad n = 15, a_1 = 2,$$
$$S_{15} = 65.534 \quad \text{Use a calculator}$$

Going back 15 generations, you have 65,534 ancestors.

As with arithmetic series, you can use sigma notation to represent geometric series.

Example 2) Evaluate a Sum Written in Sigma Notation

r = 2

Genealogy When he died in 1992, Samuel Must of Fryburg, Pennsylvania, had a record 824 living descendants. Source: The Guinness Book of Records

More About

Evaluate $\sum_{n=1}^{6} 5 \cdot 2^{n-1}$.

Method 1 Method 2 Find the terms by replacing *n* with 1, 2, Since the sum is a geometric series, 3, 4, 5, and 6. Then add. you can use the formula $\sum_{n=1}^{6} 5 \cdot 2^{n-1} = 5(2^{1-1}) + 5(2^{2-1}) + 5(2^{4-1}) + 5(2^{5-1}) + 5(2^{4-1}) + 5(2^{5-1}) + 5(2^{6-1})$ $S_n = \frac{a_1(1-r^n)}{1-r}$ $S_6 = \frac{5(1-2^6)}{1-2}$ $n = 6, a_1 = 5, r = 2$ = 5(1) + 5(2) + 5(4) + 5(8)+ 5(16) + 5(32) $S_6 = \frac{5(-63)}{-1} \qquad \mathbf{2^6} = \mathbf{64}$ = 5 + 10 + 20 + 40 + 80+ 160 $S_6 = 315$ Simplify. = 315The sum of the series is 315.

How can you find the sum of a geometric series if you know the first and last terms and the common ratio, but not the number of terms? Remember the formula for the *n*th term of a geometric sequence or series, $a_n = a_1 \cdot r^{n-1}$. You can use this formula to find an expression involving r^n .

$$a_n = a_1 \cdot r^{n-1}$$
 Formula for *n*th term

$$a_n \cdot r = a_1 \cdot r^{n-1} \cdot r$$
 Multiply each side by *r*.

$$a_n \cdot r = a_1 \cdot r^n$$
 $r^{n-1} \cdot r^l = r^{n-1+1}$ or *r*

www.algebra2.com/extra_examples

Lesson 11-4 Geometric Series 595

2 Teach

GEOMETRIC SERIES

In-Class Examples

1

Teaching Tip Ask students to explain the difference between counting direct ancestors, as in Example 1, and counting living descendants. Point out that this example counts only direct biological parents, not taking into consideration step-parents, adoptive parents, aunts, uncles, and so on. Discuss how the counting process might change if this assumption were not made.

Power

Point[®]

GENEALOGY Use the information in Example 2. How many direct ancestors would a person have after 8 generations? **510**

Teaching Tip Review the basic ideas by asking students to explain the difference between a sequence and a series. Ask them to read Example 2 aloud to be sure they can interpret the sigma notation correctly.

2 Evaluate $\sum_{n=1}^{12} 3 \cdot 2^{n-1}$. **12,285**

ww.algebra2.com/extra_examp

In-Class Example	Power Point [®]
3 Find the sum of a geor	
series for which $a_1 = 7$	776,
$a_n = 6$, and $r = -\frac{1}{6}$. 66	66

SPECIFIC TERMS

In-Class Example Power Point® 4 Find a_1 in a geometric series for which $S_8 = 765$ and r = 2.3

Practice/Apply

Study Notebook
Have students—
 add the definitions/examples of
the vocabulary terms to their
Vocabulary Builder worksheets for
Chapter II.
• include any other item(s) that they
find helpful in mastering the skills
in this lesson.

About the Exercises... **Organization by Objective**

- Geometric Series: 15–40, 47
- Specific Terms: 41–46

Odd/Even Assignments

Exercises 15-46 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Alert! A graphing calculator is needed for Exercises 52-54.

Assignment Guide

Basic: 15–25 odd, 29–37 odd, 41, 43, 47-51, 55-67

Average: 15-47 odd, 48-51, 55-67 (optional: 52-54)

Advanced: 16–48 even, 49–61 (optional: 62–67)

Example 3) Use the Alternate Formula for a Sum

Find the sum of a geometric series for which $a_1 = 15,625$, $a_n = -5$, and $r = -\frac{1}{5}$. Since you do not know the value of *n*, use the formula derived above.

$$S_n = \frac{a_1 - a_n r}{1 - r}$$
 Alternate sum formula
$$= \frac{15,625 - (-5)(-\frac{1}{5})}{1 - (-\frac{1}{5})} \qquad a_1 = 15,625, a_n = -5, r = -\frac{1}{5}$$
$$= \frac{15,624}{\frac{6}{5}} \text{ or } 13,020 \qquad \text{Simplify.}$$

SPECIFIC TERMS You can use the formula for the sum of a geometric series to help find a particular term of the series.

Example 4.) Find the First Term of a Series

Find a_1 in a geometric series for which $S_8 = 39,360$ and r = 3.

$S_n = \frac{a_1(1-r^n)}{1-r}$	Sum formula
$39,360 = \frac{a_1(1-3^8)}{1-3}$	S ₈ =39,360; r = 3; n = 8
$39,360 = \frac{-6560a_1}{-2}$	Subtract.
$39,360 = 3280a_1$	Divide.
$12 = a_1$	Divide each side by 3280.

The first term of the series is 12.

Check for Understanding

1. Sample answer:

- $4 + 2 + 1 + \frac{1}{2}$
- **Concept Check** 1. OPEN ENDED Write a geometric series for which $r = \frac{1}{2}$ and n = 4. **2.** Explain, using geometric series, why the polynomial $1 + x + x^2 + x^3$ can be written as $\frac{x^4 - 1}{x - 1}$, assuming $x \neq 1$. See margin.

 - 3. Explain how to write the series 2 + 12 + 72 + 432 + 2592 using sigma notation. See pp. 629A-629F.
- **Guided** Practice **GUIDED PRACTICE KEY** Exercises Examples 4, 5 3 6-9.14 1 10, 11 2 12, 13 4 1330 8. 9
 - Find S_n for each geometric series described.

Find S_n for each geometry 4. $a_1 = 12, a_5 = 972, r = -3$ 732 5. $a_1 = 3, a_n = 40, 0, 0, ...$ 7. $a_1 = 243, r = -\frac{2}{3}, n = 5$ 165 **5.** $a_1 = 3, a_n = 46,875, r = -5$ **39,063**

10.
$$\sum_{1}^{5} \frac{1}{4} \cdot 2^{n-1} \frac{31}{4}$$

9. $3 - 6 + 12 - \dots$ to 7 terms **129**

11.
$$\sum_{n=1}^{7} 81 \left(\frac{1}{3}\right)^{n-1} \frac{1093}{9}$$

596 Chapter 11 Sequences and Series

DAILY INTERVENTION

Differentiated Instruction

Naturalist Have students research how biologists and ecologists use geometric series in their work to count and predict the population changes for various organisms.

12.
$$S_n = \frac{381}{64}, r = \frac{1}{2}, n = 7; a_1$$
 3 13. $S_n = 33, a_n = 48, r = -2; a_1$ **3**

Application 14. WEATHER Heavy rain caused a river to rise. The river rose three inches the first day, and each additional day it rose twice as much as the previous day. How much did the river rise in five days? 93 in. or 7 ft 9 in.

★ indicates increased difficulty Practice and Apply

More About

Legends. Some of the best-known

legends involving a king are the Arthurian legends. According to legend, King Arthur reigned over Britain

before the Saxon conquest.

Camelot was the most famous castle in the

medieval legends of King Arthur.

Homework Help	Find S_n for each geometric series desc	ribed.
For See Exercises Examples	15. $a_1 = 2, a_6 = 486, r = 3$ 728	16. $a_1 = 3, a_8 = 384, r = 2$ 765
15–34, 47 1, 3 35–40 2	17. $a_1 = 1296, a_n = 1, r = -\frac{1}{6}$ 1111	18. $a_1 = 343, a_n = -1, r = -\frac{1}{7}$ 300
41-46 4	19. $a_1 = 4, r = -3, n = 5$ 244	20. $a_1 = 5, r = 3, n = 12$ 1,328,600
Extra Practice See page 852.	21. $a_1 = 2401, r = -\frac{1}{7}, n = 5$ 2101	22. $a_1 = 625, r = \frac{3}{5}, n = 5$ 1441
	23. $a_1 = 162, r = \frac{1}{3}, n = 6 \frac{728}{3}$	24. $a_1 = 80, r = -\frac{1}{2}, n = 7 \frac{215}{4}$
	25. $a_1 = 625, r = 0.4, n = 8$ 1040.984	26. $a_1 = 4, r = 0.5, n = 8$ 7.96875
	★ 27. $a_2 = -36, a_5 = 972, n = 7$ 6564	★ 28. $a_3 = -36, a_6 = -972, n = 10$ - 118,096

- 29. HEALTH Contagious diseases can spread very quickly. Suppose five people are ill during the first week of an epidemic and that each person who is ill spreads the disease to four people by the end of the next week. By the end of the tenth week of the epidemic, how many people have been affected by the illness? 1.747.625
- 30. LEGENDS There is a legend of a king who wanted to reward a boy for a good deed. The king gave the boy a choice. He could have \$1,000,000 at once, or he could be rewarded daily for a 30-day month, with one penny on the first day, two pennies on the second day, and so on, receiving twice as many pennies each day as the previous day. How much would the second option be worth? \$10,737,418.23

Find the sum of each geometric series.

31. 4096 - 512 + 64 - ... to 5 terms **3641 32.** 7 + 21 + 63 + ... to 10 terms **206,668 33.** $\frac{1}{16} + \frac{1}{4} + 1 + \dots$ to 7 terms $\frac{5461}{16}$ **34.** $\frac{1}{9} - \frac{1}{3} + 1 - \dots$ to 6 terms $-\frac{182}{9}$ **35.** $\sum_{n=1}^{9} 5 \cdot 2^{n-1}$ **2555 36.** $\sum_{n=1}^{6} 2(-3)^{n-1}$ **-364 37.** $\sum_{n=1}^{7} 144 \left(-\frac{1}{2}\right)^{n-1} \frac{387}{4}$ **38.** $\sum_{n=1}^{8} 64 \left(\frac{3}{4}\right)^{n-1} \frac{58,975}{256} \star 39. \sum_{n=1}^{20} 3 \cdot 2^{n-1} 3,145,725 \star 40. \sum_{n=1}^{16} 4 \cdot 3^{n-1} 86,093,440$

Find the indicated term for each geometric series described. **41.** $S_n = 165, a_n = 48, r = -\frac{2}{3}; a_1$ **243 42.** $S_n = 688, a_n = 16, r = -\frac{1}{2}; a_1$ **1024 43.** $S_n = -364, r = -3, n = 6; a_1$ **2 44.** $S_n = 1530, r = 2, n = 8; a_1$ **6 ★ 45.** $S_n = 315, r = 0.5, n = 6; a_2$ **80 ★ 46.** $S_n = 249.92, r = 0.2, n = 5, a_3$ **8**

47. LANDSCAPING Rob is helping his dad install a fence. He is using a sledgehammer to drive the pointed fence posts into the ground. On his first swing, he drives a post five inches into the ground. Since the soil is denser the deeper he drives, on each swing after the first, he can only drive the post 30% as far into the ground as he did on the previous swing. How far has he driven the post into the ground after five swings? about 7.13 in.

www.algebra2.com/self_check_quiz

Answer

2. The polynomial is a geometric series with first term 1, common ratio x, and 4 terms. The sum is $\frac{1(1-x^4)}{1-x} = \frac{x^4-1}{x-1}$.

Enrichment, p. 654

Annuities An annuity is a fixed amount of money payable at given intervals. For exam suppose you wanted to set up a trust fund so that \$30,000 could be withdr each year for 14 years before the money ran out. Assume the money can l invested at 9% Invested at $\sigma \approx$. You must find the amount of money that needs to be invested. Call this amount A. After the third payment, the amount left is 1.09[1.09A - 30,000(1 + 1.09)] - 30,000 = 1.09²A - 30,000(1 + 1.09 + 1.09²). The results are summarized in the table below nt Number of Dollars Left After Payment A - 30,000 1.09A - 30,000(1 + 1.09) 1.09²A - 30,000(1 + 1.09 + 1.09²)

1. Use the pattern shown in the table to find the number of dollars left after the fourth payment. $1.09^3A - 30,000(1 + 1.09 + 1.09^2 + 1.09^3)$ left after st

Study Guide and Intervention, p. 649 (shown) and p. 650

Geometric Series A geometric series is the indicated sum of consecutive terms of a Sum of a The sum S_n of the first n terms of a geometric series is given by

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	tric series is given by r ≠ 1.			
Example 1 Find the sum of the first	Example 2 Find the sum of the			
four terms of the geometric sequence for which $a_1 = 120$ and $r = \frac{1}{3}$.	geometric series $\sum_{j=1}^{j} 4 \cdot 3^{j-2}$.			
$S_n = \frac{a_1(1 - r^n)}{1 - r}$ Sum formula	Since the sum is a geometric series, you can use the sum formula. $S_n = \frac{a_1(1-r^n)}{1-r} \qquad \text{Sum formula}$			
$S_4 = \frac{120 \left(1 - \left(\frac{1}{3}\right)^4\right)}{1 - \frac{1}{3}} \qquad n = 4, a_t = 120, r = \frac{1}{3}$	$\frac{4}{2}(1 - 3^7)$			
$\simeq 177.78$ Use a calculator. The sum of the series is 177.78.	≃ 1457.33 Use a calculator.			
Exercises	The sum of the series is 1457.33.			
Find S_n for each geometric series describ				
1. $a_1 = 2, a_n = 486, r = 3$ 2. $a_1 = 1200, a_2$ 728 2325				
4. $a_1 = 3, r = \frac{1}{3}, n = 4$ 5. $a_1 = 2, r =$ 4.44 518	2730			
7. $a_1 = 100, r = -\frac{1}{2}, n = 5$ 8. $a_3 = 20, a_6$ 68.75 1275	= 160, n = 8 9. a ₄ = 16, a ₇ = 1024, n = 10 87,381.25			
Find the sum of each geometric series. 10.6 + 18 + 54 + to 6 terms	11 1 + 1 + 1 + to 10 torms			
2184	11. $\frac{1}{4} + \frac{1}{2} + 1 + \dots$ to 10 terms 255.75			
$12.\sum_{j=4}^{8} 2^{j}$	13. $\sum_{k=1}^{7} 3 \cdot 2^{k-1}$			
496	381			
Skills Practice, p	. 651 and			
Practice, p. 652 ((shown)			
Find S_n for each geometric series describes $1. a_1 = 2, a_6 = 64, r = 2$ 126	2. $a_1 = 160, a_6 = 5, r = \frac{1}{2}$ 315			
	4. $a_1 = -81, a_n = -16, r = -\frac{2}{3}$ -55			
	6. $a_1 = 54, a_6 = \frac{2}{9}, r = \frac{1}{3} \frac{728}{9}$			
7. $a_1 = 5, r = 3, n = 9$ 49,205	8. $a_1 = -6, r = -1, n = 21$ -6			
-	10. $a_1 = -9, r = \frac{2}{3}, n = 4 - \frac{65}{3}$			
00 504	12. $a_1 = 16, r = -1.5, n = 6$ -66.5			
Find the sum of each geometric series.				
	14. 2 + 4 + 8 + to 8 terms 510			
15.64 - 96 + 144 to 7 terms 463	16. $\frac{1}{9} - \frac{1}{3} + 1 - \dots$ to 6 terms $-\frac{182}{9}$			
$17.\sum_{n=1}^{8} (-3)^{n-1} -1640 18.\sum_{n=1}^{9} 5(-2)^n$	1 855 19 . $\sum_{n=1}^{5} -1(4)^{n-1}$ -341			
20. $\sum_{n=1}^{6} \left(\frac{1}{2}\right)^{n-1} \frac{63}{32}$ 21. $\sum_{n=1}^{10} 2560 \left(\frac{1}{2}\right)^{n-1}$	$\int_{1}^{n-1} 5115 \qquad 22. \sum_{n=1}^{4} 9 \left(\frac{2}{3}\right)^{n-1} \frac{65}{3}$			
Find the indicated term for each geometric 23. $S_n = 1023, a_n = 768, r = 4; a_1$ 3	ric series described. 24. $S_n = 10,160, a_n = 5120, r = 2; a_1$ 80			
25. $S_n = -1365, n = 12, r = -2; a_1$ 1				
 23. S_n = -1305, n = 12, 7 = -2, a₁ 27. CONSTRUCTION A pile driver drives a p 				
Each additional hit drives the post $\frac{2}{3}$ the distance of the prior hit. Find the total distance the post has been driven after 5 hits. $70\frac{1}{3}$ in.				
28. COMMUNICATIONS Hugh Moore e-mails a joke to 5 friends on Sunday morning. Each of these friends e-mails the joke to 5 of her or his friends on Monday morning, and so on. Assuming no duplication, how many people will have heard the joke by the end of Saturday, not including Hugh? 97,855 people				
Reading to Learn				
Reading to Learr Mathematics, p.	653 ELL			
Pre-Activity How is e-mailing a joke lik				
 Suppose that you e-mail th three, and that each of thou and so on. Write a sum tha yourself, who will have rea 	on 11-4 at the top of page 594 in your textbook. e joke on Monday to five friends, rather than se Friends e-mails it to five friends on Tuesday, t shows that total number of people, including d the joke by Tursday. (White out the sum a sigma notation. Do not actually find the sum.)			
• Use exponents to rewrite the each term, and use the same $5^0 + 5^1 + 5^2 + 5^3$	he sum you found above. (Use an exponent in he base for all terms.)			
Reading the Lesson 1. Consider the formula $S_n = \frac{a_1(1 - r^n)}{1 - r}$.				
a. What is this formula used to find? the	sum of the first <i>n</i> terms of a			
geometric series b. What do each of the following represent	1?			
S_n : the sum of the first <i>n</i> terms				
<i>a</i> ₁ : the first term <i>r</i> : the common ratio				
c. Suppose that you want to use the form the values you would substitute into the	ula to evaluate $3 - 1 + \frac{1}{3} - \frac{1}{9} + \frac{1}{27}$. Indicate e formula in order to find S_n . (Do not actually			
calculate the sum.)	$r = \underline{-\frac{1}{3}} r^{n} = \underline{\left(-\frac{1}{3}\right)^{5} \text{ or } -\frac{1}{243}}$			
	$r = \underline{3}$ $r^{n} = \underline{3}$ 243 ala to evaluate the sum $\sum_{n=0}^{6} 8(-2)^{n-1}$. Indicate			
	in to evaluate the sum $\sum_{n=1}^{\infty} S(-2)^n$. Indicate e formula in order to find S_n . (Do not actually			
$n = \underline{6}$ $a_1 = \underline{8}$	$r = -2$ $r^n = (-2)^6 \text{ or } 64$			
Helping You Remember				
2. This lesson includes three formulas for the All of these formulas have the same denon this restriction help you to remember the Sample answer: if $r = 1$, then $r - 1$ undefined, a formula with $r - 1$ in twhen $r = 1$.	e sum of the first <i>n</i> terms of a geometric series. inator and have the restriction $r \neq 1$. How can denominator in the formulas? = 0. Because division by 0 is he denominator will not apply			

Open-Ended Assessment

Writing Have students make a chart that compares and contrasts arithmetic and geometric sequences and series, explaining what the variables represent in each formula.

Intervention Make sure that students can read the notation used in the

various formulas and that they understand what each variable and subscript means.

Getting Ready for Lesson 11-5

PREREQUISITE SKILL Students will find the sum of infinite geometric series in Lesson 11-5. This will involve their evaluating rational expressions for different values. Use Exercises 62-67 to determine your students' familiarity with evaluating rational expressions for given values.

Assessment Options

Quiz (Lessons 11-3 and 11-4) is available on p. 693 of the Chapter 11 Resource Masters.

Mid-Chapter Test (Lessons 11-1 through 11-4) is available on p. 695 of the Chapter 11 Resource Masters.

Answers

- 49. If the number of people that each person sends the joke to is constant, then the total number of people who have seen the joke is the sum of a geometric series. Answers should include the following.
 - The common ratio would change from 3 to 4.
 - Increase the number of days that the joke circulates so that it is inconvenient to find and add all the terms of the series.

48. If the first term and common ratio of a geometric series are integers, then all the terms of the series are integers. Therefore, the sum of the series is an integer.

48. CRITICAL THINKING If *a*₁ and *r* are integers, explain why the value of

 $\frac{a_1 - a_1 r^n}{1 - r}$ must also be an integer.

49. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.

How is e-mailing a joke like a geometric series?

Include the following in your answer:

- how the related geometric series would change if each person e-mailed the joke on to four people instead of three, and
- how the situation could be changed to make it better to use a formula than to add terms.

Standardized **Test Practice** A B C D

50. The first term of a geometric series is -1, and the common ratio is -3. How many terms are in the series if its sum is 182? A

51. What is the first term in a geometric series with ten terms, a common ratio of 0.5, and a sum of 511.5? **C**

Use a graphing calculator to find the sum of each geometric series.

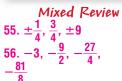
52.
$$\sum_{n=1}^{20} 3(-2)^{n-1} - 1,048,575$$
 53. $\sum_{n=1}^{15} 2(\frac{1}{2})^{n-1}$ **3.99987793 54.** $\sum_{n=1}^{10} 5(0.2)^{n-1}$ **6.24999936**

D 512

Maintain Your Skills

Graphing

Calculator



ew	Find the geometric means in each seque	ence. (Lesson 11-3)
	55. $\frac{1}{24}$, <u>?</u> , <u>?</u> , <u>?</u> , <u>54</u>	56. $-2, \underline{?}, \underline{?}, \underline{?}, \underline{?}, \underline{?}, -\frac{243}{16}$
	Find the sum of each arithmetic series.	(Lesson 11-2)
	57. 50 + 44 + 38 + + 8 232	58. $\sum_{n=1}^{12} (2n+3)$ 192

ENTERTAINMENT For Exercises 59–61, use the table that shows the number of drive-in movie screens in the United States for 1995–2000. (Lesson 2-5)

year	1 995	1996	1000			
	848	826	1997	1998	1 999	2000
Screens			815	750	737	637
Source: Nation	al Association	of Theatre Ow	Iners			

59. Draw a scatter plot, in which *x* is the number of years since 1995.

60. Find a prediction equation.

61. Predict the number of screens in 2010. Sample answer: 274

Online Research Data Update For the latest statistics on the movie industry, visit: www.algebra2.com/data_update

Getting Ready for the Next Lesson

59. See margin.

864

60. Sample answer

using (1, 826) and

(3, 750): y = -38x +

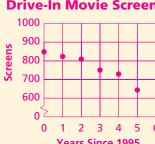
PREREQUISITE SKILL Evaluate $\frac{a}{1-b}$ for the given values of *a* and *b*. (To review evaluating expressions, see Lesson 1-1.)

62. $a = 1, b = \frac{1}{2}$ 2	63. $a = 3, b = -\frac{1}{2}$ 2	64. $a = \frac{1}{3}, b = -\frac{1}{3} \frac{1}{4}$
65. $a = \frac{1}{2}, b = \frac{1}{4} \frac{2}{3}$	66. $a = -1, b = 0.5$ -2	67. $a = 0.9, b = -0.5$ 0.6

598 Chapter 11 Sequences and Series

59. Drive-In Movie Screens

900 Screens 800 700 600 0 0 1 2 3 4 5 Years Since 1995



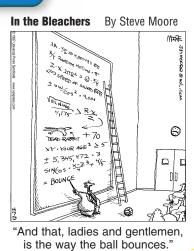
11-5 Infinite Geometric Series

What You'll Learn

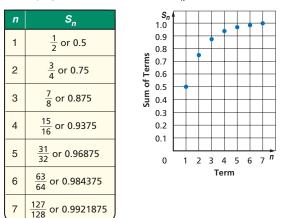
- Find the sum of an infinite geometric series.
- Write repeating decimals as fractions.

How does an infinite geometric series apply to a bouncing ball?

Refer to the beginning of Lesson 11-3. Suppose you wrote a geometric series to find the sum of the heights of the rebounds of the ball. The series would have no last term because theoretically there is no last bounce of the ball. For every rebound of the ball, there is another rebound, 60% as high. Such a geometric series is called an **infinite geometric series**.



INFINITE GEOMETRIC SERIES Consider the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ You have already learned how to find the sum S_n of the first *n* terms of a geometric series. For an infinite series, S_n is called a **partial sum** of the series. The table and graph show some values of S_n .



Study Tip Absolute Value Recall that |r| < 1

means -1 < r < 1.

Vocabulary

partial sum

infinite geometric series

Notice that as *n* increases, the partial sums level off and approach a limit of 1. This leveling-off behavior is characteristic of infinite geometric series for which |r| < 1.

Lesson 11-5 Infinite Geometric Series 599

Workbook and Reproducible Masters

Chapter 11 Resource Masters

- Study Guide and Intervention, pp. 655-656
- Skills Practice, p. 657
- Practice, p. 658
- Reading to Learn Mathematics, p. 659
- Enrichment, p. 660

Resource Manager

🔊 Transparencies

5-Minute Check Transparency 11-5 Answer Key Transparencies

Technology Interactive Chalkboard

1-5 Lesson Notes

Focus

5-Minute Check Transparency 11-5 Use as a quiz or review of Lesson 11-4.

Mathematical Background notes are available for this lesson on p. 576D.

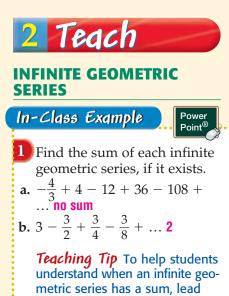
Building on Prior Knowledge

In Lesson 11-4, students worked with geometric series that had a specific number of terms. In this lesson, students extend these skills to finding the sum of an infinite geometric series.

How does an infinite geometric series apply to a bouncing ball?

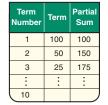
Ask students:

- Why might someone find this cartoon amusing? **Answers will vary.**
- What is the difference between what is happening theoretically and what really happens with the ball? **Answers will vary**.



metric series has a sum, lead students to make a generalization about the size of a product of a number and a fraction between -1 and 1. The absolute value of such a product will always be less than the absolute value of the original number.

of the first ten partial sums of the geometric series with $r = \frac{1}{2}$ and $a_1 = 100$.



Complete the table and compare the sum that the series is approaching to that obtained by using the formula. Let's look at the formula for the sum of a finite geometric series and use it to find a formula for the sum of an infinite geometric series.

$$S_n = \frac{a_1 - a_1 r^n}{1 - r}$$
 Sum of first *n* terms
$$= \frac{a_1}{1 - r} - \frac{a_1 r^n}{1 - r}$$
 Write the fraction as a difference of fractions.

If -1 < r < 1, the value of r^n will approach 0 as n increases. Therefore, the partial sums of an infinite geometric series will approach $\frac{a_1}{1-r} - \frac{a_1(0)}{1-r}$ or $\frac{a_1}{1-r}$. This expression gives the sum of an infinite geometric series.

Key Concept	Sum o	f an Infir	nite Geometric	Series
Rey concept				001100

The sum S of an infinite geometric series with -1 < r < 1 is given by $S = \frac{a_1}{1 - r}.$

An infinite geometric series for which $|r| \ge 1$ does not have a sum. Consider the series 1 + 3 + 9 + 27 + 81 + In this series, $a_1 = 1$ and r = 3. The table shows some of the partial sums of this series. As *n* increases, S_n rapidly increases and has no limit. That is, the partial sums do not approach a particular value.

n	S _n
5	121
10	29,524
15	7,174,453
20	1,743,392,200

Example 1) Sum of an Infinite Geometric Series

Find the sum of each infinite geometric series, if it exists.

a. $\frac{1}{2} + \frac{3}{8} + \frac{9}{32} + \dots$

First, find the value of *r* to determine if the sum exists.

$$a_1 = \frac{1}{2}$$
 and $a_2 = \frac{3}{8}$, so $r = \frac{\frac{3}{8}}{\frac{1}{2}}$ or $\frac{3}{4}$. Since $\left|\frac{3}{4}\right| < 1$, the sum exists

Now use the formula for the sum of an infinite geometric series.

$$S = \frac{a_1}{1 - r}$$
 Sum formula
= $\frac{\frac{1}{2}}{1 - \frac{3}{4}}$ $a_1 = \frac{1}{2}, r + \frac{3}{4}$
= $\frac{\frac{1}{2}}{\frac{1}{4}}$ or 2 Simplify.

The sum of the series is 2.

b.
$$1 - 2 + 4 - 8 + \dots$$

 $a_1 = 1$ and $a_2 = -2$, so $r = \frac{-2}{1}$ or -2 . Since $|-2| \ge 1$, the sum does not exist.

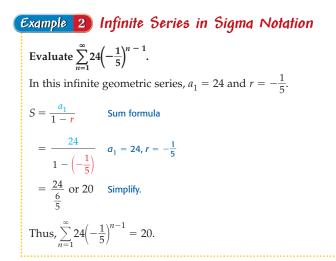
600 Chapter 11 Sequences and Series

DAILY

Unlocking Misconceptions

Absolute Value Make sure students can explain why |r| < 1 can also be written as -1 < r < 1. Graphing this inequality on a number line may help students understand what is meant by these two different mathematical notations.

In Lessons 11-2 and 11-4, we used sigma notation to represent finite series. You can also use sigma notation to represent infinite series. An *infinity symbol* ∞ is placed above the Σ to indicate that a series is infinite.



REPEATING DECIMALS The formula for the sum of an infinite geometric series can be used to write a repeating decimal as a fraction. Remember that decimals with bar notation such as 0.2 and 0.47 represent 0.222222... and 0.474747..., respectively. Each of these expressions can be written as an infinite geometric series.

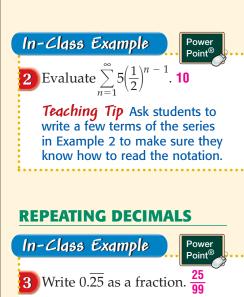
Example 3 Write a Repeating Decimal as a Fraction

	Write $0.\overline{39}$ as a fraction.		
	Method 1	Meth	od 2
	Write the repeating decimal as a sum. $0.\overline{39} = 0.393939$	$S = 0.\overline{39}$	Label the given decimal.
	$= 0.39 + 0.0039 + 0.000039 + \dots$	S = 0.393939	Repeating decimal
	$= \frac{39}{100} + \frac{39}{10,000} + \frac{39}{1,000,000} + \dots$	100 <i>S</i> = 39.393939	Multiply each side by 100.
	In this series, $a_1 = \frac{39}{100}$ and $r = \frac{1}{100}$.	99S = 39	Subtract the second equation from the third.
	$S = \frac{a_1}{1-r}$ Sum formula	$S = \frac{39}{99} \text{ or } \frac{13}{33}$	Divide each side by 99.
	$=\frac{\frac{\frac{39}{100}}{1-\frac{1}{100}}}{1-\frac{1}{100}} a_1 = \frac{39}{100}, r = \frac{1}{100}$		
	$=\frac{\frac{39}{100}}{\frac{99}{100}}$ Subtract.		
	$=\frac{39}{99} \text{ or } \frac{13}{33} \text{Simplify.}$		
	Thus, $0.\overline{39} = \frac{13}{33}$.		
www.algebra2.con	n/extra_examples	Lesson 11-5 Infinit	te Geometric Series 601

DAILY INTERVENTION

Differentiated Instruction

Logical Have students research and read about the famous mathematical puzzle called Zeno's paradox. Have them discuss this story of the tortoise's race in terms of the content of this lesson.



Study Notebook

	Have	stud	lents-
--	------	------	--------

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter II.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

DAILY

INTERVENTION FIND THE ERROR

Help students realize that, although $\frac{a_1}{1-r}$ may have a value,

that value represents the sum of an infinite geometric series *only* when |r| < 1.

About the Exercises... **Organization by Objective**

- Infinite Geometric Series: 14 - 39
- Repeating Decimals: 40-47

Odd/Even Assignments

Exercises 14-31 and 36-47 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15-33 odd, 34, 35, 41-45 odd, 48-75

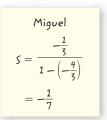
Average: 15-33 odd, 34, 35-47 odd, 48-75

Advanced: 14–32 even, 33, 34-48 even, 49-69 (optional: 70 - 75)

Check for Understanding

Concept Check 1. OPEN ENDED Write the series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ using sigma notation. 1. Sample answer: 2. Explain why 0.999999... = 1. See margin.

> 3. FIND THE ERROR Miguel and Beth are discussing the series $-\frac{1}{3} + \frac{4}{9} - \frac{16}{27} + \dots$ Miguel says that the sum of the series is $-\frac{1}{7}$. Beth says that the series does not have a sum. Who is correct? Explain your reasoning. Beth; see margin for explanation.

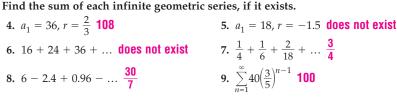


Guided Practice			
GUIDED PRACTICE KEY			
Exercises	Examples		
4-8, 13	1		
9	2		
10-12	3		

 $\sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$

4. $a_1 = 36, r = \frac{2}{3}$ **108** does not exist

6.	$16 + 24 + 36 + \dots$ does not exist
8.	$6 - 2.4 + 0.96 - \dots \frac{30}{7}$



Write each repeating decimal as a fraction. **10.** $0.\overline{5} \frac{5}{9}$ **11.** $0.\overline{73} \frac{73}{9}$

12. $0.\overline{175}$ $\frac{175}{999}$

Application 13. CLOCKS Jasmine's old grandfather clock is broken. When she tries to set the pendulum in motion by holding it against the side of the clock and letting it go, it first swings 24 centimeters to the other side, then 18 centimeters back, then 13.5 centimeters, and so on. What is the total distance that the pendulum swings? 96 cm

★ indicates increased difficulty **Practice and Apply**

See Examples	14. $a_1 =$
	1
1	17. <i>a</i> ₁ =
2	20. 12 -
	1 2 3 actice

15. does not exist 20. does not exist 23. does not exist

e sum of each infinite geometric series, if it exists. **14.** $a_1 = 14, r = \frac{7}{3}$ **15.** $a_1 = 14, r = \frac{7}{3}$ **16.** $a_1 = 12, r = -0.6$ **7.5** = 18, r = 0.6 **45 18.** $16 + 12 + 9 + \dots$ **64 19.** $-8 - 4 - 2 - \dots$ **-16** $-18 + 24 - \dots$ **21.** $18 - 12 + 8 - \dots \frac{54}{5}$ **22.** $1 + \frac{2}{3} + \frac{4}{9} + \dots$ **3** $\frac{5}{3} + \frac{25}{3} + \frac{125}{3} + \dots$ 24. $\frac{5}{3} - \frac{10}{9} + \frac{20}{27} - \dots$ 1 25. $\frac{3}{2} - \frac{3}{4} + \frac{3}{8} - \dots$ 1 **26.** 3 + 1.8 + 1.08 + ... **7.5 27.** 1 - 0.5 + 0.25 - ... $\frac{2}{3}$ **28.** $\sum_{n=1}^{\infty} 48 \left(\frac{2}{3}\right)^{n-1}$ **144 29.** $\sum_{n=1}^{\infty} \left(\frac{3}{8}\right) \left(\frac{3}{4}\right)^{n-1} \frac{3}{2}$ **30.** $\sum_{n=1}^{\infty} 3(0.5)^{n-1} 6$ **31.** $\sum_{n=1}^{\infty} (1.5)(0.25)^{n-1} 2$

32. CHILD'S PLAY Kimimela's little sister likes to swing at the playground. Yesterday, Kimimela pulled the swing back and let it go. The swing traveled a distance of 9 feet before heading back the other way. Each swing afterward was only 70% as long as the previous one. Find the total distance the swing traveled. 30 ft

602 Chapter 11 Sequences and Series

Answers

- 2. 0.999999... can be written as the infinite geometric series $\frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + \dots$ The first term of this series is $\frac{9}{10}$ and the common ratio is $\frac{1}{10}$, so the sum is $\frac{1}{1-\frac{1}{10}}$ or 1.
- 3. The common ratio for the infinite geometric series is $-\frac{4}{3}$. Since $\left|-\frac{4}{3}\right| \ge 1$, the series does not have a sum and the formula $S = \frac{a_1}{1-r}$ does not apply.

GEOMETRY For Exercises 33 and 34, refer to square ABCD, which has a perimeter of 40 centimeters.

If the midpoints of the sides are connected, a smaller square results. Suppose the process of connecting midpoints of sides and drawing new squares is

- continued indefinitely.
- 33. Write an infinite geometric series to represent the sum of the perimeters of all of the squares. $40 + 20\sqrt{2} + 20 + ...$

В

 $10.\sum_{n=1}^{\infty} 50 \left(\frac{4}{5}\right)^{n-1}$

250

- 34. Find the sum of the perimeters of all of the squares. $80 + 40\sqrt{2}$ or about 136.6 cm
- 35. AVIATION A hot-air balloon rises 90 feet in its first minute of flight. In each succeeding minute, it rises only 90% as far as it did during the preceding minute. What is the final height of the balloon? 900 ft
- - \star 37. The sum of an infinite geometric series is 125, and the value of r is 0.4. Find the first three terms of the series. 75, 30, 12
 - **★ 38.** The common ratio of an infinite geometric series is $\frac{11}{16}$, and its sum is $76\frac{4}{5}$. Find the first four terms of the series. 24, $16\frac{1}{2}$, $11\frac{11}{32}$, $7\frac{409}{512}$
 - ★ 39. The first term of an infinite geometric series is -8, and its sum is $-13\frac{1}{3}$. Find the first four terms of the series. -8, $-3\frac{1}{5}$, $-1\frac{7}{25}$, $-\frac{64}{125}$

Write each repeat	ing decimal as a frac	ction. 4	82
40. $0.\overline{7} = \frac{7}{9}$	41. $0.\overline{1}$ $\frac{1}{2}$	42. 0.36 11	43. 0.82 99
44. 0.246 9 82	45. $0.\overline{427} = \frac{9427}{000}$	\star 46. $0.\overline{45}$ $\frac{5}{11}$	★ 47. 0.231 229
333	10. 0.127 999	11	990

- 48. CRITICAL THINKING Derive the formula for the sum of an infinite geometric series by using the technique in Lessons 11-2 and 11-4. That is, write an equation for the sum S of a general infinite geometric series, multiply each side of the equation by r, and subtract equations. See pp. 629A–629F.
- 49. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 629A-629F.

How does an infinite geometric series apply to a bouncing ball?

Include the following in your answer:

- · some formulas you might expect to see on the chalkboard if the character in the comic strip really was discussing a bouncing ball, and
- an explanation of how to find the total distance traveled, both up and down, by the bouncing ball described at the beginning of Lesson 11-3.

More About.

The largest hot-air balloon

ever flown had a capacity

of 2.6 million cubic feet.

Source: The Guinness Book of

Records

50. What is the sum of an infinite geometric series with a first term of 6 and a common ratio of $\frac{1}{2}$? (A) 3 **B** 4 C 9 **D** 12

51.
$$2 + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots = C$$

(A) $\frac{3}{2}$ (B) $\frac{80}{27}$

www.algebra2.com/self_check_quiz

Study Gui p. 655 (sh			
Infinite Geometric Seri geometric series. Some infi partial sums increase witho	nite geometric se	ries have sum	es not end is called an infinite is, but others do not because the e.
	$S = \frac{a_i}{1-r} \text{ for } -1 < r < 1.$ If $ r \geq 1,$ the infinite geometric series does not have a sum.		
Example Find the sum of each infin a. $75 + 15 + 3 +$ First, find the value of r to determine if the sum exists, $a_1 = 75$ and $a_2 = 15$, so $r = \frac{15}{25}$ or $\frac{1}{3}$. Since $\left \frac{1}{3}\right < 1$, the sum exists. Now use the formula for the sum of an infinite geometriz series: $S = \frac{a_1}{1 - r}$ Sum turnul $= \frac{75}{1 - \frac{5}{3}}$ $a_1 - 75, r - \frac{1}{3}$ $= \frac{75}{3}$ or 93.75 Simply. The sum of the series is 93.75.		$ \begin{split} \text{ite geometric series, if it exists.} \\ \text{b.} \sum_{n=1}^{\infty} 48 \Big(-\frac{3}{3} \Big)^{n-1} \\ \text{In this infinite geometric series, } a_1 = 48 \\ \text{and } r = -\frac{1}{3}. \\ &S = \frac{a_1}{1-r} \\ &$	
Find the sum of each infin 1. $a_1 = -7, r = \frac{5}{2}$	nite geometric s 2. $1 + \frac{5}{4} + \frac{2}{1}$		cists. 3. $a_1 = 4, r = \frac{1}{2}$
$-18\frac{2}{3}$	does not	0	8 8
$4. \frac{2}{9} + \frac{5}{27} + \frac{25}{162} + \dots \\ 1\frac{1}{3}$	5. 15 + 10 + 45	$6\frac{2}{3} +$	6. $18 - 9 + 4\frac{1}{2} - 2\frac{1}{4} + \dots$ 12
7. $\frac{1}{10} + \frac{1}{20} + \frac{1}{40} + \dots$	8. 1000 + 80	0 + 640 +	9. 6 - 12 + 24 - 48 +

does not exist

12. $\sum_{i=1}^{\infty} 24 \left(\frac{7}{12}\right)^{s-1}$

57<u>3</u>

5000

 $14\frac{2}{3}$

11. $\sum_{k=1}^{\infty} 22 \left(-\frac{1}{2}\right)^{k-1}$

- Skills Practice, p. 657 and Practice, p. 658 (shown) Find the sum of each infinite geometric series, if it exists 1. $a_1 = 35, r = \frac{2}{7}$ 49 **2.** $a_1 = 26, r = \frac{1}{2}$ **52 3.** $a_1 = 98, r = -\frac{3}{4}$ **56** 4. $a_1 = 42, r = \frac{6}{5}$ does not exist 5. $a_1 = 112, r = -\frac{3}{5}$ 70 **6.** $a_1 = 500, r = \frac{1}{5}$ **625** 7. $a_1 = 135, r = -\frac{1}{2}$ 90 8.18 - 6 + 2 - ... 27 9. 2 + 6 + 18 + ... does not exist **10.** 6 + 4 + $\frac{8}{3}$ + ... **18 12.** 10 + 1 + 0.1 + ... 11. $\frac{4}{25} + \frac{2}{5} + 1 + \dots$ does not exist **13.** 100 + 20 + 4 + ... **125 14.** -270 + 135 - 67.5 + ... -180 **16.** $\frac{7}{10} + \frac{7}{100} + \frac{7}{1000} + \dots \frac{7}{9}$ **15.** 0.5 + 0.25 + 0.125 + ... **1** 17.0.8 + 0.08 + 0.008 + ... $\frac{8}{9}$ 18. $\frac{1}{12} - \frac{1}{6} + \frac{1}{3} - \dots$ does not exist **19.** $3 + \frac{9}{7} + \frac{27}{49} + \dots \frac{21}{4}$ **20.** 0.3 - 0.003 + 0.00003 - ... 30 101 **21.** 0.06 + 0.006 + 0.0006 + ... 1 **22.** $\frac{2}{3}$ - 2 + 6 - ... does not exist 23. $\sum_{n=1}^{\infty} 3\left(\frac{1}{4}\right)^{n-1}$ 4 **24.** $\sum_{n=1}^{\infty} \frac{2}{3} \left(-\frac{3}{4}\right)^{n-1} \frac{8}{21}$ **25.** $\sum_{n=1}^{\infty} 18 \left(\frac{2}{3}\right)^{n-1}$ **54** $26.\sum_{n=1}^{\infty} 5(-0.1)^{n-1} \frac{50}{11}$ 28. $0.\overline{09} \frac{1}{11}$ **29.** 0.43 43 99 27. 0.6 2 30. 0.27 3 11 **34.** 0.150 50 333 32. 0.84 28 33 **33.** 0.990 110 31. 0.243 9 37 35. PENDULUMS On its first swing, a pendulum travels 8 feet. On each suc the pendulum travels $\frac{4}{2}$ the distance of its previous swing. What is the total distance traveled by the pendulum when it stops swinging? 40 ft 36. ELASTICITY A ball dropped from a height of 10 feet bounces back $\frac{9}{10}$ of that distant With each successive bounce, the ball continues to reach $\frac{9}{10}$ of its previous height. What is the total vertical distance (both up and down) traveled by the ball when it stops bo (*Hint*: Add the total distance the ball falls to the total distance it rises.) **190 ft** Reading to Learn ELL Mathematics, p. 659 Pre-Activity How does an infinite geometric series apply to a bouncing ball? row noes an infinite geometric series apply to a bouncing ball? Read the introduction to Lesson 11-5 at the top of page 599 in your textbook Note the following powers of 0.6: $0.6^{\pm} = 0.8$; $0.6^{\pm} = 0.32$; $0.6^{\pm} = 0.216$; $0.6^{\pm} = 0.1296$; $0.6^{\pm} = 0.07776$; $0.6^{\pm} = 0.0479963$; 0.14 and is dropped from a height of 10 feet and bounces back to 60% of its previous height on each bounce, after how many bounces will it bounce back to a height of less that 16 of: 5 **bounces Reading the Lesson** 1. Consider the formula $S = \frac{a_1}{1-r}$ a. What is the formula used to find? the sum of an infinite geometric series b. What do each of the following represent? S: the sum a1: the first term r: the common ratio c. For what values of r does an infinite geometric sequence have a sum? -1 < r < 1d. Rewrite your answer for part d as an absolute value inequality. |r| < 12. For each of the following geometric series, give the values of a_1 and r. Then state whether the sum of the series exists. (Do not actually find the sum.) $a_1 = \frac{2}{3}$ r =**a.** $\frac{2}{3} + \frac{2}{9} + \frac{2}{27} + \dots$ Does the sum exist? ______ **b.** $2 - 1 + \frac{1}{2} - \frac{1}{4} + \dots$ Does the sum exist? yes *a*₁ = ____ **3** *r* = ___**3** c. ∑3ⁱ Does the sum exist? no Helping You Remember
 - So the good way to remember something is to relate it to something you already know. How can you use the formula $S_a = \frac{a(1-a)}{1-a}$ that you learned in Lesson 11-4 for finding the sum of a geometric series to help you remember the formula for finding the sum of an infinite geometric series? Sample answer: if -1 < < <, then as n gets large, r^{A} approaches 0, so 1 $-r^{A}$ approaches 0. Therefore, S_a approaches $\frac{a_1 \cdot 1}{1-r}$, or $\frac{a_1}{1-r}$.

Convergence and divergence are terms that relate to the existence of a sum of an infinite series. If a sum coists, the series is convergent. If not, the series is divergent. Consider the series $12 + 3 + \frac{3}{4} + \frac{3}{16} + \ldots = 10^{-1}$ ms is a geometric series with $r = \frac{1}{4}$. The sum is given by the formula $S = \frac{1}{1-r}$. Thus, the sum is $12 + \frac{3}{4}$ or 16. This series is convergent since a sum exists. Notice that the first two terms have a sum of 15. As more terms are added, the sum comes closer (or converges) to 16.

Enrichment, p. 660

Convergence and Divergence

D does not exist

Lesson 11-5 Infinite Geometric Series 603

Recall that a geometric series has a sum if and only if -1 < r < 1. Thus, a geometric series is convergent if r is between -1 and 1, and divergent if r has another value. An infinite arithmetic series cannot have a sum unless all of the terms are equal to zero.

C 3

Example Determine whether each series is convergent or divergent. a. 2+5+8+11+... divergent

Open-Ended Assessment

Writing Have students write their own examples of an infinite geometric series—one that has a sum and one that does not. Have them also write an example of a repeating decimal and then express it as a fraction.

Intervention Make sure that students can read the notation used in the

various formulas and that they understand what each variable and subscript means.

Getting Ready for Lesson 11-6

PREREQUISITE SKILL Students will use recursive formulas in Lesson 11-6. This will involve their evaluating functions for given values. Use Exercises 70-75 to determine your students' familiarity with evaluating functions for given values.

Maintain Your Skills

(x-3)(x+1)

60. $\frac{3x+7}{(x+4)(x+2)}$

63. $-\frac{1}{2}, \frac{3}{2}, \frac{7}{2}$

64. $-\frac{1}{2}$, $-\frac{1}{3}$, 0, $\frac{1}{2}$

68. about -180,724

visitors per year

Mixed Review Find S_n for each geometric series described. (Lesson 11-4) 52. $a_1 = 1, a_6 = -243, r = -3$ -182 53. $a_1 = 72, r = \frac{1}{3}, n = 7$ $\frac{8744}{81}$

54. PHYSICS A vacuum pump removes 20% of the air from a container with each stroke of its piston. What percent of the original air remains after five strokes of the piston? (Lesson 11-3) 32.768%

Solve each equation or inequality. Check your solution. (Lesson 10-1) 56. $2^{2x} = \frac{1}{8} - \frac{3}{2}$ **57.** $3^{x-2} \ge 27 \ x \ge 5$ **55.** $6^x = 216$ **3**

Simplify each expression. (Lesson 9-2) 58. $\frac{-2}{ab} + \frac{5}{a^2} - \frac{-2a + 5b}{a^2b}$ 59. $\frac{1}{x-3} - \frac{2}{x+1}$ 60. $\frac{1}{x^2 + 6x + 8} + \frac{3}{x+4}$

Write an equation for the circle that satisfies each set of conditions. (Lesson 8-3) 61. center (2, 4), radius 6 $(x - 2)^2 + (y - 4)^2 = 36$ 62. endpoints of a diameter at (7, 3) and $(-1, -5)(x-3)^2 + (y+1)^2 = 32$

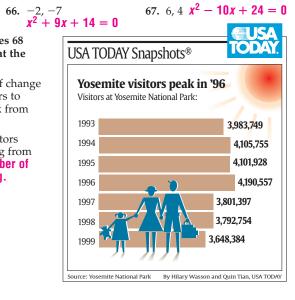
Find all the zeros of each function. (Lesson 7-5) **63.** $f(x) = 8x^3 - 36x^2 + 22x + 21$ 64. $g(x) = 12x^4 + 4x^3 - 3x^2 - x$

Write a quadratic equation with the given roots. Write the equation in the form $ax^2 + bx + c = 0$, where *a*, *b*, and *c* are integers. (Lesson 6-3)

RECREATION For Exercises 68 and 69, refer to the graph at the right. (Lesson 2-3)

65. 6, -6 $x^2 - 36 = 0$

- **68.** Find the average rate of change of the number of visitors to Yosemite National Park from 1996 to 1999.
- 69. Was the number of visitors increasing or decreasing from 1996 to 1999? The number of visitors was decreasing.



1 2 -4

Getting Ready for PREREQUISITE SKILL Find each function value. the Next Lesson (To review evaluating functions, see Lesson 2-1.)

 70. $f(x) = 2x$, $f(1)$ 2	71. $g(x) = 3x - 3$, $g(2)$ 3
72. $h(x) = -2x + 2, h(0)$ 2	73. $f(x) = 3x - 1, f\left(\frac{1}{2}\right) \frac{1}{2}$
74. $g(x) = x^2, g(2)$ 4	75. $h(x) = 2x^2 - 4$, $h(0)$ –

604 Chapter 11 Sequences and Series

Online Lesson Plans

USA TODAY Education's Online site offers resources and interactive features connected to each day's newspaper. Experience TODAY, USA TODAY's daily lesson plan, is available on the site and delivered daily to subscribers. This plan provides instruction for integrating USA TODAY graphics and key editorial features into your mathematics classroom. Log on to www.education.usatoday.com.

Spreadsheet Investigation

A Preview of Lesson 11-6

Amortizing Loans

When a payment is made on a loan, part of the payment is used to cover the interest that has accumulated since the last payment. The rest is used to reduce the *principal*, or original amount of the loan. This process is called *amortization*. You can use a spreadsheet to analyze the payments, interest, and balance on a loan. A table that shows this kind of information is called an *amortization schedule*.

Example

Marisela just bought a new sofa for \$495. The store is letting her make monthly payments of \$43.29 at an interest rate of 9% for one year. How much will she still owe after six months?

Every month, the interest on the remaining balance will be $\frac{9\%}{12}$ or 0.75%. You can

find the balance after a payment by multiplying the balance after the previous payment by 1 + 0.0075 or 1.0075 and then subtracting 43.29.

In a spreadsheet, use the column of numbers for the number of payments and use column B for the balance. Enter the interest rate and monthly payment in cells in column A so that they can be easily updated if the information changes.

The spreadsheet at the right shows the formulas for the balances after each of the first six payments. After six months, Marisela still owes \$253.04.

	Loans 🛛 🛛						
	A	В					
1	Interest rate	=495*(1+A2)-A5					
2	0.0075	=B1*(1+A2)-A5					
3		=B2*(1+A2)-A5					
4	Monthly payment	=B3*(1+A2)-A5					
5	43.29	=B4*(1+A2)-A5					
8		=85*(1+A2)-A5					
7	↓ ▶ Sheet1 /	Sh 4					

Exercises

- **1.** Let b_n be the balance left on Marisela's loan after *n* months. Write an equation relating b_n and b_{n+1} . $b_{n+1} = 1.0075b_n 43.29$
- 2. Payments at the beginning of a loan go more toward interest than payments at the end. What percent of Marisela's loan remains to be paid after half a year? **about 51%**
- **3.** Extend the spreadsheet to the whole year. What is the balance after 12 payments? Why is it not 0? **About -\$0.02**; the balance is not exactly 0 due to rounding.
- **4.** Suppose Marisela decides to pay \$50 every month. How long would it take her to pay off the loan? **11 months**
- **5.** Suppose that, based on how much she can afford, Marisela will pay a variable amount each month in addition to the \$43.29. Explain how the flexibility of a spreadsheet can be used to adapt to this situation. **See margin**.
- Jamie has a three-year, \$12,000 car loan. The annual interest rate is 6%, and his monthly payment is \$365.06. After twelve months, he receives an inheritance which he wants to use to pay off the loan. How much does he owe at that point? \$8236.91

Spreadsheet Investigation Amortizing Loans 605

A Preview of Lesson 11-6

Objective To discover how a spreadsheet can express a relationship in which the calculation of the value of the next term involves using the value of the previous term.

Teach

Ask students why the balance is multiplied by 1.0075 rather than 0.75%. to find the balance plus the interest

Assess

In Exercises 1–5, students should

- be able to relate the list of payments to the series and sequences they have been studying.
- be able to use a spreadsheet to make a flexible table of payments.

Study Notebook

You may wish to have students

summarize this activity and what

they learned from it.

Answer

5. Changing the monthly payment only requires editing the amount subtracted in the formula in each cell.

Lesson Notes

Focus

5-Minute Check Transparency 11-6 Use as a quiz or review of Lesson 11-5.

Mathematical Background notes

are available for this lesson on p. 576D.

How

✔ is the Fibonacci sequence illustrated in nature?

Ask students:

- What number follows 5 in the Fibonacci sequence? 8
- Is the Fibonacci sequence an arithmetic sequence? **no** Is it a geometric sequence? **no** Explain. **There is no common difference and no common ratio.**

A recursive formula is often called a *recursive relation* or a *recurrence relation*.

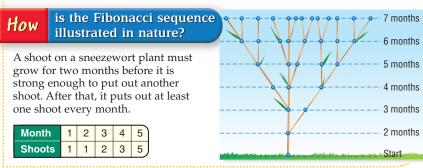
TEACHING TIP $a_n = a_1 + (n - 1)d$ and $a_n = a_1r^{n-1}$ are not recursive. These sequences are determined by the number of

the term *n* rather than by the preceding term.

Recursion and Special Sequences

What You'll Learn

- Recognize and use special sequences.
- Iterate functions.



SPECIAL SEQUENCES Notice that the sequence 1, 1, 2, 3, 5, 8, 13, ... has a pattern. Each term in the sequence is the sum of the two previous terms. For example, 8 = 3 + 5 and 13 = 5 + 8. This sequence is called the **Fibonacci sequence**, and it is found in many places in nature.

first term	a_1		1
second term	a_2		1
third term	<i>a</i> ₃	$a_1 + a_2$	1 + 1 = 2
fourth term	a_4	$a_2 + a_3$	1 + 2 = 3
fifth term	a_5	$a_3 + a_4$	2 + 3 = 5
:	:	:	
<i>n</i> th term	a.,	$a_{n-2} + a_{n-1}$	

The formula $a_n = a_{n-2} + a_{n-1}$ is an example of a **recursive formula**. This means that each term is formulated from one or more previous terms. To be able to use a recursive formula, you must be given the value(s) of the first term(s) so that you can start the sequence and then use the formula to generate the rest of the terms.

Example 1) Use a Recursive Formula

Find the first five terms of the sequence in which $a_1 = 4$ and $a_{n+1} = 3a_n - 2$, $n \ge 1$.

 $a_{n+1} = 3a_n - 2$ Recursive formula

$a_{1 + 1} = 3a_1 - 2$	$n = 1$ $a_1 = 4$	$a_{3+1} = 3a_3 - 2$	n = 3
$a_2 = 3(4) - 2 \text{ or } 10$		$a_4 = 3(28) - 2 \text{ or } 82$	a ₃ = 28
$a_{2+1} = 3a_2 - 2$	n = 2	$a_4 + 1 = 3a_4 - 2$	n = 4
$a_3 = 3(10) - 2 \text{ or } 28$	a ₂ = 10	$a_5 = 3(82) - 2 \text{ or } 244$	a ₄ = 82

The first five terms of the sequence are 4, 10, 28, 82, and 244.

606 Chapter 11 Sequences and Series

Resource Manager

Workbook and Reproducible Masters

Chapter 11 Resource Masters

- Study Guide and Intervention, pp. 661–662
- Skills Practice, p. 663
- Practice, p. 664
- Reading to Learn Mathematics, p. 665
- Enrichment, p. 666
- Assessment, p. 694

Graphing Calculator and Spreadsheet Masters, p. 47 Teaching Algebra With Manipulatives Masters, pp. 285, 286–287

Transparencies

5-Minute Check Transparency 11-6 Real-World Transparency 11 Answer Key Transparencies

Technology Interactive Chalkboard

11-6

Vocabulary

Fibonacci sequence

recursive formula

iteration

Example 2) Find and Use a Recursive Formula

GARDENING Mr. Yazaki discovered that there were 225 dandelions in his garden on the first Saturday of spring. He had time to pull out 100, but by the next Saturday, there were twice as many as he had left. Each Saturday in spring, he removed 100 dandelions, only to find that the number of remaining dandelions had doubled by the following Saturday.

a. Write a recursive formula for the number of dandelions Mr. Yazaki finds in his garden each Saturday.

Let d_n represent the number of dandelions at the beginning of the *n*th Saturday. Mr. Yazaki will pull 100 of these out of his garden, leaving $d_n - 100$. The number d_{n+1} of dandelions the next Saturday will be twice this number. So, $d_{n+1} = 2(d_n - 100)$ or $2d_n - 200$.

b. Find the number of dandelions Mr. Yazaki would find on the fifth Saturday.

On the first Saturday, there were 225 dandelions, so $d_1 = 225$.

On the fifth Saturday, there would be 600 dandelions in Mr. Yazaki's garden.

You can use sequences to analyze some games.

Algebra Activity

Special Sequences

The object of the *Towers of Hanoi* game is to move a stack of n coins from one position to another in the fewest number a_n of moves with these rules.

- You may only move one coin at a time.
- A coin must be placed on top of another coin, not underneath.

A smaller coin may be placed on top of a larger coin, but not vice

versa. For example, a penny may not be placed on top of a dime.

Model and Analyze

- Draw three circles on a sheet of paper, as shown above. Place a penny on the first circle. What is the least number of moves required to get the penny to the second circle?
- Place a nickel and a penny on the first circle, with the penny on top. What is the least number of moves that you can make to get the stack to another circle? (Remember, a nickel cannot be placed on top of a penny.) 3
- **3.** Place a nickel, penny, and dime on the first circle. What is the least number of moves that you can take to get the stack to another circle? **7**

Make a Conjecture

4. Place a quarter, nickel, penny, and dime on the first circle. Experiment to find the least number of moves needed to get the stack to another circle. Make a conjecture about a formula for the minimum number a_n of moves required to move a stack of n coins. **15**; $a_n = 2^n - 1$

www.algebra2.com/extra_examples

Lesson 11-6 Recursion and Special Sequences 607

Algebra Activity

Materials: compass, penny, nickel, dime, quarter

- Tell students that according to Martin Gardner, in *The Scientific American Book* of *Mathematical Puzzles & Diversions*, the "Tower of Hanoi was invented by the French mathematician Edouard Lucas and sold as a toy in 1883."
- The toy usually has 3 pegs, with a tower of 8 disks on one peg. The task is to transfer all 8 disks to one of the vacant pegs, using the rules in the activity, in the fewest possible moves.

SPECIAL SEQUENCES

In-Class Examples

Find the first five terms of the sequence in which $a_1 = 5$ and $a_{n+1} = 2a_n + 7$, $n \ge 1$. **5**, **17**, **41**, **89**, **185**

Teaching Tip Make sure students understand that you use the value of one term to find the value of the next term.

- **2 BIOLOGY** Dr. Elliot is growing cells in lab dishes. She starts with 108 cells Monday morning and then removes 20 of these for her experiment. By Tuesday the remaining cells have multiplied by 1.5. She again removes 20. This pattern repeats each day in the week.
- **a.** Write a recursive formula for the number of cells Dr. Elliot finds each day before she removes any. $c_{n+1} = 1.5(c_n 20)$ or $c_{n+1} = 1.5c_n 30$
- b. Find the number of cells she will find on Friday morning.303

ITERATION

In-Class Example

Find the first three iterates x_1, x_2, x_3 of the function f(x) = 3x - 1 for an initial value of $x_0 = 5$. 14, 41, 122

Power

Point®

3 Practice/Apply

Study Notebook

Have students—

- add the definitions/examples of the vocabulary terms to their
 Vocabulary Builder worksheets for
 Chapter II.
 include any other item(s) that they
- find helpful in mastering the skills in this lesson.

About the Exercises...

- **Organization by Objective**
- Special Sequences: 13–30
- Iteration: 31–39

Odd/Even Assignments

Exercises 13–24 and 31–38 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13–19 odd, 23, 25–30, 31–35 odd, 39–55

Average: 13–25 odd, 26–30, 31–37 odd, 39–55

Advanced: 14–24 even, 25–30, 32–40 even, 41–49 (optional: 50–55)

Study Tip

Look Back To review composition of functions, see Lesson 7-7. **ITERATION** Iteration is the process of composing a function with itself repeatedly. For example, if you compose a function with itself once, the result is $f \circ f(x)$ or f(f(x)). If you compose a function with itself two times, the result is $f \circ f \circ f(x)$ or f(f(f(x))), and so on.

You can use iteration to recursively generate a sequence. Start with an initial value x_0 . Let $x_1 = f(x_0)$, $x_2 = f(x_1)$ or $f(f(x_0))$, $x_3 = f(x_2)$ or $f(f(f(x_0)))$, and so on.

Example 3 Iterate a Function

Find the first three iterates $x_{1'} x_{2'} x_3$ of the function f(x) = 2x + 3 for an initial value of $x_0 = 1$.

To find the first iterate x_1 , find the value of the function for $x_0 = 1$.

$x_1 = f(x_0)$	Iterate the function.
= <i>f</i> (1)	$x_0 = 1$
= 2(1) + 3 or 5	Simplify.

To find the second iterate $x_{2'}$ substitute x_1 for x.

$x_2 = f(x_1)$	Iterate the function.
= f(5)	$x_1 = 5$
= 2(5) + 3 or 13	Simplify.
Substitute x_2 for x to	find the third iterate.
$x_2 = f(x_2)$	Iterate the function.

- $x_3 = f(x_2)$ Iterate the f = f(13) $x_2 = 13$
- = 2(13) + 3 or 29 Simplify.

Therefore, 1, 5, 13, 29 is an example of a sequence generated using iteration.

Check for Understanding

Concept Check 1. Write recursive formulas for the *n*th terms of arithmetic and geometric sequences. $a_n = a_{n-1} + d$; $a_n = r \cdot a_{n-1}$

- **2. OPEN ENDED** Write a recursive formula for a sequence whose first three terms are 1, 1, and 3. **Sample answer:** $a_n = 2a_{n-1} + a_{n-2}$
- **3.** State whether the statement $x_n \neq x_{n-1}$ is *sometimes, always,* or *never* true if $x_n = f(x_{n-1})$. Explain. Sometimes; see margin for explanation.

Guided Practice Find the first five terms of each sequence. 5. -3, -2, 0, 3, 7

GUIDED PRACTICE KEY						
Exercises	Examples					
4-7	1, 2					
8-10	3					
11, 12	2					

4. $a_1 = 12$, $a_{n+1} = a_n - 3$ 12, 9, 6, 3, 0 5. $a_1 = -3$, $a_{n+1} = a_n + n$ 6. $a_1 = 0$, $a_{n+1} = -2a_n - 4$ 7. $a_1 = 1$, $a_2 = 2$, $a_{n+2} = 4a_{n+1} - 3a_n$ 0, -4, 4, -12, 20 1, 2, 5, 14, 41 Find the first three iterates of each function for the given initial value. 8. f(x) = 3x - 4, $x_0 = 3$ 9. f(x) = -2x + 5, $x_0 = 2$ 10. $f(x) = x^2 + 2$, $x_0 = -1$ 5, 11, 29 1, 3, -1 3, 11, 123 BANKING For Exercises 11 and 12, use the following information.

BANKING For Exercises 11 and 12, use the following information. Rita has deposited \$1000 in a bank account. At the end of each year, the bank posts interest to her account in the amount of 5% of the balance, but then takes out a \$10 annual fee.

- **11.** Let b_0 be the amount Rita deposited. Write a recursive equation for the balance b_n in her account at the end of *n* years. $b_n = 1.05b_{n-1} 10$
- **12.** Find the balance in the account after four years. **\$1172.41**

608 Chapter 11 Sequenses and Series

Application

DAILY INTERVENTION

Differentiated Instruction

Kinesthetic Have students make and play a Tower of Hanoi game as described in the notes for the Algebra Activity. Students can cut 8 cardboard squares of graduated sizes and move them between three circles to represent the pegs. Students can also do additional research about this classic puzzle.

★ indicates increased difficulty

Practice and Apply

Homework Help For Exercises Examples

13-30 1-2 3

31-39

Extra Practice

See page 853. 13. -6, -3, 0, 3, 614. 13, 18, 23, 28, 33 * 15. 2, 1, -1, -4, -8 16. 6, 10, 15, 21, 28 17.9, 14, 24, 44, 84 18. 4, 6, 12, 30, 84 19. -1, 5, 4, 9, 13 20.4, -3, 5, -1, 9 777 $21.\frac{1}{2},\frac{1}{4},\frac{1}{6},\frac{1}{8},\frac{1}{10}$ 22. $\frac{3}{4}$, $\frac{3}{2}$, $\frac{15}{4}$, $\frac{25}{2}$, $\frac{425}{8}$

Real Estate Agent 📖 Most real estate agents are independent businesspeople who earn their income from commission.

🖢 Online Research To learn more about a career in real estate, visit: www.algebra2.com/ careers

Find the first five terms of each sequence

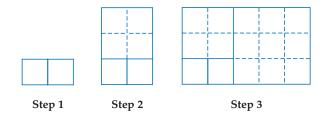
This me mist ne terms of each sequence	с.
13. $a_1 = -6, a_{n+1} = a_n + 3$	14. $a_1 = 13, a_{n+1} = a_n + 5$
15. $a_1 = 2, a_{n+1} = a_n - n$	16. $a_1 = 6, a_{n+1} = a_n + n + 3$
17. $a_1 = 9, a_{n+1} = 2 a_n - 4$	18. $a_1 = 4, a_{n+1} = 3a_n - 6$
19. $a_1 = -1, a_2 = 5, a_{n+1} = a_n + a_{n-1}$	
20. $a_1 = 4, a_2 = -3, a_{n+2} = a_{n+1} + 2a_n$	
21. $a_1 = \frac{7}{2}, a_{n+1} = \frac{n}{n+1} \cdot a_n$	
22. $a_1 = \frac{3}{4}, a_{n+1} = \frac{n^2 + 1}{n} \cdot a_n$	
23 If $a = 7$ and $a = -a + 12$ for $n \ge 0$) find the value of a 67

23. If $a_0 = 7$ and $a_{n+1} = a_n + 12$ for $n \ge 0$, find the value of a_5 . **67**

24. If $a_0 = 1$ and $a_{n+1} = -2.1$ for $n \ge 0$, then what is the value of a_4 ? **-2.1**

GEOMETRY For Exercises 25 and 26, use the following information.

Join two 1-unit by 1-unit squares to form a rectangle. Next, draw a larger square along a long side of the rectangle. Continue this process of drawing a square along a long side of the rectangle formed at the previous step.



- 25. Write the sequence of the lengths of the sides of the squares you added at each step. Begin the sequence with the lengths of the sides of the two original squares. 1, 1, 2, 3, 5, ...
- 26. Identify the sequence in Exercise 25. the Fibonacci sequence
- •• 27. LOANS The Cruz family is taking out a mortgage loan for \$100,000 to buy a house. Their monthly payment is \$678.79. The recursive formula $b_n = 1.006 b_{n-1} - 678.79$ describes the balance left on the loan after *n* payments. Find the balances of the loan after each of the first eight payments.

GEOMETRY For Exercises 28–30, study the triangular numbers shown below.

Figure 1 27. \$99,921.21, \$99,841.95, \$99,762.21, 28. Write a sequence of the first five triangular numbers. 1, 3, 6, 10, 15 \$99,681.99, \$99,601.29. \$99,356.28

\$99,520.11, \$99,438.44, 29. Write a recursive formula for the *n*th triangular number t_n . $t_n = t_{n-1} + n$ 30. What is the 200th triangular number? 20,100

Figure 3

Figure 2

www.algebra2.com/self_check_quiz

Lesson 11-6 Recursion and Special Sequences 609

Figure 5

Answers

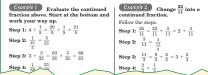
3. If $f(x) = x^2$ and $x_1 = 2$, then $x_2 = 2^2$ or 4, so $x_2 \neq x_1$. But, if $x_1 = 1$, then $x_2 = 1$, so $x_2 = x_1$.

Enrichment, p. 666

Continued Fractions The fraction below is an example of a continued fraction. Note that each fraction in the continued fraction has a numerator of 1. 1

		1	
Ť	4	+	15

Figure 4



Study Guide and Intervention, p. 661 (shown) and p. 662

Special Sequences In a recursive formula, each succeeding term is formulated from one or more previous terms. A recursive formula for a sequence has two parts: the value(s) of the first term(s), and
 an equation that shows how to find each term from the term(s) before it.

- Example Find the first five terms of the sequence in which $a_1 = 6$, $a_2 = 10$, and $a_n = 2a_{n-2}$ for $n \ge 3$. $\begin{array}{l} a_1 = 6 \\ a_2 = 10 \\ a_3 = 2a_1 {= 2(6)} \end{array}$ $\begin{array}{l} a_3 = 2a_2 = 2(10) = 20 \\ a_5 = 2a_3 = 2(12) = 24 \\ \end{array}$ The first five terms of the sequence are 6, 10, 12, 20, 24.

Exercises

Find the first five terms of each sequence. **1.** $a_1 = 1, a_2 = 1, a_n = 2(a_{n-1} + a_{n-2}), n \ge 3$ **1, 1, 4, 10, 28**

- **2.** $a_1 = 1, a_n = \frac{1}{1 + a_{n-1}}, n \ge 2$ **1**, $\frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}$
- **3.** $a_1 = 3, a_n = a_{n-1} + 2(n-2), n \ge 2$ **3, 3, 5, 9, 15**
- **4.** $a_1 = 5, a_n = a_{n-1} + 2, n \ge 2$ **5, 7, 9, 11, 13**
- **5.** $a_1 = 1, a_n = (n 1)a_{n-1}, n \ge 2$ **1, 1, 2, 6, 24**
- **6.** $a_1 = 7, a_n = 4a_{n-1} 1, n \ge 2$ **7, 27, 107, 427, 1707**
- **7.** $a_1 = 3, a_2 = 4, a_n = 2a_{n-2} + 3a_{n-1}, n \ge 3$ **3. 4. 18. 62. 222**
- **8.** $a_1 = 0.5, a_n = a_{n-1} + 2n, n \ge 2$ **0.5, 4.5, 10.5, 18.5, 28.5**
- **9.** $a_1 = 8, a_2 = 10, a_n = \frac{a_{n-2}}{a_{n-1}}, n \ge 3$ **8, 10, 0.8, 12.5, 0.064**
- **10.** $a_1 = 100, a_n = \frac{a_{n-1}}{n}, n \ge 2$ **100, 50, \frac{50}{3}, \frac{50}{12}, \frac{50}{60}**

Skills Practice, p. 663 and Practice, p. 664 (shown) Find the first five terms of each sequence **1.** $a_1 = 3, a_{n+1} = a_n + 5$ **3.** 8, **13.** 18, 23 **2.** $a_1 = -7$, $a_{n+1} = a_n + 8$ -7, 1, 9, 17, 25 **4.** $a_1 = -8, a_{n+1} = 10 - a_n$ -8, 18, -8, 18, -8 **3.** $a_1 = -3$, $a_{n+1} = 3a_n + 2$ -**3**, -**7**, -**19**, -**55**, -**163 5.** $a_1 = 4, a_{n+1} = n - a_n$ **4**, **-3**, **5**, **-2**, **6 6.** $a_1 = -3, a_{n+1} = 3a_n$ -3, -9, -27, -81, -243 **7.** $a_1 = 4, a_{n+1} = -3a_n + 4$ **4**, **-8**, **28**, **-80**, **244 8.** $a_1 = 2, a_{n+1} = -4a_n - 5$ **2, -13, 47, -193, 767 9.** $a_1 = 3, a_2 = 1, a_{n+1} = a_n - a_{n-1}$ **3.** 1, -2, -3, -1 **10.** $a_1 = -1, a_2 = 5, a_{n+1} = 4a_{n-1} - a_n$ -1, 5, -9, 29, -65 **11.** $a_1 = 2, a_2 = -3, a_{n+1} = 5a_n - 8a_{n-1}$ **12.** $a_1 = -2, a_2 = 1, a_{n+1} = -2a_n + 6a_{n-1}$ **2.** -3, -31, -131, -407 **-2.** 1, -14, 34, -152Find the first three iterates of each function for the given initial value **13.** $f(x) = 3x + 4, x_0 = -1$ **1, 7, 25 14.** $f(x) = 10x + 2, x_0 = -1$ -8, -78, -778 **15.** $f(x) = 8 + 3x, x_0 = 1$ **11, 41, 131 16.** $f(x) = 8 - x, x_0 = -3$ **11, -3, 11 17.** $f(x) = 4x + 5, x_0 = -1$ **1, 9, 41 18.** $f(x) = 5(x + 3), x_0 = -2$ **5, 40, 215 19.** $f(x) = -8x + 9, x_0 = 1$ **1, 1, 1 20.** $f(x) = -4x^2$, $x_0 = -1$ -4; -64; -16,384 **21.** $f(x) = x^2 - 1, x_0 = 3$ **8, 63, 3968 22.** $f(x) = 2x^2$; $x_0 = 5$ **50; 5000; 50,000,000** 23. INFLATION Iterating the function c(x) = 1.05x gives the future cost of an item at a constant 5% inflation rate. Find the cost of a \$2000 ring in five years at 5% inflation \$2552.56 FRACTALS For Exercises 24-27, use the following information. Replacing each side of the square shown with the combination of segments below it gives the figure to its right. 24. What is the perimeter of the original square? 12 in. 25. What is the perimeter of the new shape? 20 in. **26.** If you repeat the process by replacing each side of the new shape by a proportional combination of 5 segments, what will the perimeter of the third shape be? $33\frac{1}{2}$ in 27. What function f(x) can you iterate to find the perimeter of each successive continue this process? $f(x) = \frac{5}{3}x$ **Reading to Learn** ELL Mathematics, p. 665 Pre-Activity How is the Fibonacci sequence illustrated in nature? Read the introduction to Lesson 11-6 at the top of page 606 in your textbool What are the next three numbers in the sequence that gives the number of shoots corresponding to each month? 8, 13, 21 Reading the Lesson 1. Consider the sequence in which $a_1 = 4$ and $a_n = 2a_{n-1} + 5$. a. Explain why this is a *recursive* formula. Sample answer: Each term is found from the value of the previous term. b. Explain in your own words hove find the first four terms of this sequence. (Do not actually find any terms after the first.) Sample answer: The first term is 4. To find the second term, double the first term and add 5. To find the third term, double the third term add add 5. c. What happens to the terms of this sequence as n increases? Sample answer: They keep getting larger and larger. 2. Consider the function f(x) = 3x - 1 with an initial value of $x_0 = 2$. a. What does it mean to iterate this function? to compose the function with itself repeatedly b. Fill in the blanks to find the first three iterates. The blanks that follow the letter $x_1 = f(x_0) = f(\underline{2}) = 3(\underline{2}) - 1 = \underline{6} - 1 = \underline{5}$ $x_2 = f(\underline{x_1}) = f(\underline{5}) = 3(\underline{5}) - 1 = \underline{14}$ $x_3 = f(x_2) = f(\underline{14}) = 3(\underline{14}) - 1 = \underline{41}$ c. As this process continues, what happens to the values of the iterates: Sample answer: They keep getting larger and larger. Helping You Remember

3. Use a dictionary to find the meanings of the words recurrent and iterate. How can the meanings of these words help you to remember the meaning of the mathematical ter recursive and direction? How are these ideas related? Sample answer: Recurrent means happening repeatedly, while iterate means to repeat a process operation. A recursive formula is used repeatedly to find the value of the term of a sequence based on the previous term. Iteration means to recursive formation are to a sequence based on the previous term. Iteration means to recurrent the call repeatedly. Both ideas have to do with the direction of the sequence of the sequence based on the previous term. -doing the same thing over and over again

Open-Ended Assessment

Speaking Have students explain, with examples, what it means to say that a formula or a function is recursive.

Intervention Make sure that students understand the language used

in this lesson, particularly *iteration, iterative,* and *iterate*.

Getting Ready for Lesson 11-7

BASIC SKILL Students will use the Binomial Theorem in Lesson 11-7. This will involve their simplifying factorial expressions. Use Exercises 50–55 to determine your students' familiarity with evaluating the kinds of expressions they will encounter when simplifying factorials.

Assessment Options

Quiz (Lessons 11-5 and 11-6) is available on p. 694 of the *Chapter 11 Resource Masters*.

Answer

- 41. Under certain conditions, the Fibonacci sequence can be used to model the number of shoots on a plant. Answers should include the following.
 - The 13th term of the sequence is 233, so there are 233 shoots on the plant during the 13th month.
 - The Fibonacci sequence is not arithmetic because the differences (0, 1, 1, 2, ...) of the terms are not constant. The Fibonacci sequence is not geometric because the ratios $\left(1, 2, \frac{3}{2}, ...\right)$ of the terms are not constant.

 $37. \frac{5}{2}, \frac{37}{2}, \frac{1445}{2} \\ 38. \frac{4}{3}, \frac{10}{3}, \frac{76}{3}$

40. No; according to the first two iterates, f(4) = 4. According to the second and third iterates, f(4) = 7. Since f(x) is a function, it cannot have two values when x = 4.

Find the first three iterates of each function for the given initial value.

31. f(x) = 9x - 2, $x_0 = 2$ **16, 142, 1276 32.** f(x) = 4x - 3, $x_0 = 2$ **5, 17, 65 33.** f(x) = 3x + 5, $x_0 = -4$ **-7, -16, -43 34.** f(x) = 5x + 1, $x_0 = -1$ **-4, -19, -94 35.** $f(x) = 2x^2 - 5$, $x_0 = -1$ **-3, 13, 333 36.** $f(x) = 3x^2 - 4$, $x_0 = 1$ **-1, -1, -1 ★ 37.** $f(x) = 2x^2 + 2x + 1$, $x_0 = \frac{1}{2}$ **★ 38.** $f(x) = 3x^2 - 3x + 2$, $x_0 = \frac{1}{3}$

- **39. ECONOMICS** If the rate of inflation is 2%, the cost of an item in future years can be found by iterating the function c(x) = 1.02x. Find the cost of a \$70 portable stereo in four years if the rate of inflation remains constant. **\$75.77**
- **40. CRITICAL THINKING** Are there a function f(x) and an initial value x_0 such that the first three iterates, in order, are 4, 4, and 7? If so, state such a function and initial value. If not, explain.
- **41.** WRITING IN MATH Answer the question that was posed at the beginning of the lesson. **See margin**.

How is the Fibonacci sequence illustrated in nature?

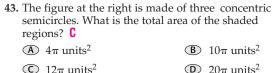
Include the following in your answer:

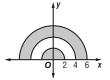
- the 13th term in the Fibonacci sequence, with an explanation of what it tells you about the plant described, and
- an explanation of why the Fibonacci sequence is neither arithmetic nor geometric.

Standardized Test Practice

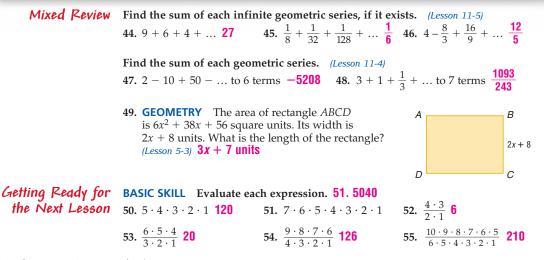
42. If *a* is positive, what percent of 4*a* is 8? **D**
(A)
$$\frac{a}{100}$$
% (B) $\frac{a}{2}$ % (C) $\frac{8}{a}$ %
43. The figure at the right is made of three concept

D
$$\frac{200}{a}\%$$





Maintain Your Skills



610 Chapter 11 Sequenses and Series

Algebra Activity

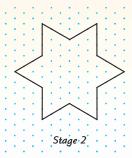
A Follow-Up of Lesson 11-6

Fractals

Fractals are sets of points that often involve intricate geometric shapes. Many fractals have the property that when small parts are magnified, the detail of the fractal is not lost. In other words, the magnified part is made up of smaller copies of itself. Such fractals can be constructed recursively.

You can use isometric dot paper to draw stages of the construction of a fractal called the *von Koch snowflake*.

- **Stage 1** Draw an equilateral triangle with sides of length 9 units on the dot paper.
- **Stage 2** Now remove the middle third of each side of the triangle from Stage 1 and draw the other two sides of an equilateral triangle pointing outward.



Imagine continuing this process indefinitely. The von Koch snowflake is the shape that these stages approach.

Model and Analyze 3. $s_n = 3 \cdot 4^{n-1}$, $\ell_n = 9(\frac{1}{3})^{n-1}$, $P_n = 27(\frac{4}{3})^{n-1}$

1. Copy and complete the table. Draw Stage 3, if necessary.

Stage	1	2	3	4
Number of Segments	3	12	48	192
Length of each Segment	9	3	1	
Perimeter	27	36	48	64

- **2.** Write recursive formulas for the number s_n of segments in Stage *n*, the length ℓ_n of each segment in Stage *n*, and the perimeter P_n of Stage *n*.
- **3.** Write nonrecursive formulas for s_n , ℓ_n , and P_n .
- 4. What is the perimeter of the von Koch snowflake? Explain. See pp. 629A-629F.
- **5.** Explain why the area of the von Koch snowflake can be represented by the infinite series $\frac{81\sqrt{3}}{4} + \frac{27\sqrt{3}}{4} + 3\sqrt{3} + \frac{4\sqrt{3}}{3} + \dots$. See pp. 629A-629F.
- 6. Find the sum of the series in Exercise 5. Explain your steps. See pp. 629A-629F.
- 7. Do you think the results of Exercises 4 and 6 are contradictory? Explain. See pp. 629A-629F.

Algebra Activity Fractals 611

Resource Manager

Glencoe Mathematics Classroom Manipulative Kit

isometric dot grid stamp

Algebra Activity

A Follow-Up of Lesson 11-6

Objective To apply iterations to various aspects of the Koch snowflake fractal.

Materials isometric dot paper

Teach

- Have students explore the difference between using dot paper and graph paper in terms of counting the units in the perimeter.
- Tell students that one of the characteristics of the Koch snowflake is that the area of the interior is finite but its perimeter is infinite. Invite them to explore fractals using the many related sites on the Internet.

Assess

In Exercises 1–3, students should

- be able to see the iterative nature of these data.
- make the generalizations that will form the parts of the formulas.

In Exercises 4–7, students should

- apply the formulas of the previous lessons.
- understand that fractals have mathematical characteristics that distinguish them from ordinary polygons.

Study Notebook

You may wish to have students summarize this activity and what they learned from it.

Teaching Algebra with Manipulatives

- p. 19 (isometric dot paper)
- p. 284 (student recording sheet)

Focus

5-Minute Check Transparency 11-7 Use as a quiz or review of Lesson 11-6.

Mathematical Background notes are available for this lesson on p. 576D.

does a power of a bino-mial describe the num-How bers of boys and girls in a family?

Ask students:

- In this problem, does the order make a difference, or is any family with 2 girls and 2 boys the same as any other? Order does make a difference.
- What does b^2g^2 represent in the triangle shown? Any sequence with 2 boys and 2 girls.

More About.

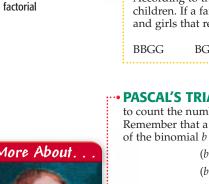
Vocabulary

Pascal's triangle

Binomial Theorem

Pascal's Triangle .

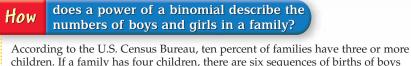
Although he did not discover it, Pascal's triangle is named for the French mathematician Blaise Pascal (1623-1662).



11-7 The Binomial Theorem

What You'll Learn

- Use Pascal's triangle to expand powers of binomials.
- · Use the Binomial Theorem to expand powers of binomials.



children. If a family has four children, there are six sequences of births of boys and girls that result in two boys and two girls. These sequences are listed below.

BBGG	BGBG	BGGB	GBBG	GBGB	GGBB	
:						

PASCAL'S TRIANGLE You can use the coefficients in powers of binomials to count the number of possible sequences in situations such as the one above. Remember that a binomial is a polynomial with two terms. Expand a few powers of the binomial b + g.

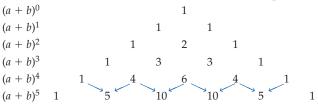
$(b + g)^0 =$	$1b^{0}g^{0}$
$(b + g)^1 =$	$1b^1g^0 + 1b^0g^1$
$(b + g)^2 =$	$1b^2g^0 + 2b^1g^1 + 1b^0g^1$
$(b + g)^3 =$	$1b^3g^0 + 3b^2g^1 + 3b^1g^2 + 1b^0g^3$
$(b + g)^4 =$	$1b^4g^0 + 4b^3g^1 + 6b^2g^2 + 4b^1g^3 + 1b^0g^4$

The coefficient 6 of the b^2g^2 term in the expansion of $(b + g)^4$ gives the number of sequences of births that result in two boys and two girls. As another example, the coefficient 4 of the b^1g^3 term gives the number of sequences with one boy and 3 girls.

Here are some patterns that can be seen in any binomial expansion of the form $(a + b)^n$. **1.** There are n + 1 terms.

- **2.** The exponent *n* of $(a + b)^n$ is the exponent of *a* in the first term and the exponent of *b* in the last term.
- **3.** In successive terms, the exponent of *a* decreases by one, and the exponent of *b* increases by one.
- **4.** The sum of the exponents in each term is *n*.
- 5. The coefficients are symmetric. They increase at the beginning of the expansion and decrease at the end.

The coefficients form a pattern that is often displayed in a triangular formation. This is known as **Pascal's triangle**. Notice that each row begins and ends with 1. Each coefficient is the sum of the two coefficients above it in the previous row.



612 Chapter 11 Sequences and Series

Resource Manager

Workbook and Reproducible Masters

Chapter 11 Resource Masters

• Study Guide and Intervention, pp. 667–668

- Skills Practice, p. 669
- Practice, p. 670
- Reading to Learn Mathematics, p. 671
- Enrichment, p. 672

Transparencies

5-Minute Check Transparency 11-7 Answer Key Transparencies

警 Technology

Interactive Chalkboard

Example 1 Use Pascal's Triangle

Expand $(x + y)^7$.

Write two more rows of Pascal's triangle.

 $1 \quad 6 \quad 15 \quad 20 \quad 15 \quad 6 \quad 1$

1 7 21 35 35 21 7 1

Use the patterns of a binomial expansion and the coefficients to write the expansion of $(x + y)^7$.

 $(x + y)^7 = 1x^7y^0 + 7x^6y^1 + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7x^1y^6 + 1x^0y^7$ = $x^7 + 7x^6y + 21x^5y^2 + 35x^4y^3 + 35x^3y^4 + 21x^2y^5 + 7xy^6 + y^7$

THE BINOMIAL THEOREM Another way to show the coefficients in a binomial expansion is to write them in terms of the previous coefficients.

$(a + b)^0$					1		Eliminate common
$(a + b)^1$				1	$\frac{1}{1}$		factors that are shown in color.
$(a + b)^2$			1		$\frac{2}{1}$	$\frac{2 \cdot 1}{1 \cdot 2}$	
$(a + b)^3$		1		$\frac{3}{1}$	$\frac{3 \cdot 1}{1 \cdot 1}$	$\frac{2}{2}$ $\frac{3 \cdot 2}{1 \cdot 2}$	$\frac{2 \cdot 1}{2 \cdot 3}$
$(a + b)^4$	1		$\frac{4}{1}$		$\frac{4\cdot 3}{1\cdot 2}$	$\frac{4\cdot 3\cdot 2}{1\cdot 2\cdot 3}$	$\frac{4\cdot 3\cdot 2\cdot 1}{1\cdot 2\cdot 3\cdot 4}$

This pattern provides the coefficients of $(a + b)^n$ for any nonnegative integer *n*. The pattern is summarized in the **Binomial Theorem**.

Key Concept	Binomial Theorem
If <i>n</i> is a nonnegative integer, then	
$(a + b)^n = 1a^nb^0 + \frac{n}{1}a^{n-1}b^1 + \frac{n(n-1)}{1\cdot 2}a^{n-2}b^2 + \frac{n(n-1)}{1\cdot 2}a^{n-2}b^2$	$\frac{(n-1)(n-2)}{(1+2)^3}a^{n-3}b^3 + \dots + 1a^0b^n.$

Example 2 Use the Binomial Theorem

Expand $(a - b)^6$.

The expansion will have seven terms. Use the sequence $1, \frac{6}{1}, \frac{6 \cdot 5}{1 \cdot 2}, \frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3}$ to find the coefficients for the first four terms. Then use symmetry to find the remaining coefficients.

$$(a-b)^{6} = 1a^{6} (-b)^{0} + \frac{b}{1}a^{5} (-b)1 + \frac{b \cdot 5}{1 \cdot 2}a^{4} (-b)^{2} + \frac{b \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3}a^{3} (-b)^{3} + \dots + 1a^{0} (-b)^{6}$$
$$= a^{6} - 6a^{5}b + 15a^{4}b^{2} - 20a^{3}b^{3} + 15a^{2}b^{4} - 6ab^{5} + b^{6}$$

Notice that in terms having the same coefficients, the exponents are reversed, as in $15a^4b^2$ and $15a^2b^4$.

The factors in the coefficients of binomial expansions involve special products called **factorials**. For example, the product $4 \cdot 3 \cdot 2 \cdot 1$ is written 4! and is read 4 *factorial*. In general, if *n* is a positive integer, then $n! = n(n - 1)(n - 2)(n - 3) \dots 2 \cdot 1$. *By definition*, 0! = 1.

www.algebra2.com/extra_examples

Study Tip

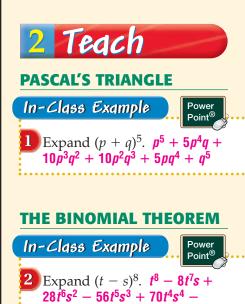
Graphing Calculators On a TI-83 Plus, the

PRB menu.

factorial symbol, !, is

located on the MATH

Lesson 11-7 The Binomial Theorem 613



Teaching Tip Have students discuss each of the various patterns in these examples to make sure they see what happens with coefficients, exponents, and signs.

 $56t^3s^5 + 28t^2s^6 - 8ts^7 + s^8$

In-Class Examples

3 Evaluate $\frac{6!}{2!4!}$. **15**

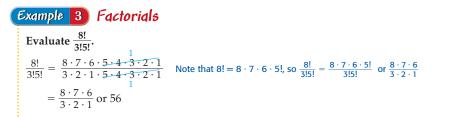
Teaching Tip Encourage students to write the factors and simplify before they calculate.

Expand $(3x - y)^4$. 81 x^4 – $108x^{3}y + 54x^{2}y^{2} - 12xy^{3} + y^{4}$

Teaching Tip Make sure students understand that 0! = 1 by definition, and also that 1! = 1.

Study Tip
Missing Steps If you don't understand a step like $\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} = \frac{6!}{3!3!}$, work it out on a piece of scrap paper. $\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{1 \cdot 2 \cdot 3 \cdot 3!}$ $= \frac{6!}{3!3!}$

TEACHING TIP A common mistake students make is forget ting to evaluate $(2x)^5$ as 2^5x^5 . Inserting the line $\frac{1(32x^5) + 5(16x^4)y +}{10(8x^3)y^2 + 10(4x^2)y^3}$



An expression such as $\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3}$ in Example 2 can be written as a quotient of factorials. In this case, $\frac{6 \cdot 5 \cdot 4}{1 \cdot 2 \cdot 3} = \frac{6!}{3!3!}$. Using this idea, you can rewrite the expansion of $(a + b)^6$ using factorials $(a+b)^{6} = \frac{6!}{6!0!}a^{6}b^{0} + \frac{6!}{5!1!}a^{5}b^{1} + \frac{6!}{4!2!}a^{4}b^{2} + \frac{6!}{3!3!}a^{3}b^{3} + \frac{6!}{2!4!}a^{2}b^{4} + \frac{6!}{1!5!}a^{1}b^{5} + \frac{6!}{0!6!}a^{0}b^{6}$

You can also write this series using sigma notation.

$$(a+b)^6 = \sum_{k=0}^6 \frac{6!}{(6-k)!k!} a^{6-k} b^k$$

In general, the Binomial Theorem can be written both in factorial notation and in sigma notation.

Key Concept
 Binomial Theorem, Factorial Form

$$(a + b)^n = \frac{n!}{n!0!} a^n b^0 + \frac{n!}{(n-1)!1!} a^{n-1} b^1 + \frac{n!}{(n-2)!2!} a^{n-2} b^2 + \dots + \frac{n!}{0!n!} a^0 b^n$$
 $= \sum_{k=0}^n \frac{n!}{(n-k)!k!} a^{n-k} b^k$

Example 4 Use a Factorial Form of the Binomial Theorem
Example 4 Use a Factorial Form of the Binomial Theorem
Expand
$$(2x + y)^5$$
.
 $(2x + y)^5 = \sum_{k=0}^5 \frac{5!}{(5-k)!k!} (2x)^{5-k}y^k$ Binomial Theorem, factorial form
 $= \frac{5!}{5!0!} (2x)^5y^0 + \frac{5!}{4!1!} (2x)^4y^1 + \frac{5!}{3!2!} (2x)^3y^2 + \frac{5!}{2!3!} (2x)^2y^3 + \frac{5!}{1!4!} (2x)^1y^4 + \frac{5!}{0!5!} (2x)^0y^5$ Let $k = 0, 1, 2, 3, 4, \text{ and } 5$.
 $(32x^5) + 5(16x^4)y + \frac{5!}{10(4x^2)y^3} + \frac{5!}{5\cdot4\cdot3\cdot2\cdot1\cdot1} (2x)^5 + \frac{5\cdot4\cdot3\cdot2\cdot1}{4\cdot3\cdot2\cdot1\cdot1} (2x)^4 y + \frac{5\cdot4\cdot3\cdot2\cdot1}{3\cdot2\cdot1\cdot2\cdot1} (2x)^3 y^2 + \frac{5\cdot4\cdot3\cdot2\cdot1}{2\cdot1\cdot3\cdot2\cdot1} (2x)^2 y^3 + \frac{5\cdot4\cdot3\cdot2\cdot1}{1\cdot4\cdot3\cdot2\cdot1} (2x)^2 y^4 + \frac{5\cdot4\cdot3\cdot2\cdot1}{1\cdot5\cdot4\cdot3\cdot2\cdot1} (2x)^3 y^2 + \frac{5\cdot4\cdot3\cdot2\cdot1}{2\cdot1\cdot3\cdot2\cdot1} (2x)^2 y^3 + \frac{5\cdot4\cdot3\cdot2\cdot1}{1\cdot4\cdot3\cdot2\cdot1} (2x)y^4 + \frac{5\cdot4\cdot3\cdot2\cdot1}{1\cdot5\cdot4\cdot3\cdot2\cdot1} y^5$
 $= 32x^5 + 80x^4y + 80x^3y^2 + 40x^2y^3 + 10xy^4 + y^5$ Simplify.

Sometimes you need to know only a particular term of a binomial expansion. Note that when the Binomial Theorem is written in sigma notation, k = 0 for the first term, k = 1 for the second term, and so on. In general, the value of k is always one less than the number of the term you are finding.

Answers

614 Chapter 11 Sequences and Series 7. $p^5 + 5p^4q + 10p^3q^2 + 10p^2q^3 +$ $5pa^4 + a^5$ 8. $t^6 + 12t^5 + 60t^4 + 160t^3 + 240t^2 + 192t + 64$ 24. $a^4 - 8a^3 + 24a^2 - 32a + 16$ 9. $x^4 - 12x^3y + 54x^2y^2 - 108xy^3 + 81y^4$ 25. $16b^4 - 32b^3x + 24b^2x^2 - 8bx^3 + x^4$ 19. $a^3 - 3a^2b + 3ab^2 - b^3$ $26.64a^{6} + 192a^{5}b + 240a^{4}b^{2} + 160a^{3}b^{3} + 60a^{2}b^{4} + 12ab^{5} + b^{6}$ 20. $m^4 + 4m^3n + 6m^2n^2 + 4mn^3 + n^4$ $27.243x^5 - 810x^4y + 1080x^3y^2 - 720x^2y^3 + 240xy^4 - 32y^5$ $28.81x^4 + 216x^3y + 216x^2y^2 + 96xy^3 + 16y^4$ 21. $r^8 + 8r^7s + 28r^6s^2 + 56r^5s^3 + 70r^4s^4 + 56r^3s^5 + 28r^2s^6 +$ $8rs^7 + s^8$ 29. $\frac{a^5}{32} + \frac{5a^4}{8} + 5a^3 + 20a^2 + 40a + 32$ 22. $m^5 - 5m^4a + 10m^3a^2 - 10m^2a^3 + 5ma^4 - a^5$ $30.243 + 135m + 30m^2 + \frac{10m^3}{3} + \frac{5m^4}{27} + \frac{m^5}{243}$ 23. $x^5 + 15x^4 + 90x^3 + 270x^2 + 405x + 243$

Example 5 Find a Particular Term

 $= 210p^6q^4$

Find the fifth term in the expansion of $(p + q)^{10}$.

First, use the Binomial Theorem to write the expansion in sigma notation.

$$(p+q)^{10} = \sum_{k=0}^{10} \frac{10!}{(10-k)!k!} p^{10-k} q^k$$

In the fifth term, $k = 4$.
$$\frac{10!}{(10-k)!k!} p^{10-k} q^k = \frac{10!}{(10-4)!4!} p^{10-4} q^4 \quad k = 4$$
$$= \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{4 \cdot 3 \cdot 2 \cdot 1} p^6 q^4 \qquad \frac{10!}{6!4!} = \frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot 6!}{6!4!} \text{ or } \frac{10}{4}$$

 $\frac{\cdot 9 \cdot 8 \cdot 7}{\cdot 3 \cdot 2 \cdot 1}$ Simplify.

Check for Understanding

<i>Conc</i> 1. 1, 8, 28, 56, 28, 8, 1		2. Identify the coe	fficient of $a^{n-1}b$ in the expan	angle corresponding to $n = 8$. asion of $(a + b)^n$. n for which the first term of the
	d Practice ACTICE KEY Examples	Evaluate each expre 4. 8! 40,320 Expand each power	5. ^{13!} / _{9!} 17,160	6. $\frac{12!}{2!10!}$ 66
4–6 7–9, 12 10, 11	3 1, 2, 4 5	7. $(p+q)^5$	8. $(t + 2)^6$ errm of each expansion.	9. $(x - 3y)^4$
L		10. fourth term of (<i>a</i>	$(a + b)^8$ 56 a^5b^3 11. fi 1	ifth term of (2 <i>a</i> + 3 <i>b</i>) ¹⁰ , 088,640<i>a</i>⁶<i>b</i>⁴

Application 12. SCHOOL Mr. Hopkins is giving a five-question true-false quiz. How many ways could a student answer the questions with three trues and two falses? 10

★ indicates increased difficulty Practice and Apply

I factice and	мрргу			
Homework Help For See Exercises Examples	Evaluate each expre 13. 9! 362,880	ssion. 14. 13! 6,227,020,800) 15. $\frac{9!}{7!}$ 72	
13–18 3 19–33 1, 2, 4 34–41 5	16. $\frac{7!}{4!}$ 210 Expand each power.	17. <u>12!</u> 495 . 19-30. See margin.	18. $\frac{14!}{5!9!}$ 2002	
Extra Practice See page 853.	19. $(a - b)^3$ 22. $(m - a)^5$ 25. $(2b - x)^4$ 28. $(3x + 2y)^4$	20. $(m + n)^4$ 23. $(x + 3)^5$ 26. $(2a + b)^6$ ★ 29. $\left(\frac{a}{2} + 2\right)^5$	21. $(r + s)^8$ 24. $(a - 2)^4$ 27. $(3x - 2y)^5$ ★ 30. $\left(3 + \frac{m}{3}\right)^5$	
-		Trite an expanded expression of the cube at the right. 36<i>x</i> + 8 cm³	3x + 2 cm	
www.algebra2.	.com/self_check_quiz		Lesson 11-7 The Binomial Theore	n

DAILY INTERVENTION

Differentiated Instruction

Verbal/Linguistic Have pairs of students work together to make up a jingle or a poem that describes the patterns in the Binomial Theorem. The poem should describe at least three of the five patterns in the Binomial Theorem described on p. 612 of the Student Edition.

In-Class Example Power Point 5 Find the fourth term in the expansion of $(a + 3b)^4$. **108***ab*³ Practice/Appl Study Notebook Have students-• add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter II. • add the Study Tip on p. 613 to their list of tips about the

graphing calculator. • include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...

Organization by Objective

- Pascal's Triangle: 19-22, 34 - 41
- The Binomial Theorem: 13-18, 23-33

Odd/Even Assignments

Exercises 13–30 and 34–41 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

615

ELL

Basic: 13–27 odd, 31–39 odd, 42-62

Average: 13–39 odd, 41–62 **Advanced:** 14–40 even, 42–58 (optional: 59–62) All: Practice Quiz 2 (1–10)

Study Guide and Intervention, p. 667 (shown) and p. 668

Pascal's Triangle Pascal's triangle is the pattern of coefficients of powers of binomials displayed in triangular form. Each row begins and ends with 1 and each coefficient is the sum of the two coefficients above it in the previous row.

Example Use Pascal's triangle to find the number of possible sequences consisting of 3 as and 2 bs. The coefficient 10 of the $a^{4}b^{2}$ -term in the expansion of $(a + b)^{5}$ gives the number of sequences that result in three as and two bs.

Exercises

Expand each power using Pascal's triangle. 1. $(a + 5)^4 a^4 + 20a^3 + 150a^2 + 500a + 625$

2. $(x - 2y)^6 x^6 - 12x^5y + 60x^4y^2 - 160x^3y^3 + 240x^2y^4 - 192xy^5 + 64y^6$

3. $(j - 3k)^5 j^5 - 15j^4k + 90j^3k^2 - 270j^2k^3 + 405jk^4 - 243k^5$

 $\textbf{4.} (2s+t)^7 \ \textbf{128s}^7 + \textbf{448s}^5t + \textbf{672s}^5t^2 + \textbf{560s}^4t^3 + \textbf{280s}^3t^4 + \textbf{84s}^2t^5 + \textbf{14s}t^6 + t^7$

 $5. (2p + 3q)^6 \ 64p^6 + 576p^5q + 2160p^4q^2 + 4320p^3q^3 + 4860p^2q^4 + 2916pq^5 + 729q^6$

6. $\left(a - \frac{b}{2}\right)^4 a^4 - 2a^3b + \frac{3}{2}a^2b^2 - \frac{1}{2}ab^3 + \frac{1}{16}b^4$

 Ray tosses a coin 15 times. How many different sequences of tosses could result in 4 heads and 11 tails? 1365

 There are 9 true/false questions on a quiz. If twice as many of the statements are true as false, how many different sequences of true/false answers are possible?

Skills Practice, p. 669 and Practice, p. 670 (shown)

Evaluate each expre 2. 11! **39,916,800** 3. $\frac{9!}{7!}$ **3024** 1.7! 5040 4. 20! 380 6. 8! 56 7. 12! 924 8. 41! 10,660 5. $\frac{8!}{6!2!}$ 28 Expand each power. 9. $(n + n)^5 n^5 + 5n^4 v + 10n^3 v^2 + 10n^2 v^3 + 5nv^4 + v^5$ $10.(x-y)^4 x^4 - 4x^3y + 6x^2y^2 - 4xy^3 + y^4$ $11.(x + y)^6 x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 + 15x^2y^4 + 6xy^5 + y^6$ 12. $(r+3)^5 r^5 + 15r^4 + 90r^3 + 270r^2 + 405r + 243$ 13. $(m-5)^5 m^5 - 25m^4 + 250m^3 - 1250m^2 + 3125m - 3125$ 14. $(x + 4)^4 x^4 + 16x^3 + 96x^2 + 256x + 256$ $15.(3x + y)^4$ $81x^4 + 108x^3y + 54x^2y^2 + 12xy^3 + y^4$ $16. (2m - y)^4 16m^4 - 32m^3y + 24m^2y^2 - 8my^3 + y^4$ 17. $(w - 3z)^3 w^3 - 9w^2z + 27wz^2 - 27z^3$ $18.(2d + 3)^6 \ 64d^6 + 576d^5 + 2160d^4 + 4320d^3 + 4860d^2 + 2916d + 729$ $19. (x + 2y)^5 x^5 + 10x^4y + 40x^3y^2 + 80x^2y^3 + 80xy^4 + 32y^5$ 20. $(2x - y)^5$ 32 $x^5 - 80x^4y + 80x^3y^2 - 40x^2y^3 + 10xy^4 - y^5$ 21. $(a - 3b)^4 a^4 - 12a^3b + 54a^2b^2 - 108ab^3 + 81b^4$ **22.** $(3 - 2z)^4$ **16z^4 - 96z^3 + 216z^2 - 216z + 81** 23. $(3m - 4n)^3$ 27 m^3 - 108 m^2n + 144 mn^2 - 64 n^3 $24. (5x - 2y)^4 \ 625x^4 - 1000x^3y + 600x^2y^2 - 160xy^3 + 16y^4$

Find the indicated term of each expansion.

 25. seventh term of $(a + b)^{10}$ 210 a^4b^5 26. sixth term of $(m - n)^{10}$ $-252m^5n^2$

 27. ninth term of $(r - s)^{14}$ 3003 r^6s^6 28. tenth term of $(2x + y)^{12}$ 1760 x^3y^3

 29. fourth term of $(x - 3y)^6$ -540 x^3y^3 30. fifth term of $(2x - 1)^9$ 4032 x^6

31. GEOMETRY How many line segments can be drawn between ten points, no three of which are collinear, if you use exactly two of the ten points to draw each segment? 45

32. PROBABILITY If you toss a coin 4 times, how many different sequences of tosses will give exactly 3 heads and 1 tail or exactly 1 head and 3 tails? 8

Reading to Learn Mathematics, p. 671

Pre-Activity How does a power of a binomial describe the numbers of boys and girls in a family?

Read the introduction to Lesson 11-7 at the top of page 612 in your textbook. • If a family has four children, list the sequences of births of girls and boys that result in three girls and one boy. **BGGG GBGG GGBG** • BGGG GBGG GGBB • BGGG GGBG GGBB

(ELL)

unary results in curve girrs and one boy. BUGG GBGG GBBG GG Describe a way to figure out how many such sequences there are with listing them. Sample answer: The boy could be the first, second, third, or fourth child, so there are four sequences with three girls and one boy.

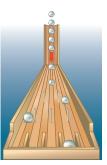
Reading the Lesson

- 1. Consider the expansion of $(w + z)^5$.
- a. How many terms does this expansion have? 6
 b. In the second term of the expansion, what is the exponent of w? 4
 What is the exponent of z? 1
- What is the coefficient of the second term? 5
- c. In the fourth term of the expansion, what is the exponent of w? 2
 What is the exponent of z? 3
- What is the coefficient of the fourth term? 10
- d. What is the last term of this expansion? \boldsymbol{z}^{5}
- a. State the definition of a *factorial* in your own words. (Do not use mathematical symbols in your definition.) Sample answer: The factorial of any positive integer is the product of that integer and all the smaller integers down to one. The factorial of zero is one.
- **b.** Write out the product that you would use to calculate 10!. (Do not actually calculate the product.) $10\cdot9\cdot8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1$
- c. Write an expression involving factorials that could be used to find the coefficient of the third term of the expansion of (m − n)⁶. (Do not actually calculate the coefficient.) 61/4121

Helping You Remember

3. Without using Pascal's triangle or factorials, what is an easy way to remember the first two and last two coefficients for the terms of the binomial expansion of (u + br?) Sample answer: The first and last coefficients are always 1. The second and next-to-last coefficients are always n, the power to which the binomial is being raised.

- Pascal's triangle displays many patterns. Visit www.algebra2.com/ webquest to continue work on your WebQuest project.
- **32. GAMES** The diagram shows the board for a game in which ball bearings are dropped down a chute. A pattern of nails and dividers causes the bearings to take various paths to the sections at the bottom. For each section, how many paths through the board lead to that section? **1**, **4**, **6**, **4**, **1**



33. INTRAMURALS Ofelia is taking ten shots in the intramural free-throw shooting competition. How many sequences of makes and misses are there that result in her making eight shots and missing two? **45**

Find the indicated term of each expansion.

- 34. sixth term of $(x y)^9 126x^4y^5$ 36. fourth term of $(x + 2)^7 280x^4$
- **35.** seventh term of $(x + y)^{12}$ **924x^6y^6**
- **37.** fifth term of $(a 3)^8$ **5670***a*⁴
- **38.** fifth term of $(2a + 3b)^{10}$ **1.088.640** $a^{6}b^{4}$ **1.7 35**
- 39. fourth term of $(2x + 3y)^9$ **145**,152x⁶y³ ★ 41. sixth term of $\left(x - \frac{1}{2}\right)^{10} - \frac{63}{8}x^5$
- *** 40.** fourth term of $\left(x + \frac{1}{3}\right)^7 \frac{35}{27}x^4$
 - **42. CRITICAL THINKING** Explain why $\frac{12!}{7!5!} + \frac{12!}{6!6!} = \frac{13!}{7!6!}$ without finding the value of any of the expressions. **See pp. 629A–629F.**
 - 43. WRITING IN MATH

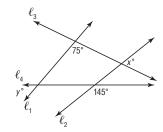
Answer the question that was posed at the beginning of the lesson. **See pp. 629A–629F.**

How does a power of a binomial describe the numbers of boys and girls in a family?

Include the following in your answer:

- the expansion of $(b + g)^5$ and what it tells you about sequences of births of boys and girls in families with five children, and
- an explanation of how to find a formula for the number of sequences of births that have exactly *k* girls in a family of *n* children.
- **44.** Which of the following represents the values of *x* that are solutions of the inequality $x^2 < x + 20$?

 - \bigcirc -5 < x < 4
 - (D) -4 < x < 5
- **45.** If four lines intersect as shown in the figure at the right, x + y = C
 - **A** 70.
 - **B** 115.
 - © 140.
 - D It cannot be determined from the information given.



616 Chapter 11 Sequences and Series

Standardized

Test Practice

Enrichment, p. 672			
Patterns in Pascal's Triangle			
You have learned that the coefficients in the expansion of $(x + y)^n$ yield number pyramid called Pascal's triangle .			
Row 1 1 Row 2 1 1 Row 3 1 2 1			
Row 4 1 3 4 1 Row 5 1 4 6 4 1			
Row 6 1 5 10 10 5 1 Row 7 1 6 15 20 15 6 1			
As many rows can be added to the bottom of the pyramid as you please.			
This activity explores some of the interesting properties of this famous number pyramid.			
1. Pick a row of Pascal's triangle.			

a. What is the sum of all the numbers in all the rows above the row See stude

Maintain Your Skills

Find the first five terms of each sequence. (Lesson 11-6) Mixed Review

- **46.** $a_1 = 7, a_{n+1} = a_n 2$ **7, 5, 3, 1, -1 47.** $a_1 = 3, a_{n+1} = 2a_n 1$ **3, 5, 9, 17, 33**
 - 48. CLOCKS The spring in Juanita's old grandfather clock is broken. When you try to set the pendulum in motion by holding it against the wall of the clock and letting go, it follows a swing pattern of 25 centimeters, 20 centimeters, 16 centimeters, and so on until it comes to rest. What is the total distance the pendulum swings before coming to rest? (Lesson 11-5) 125 cm

Express each logarithm in terms of common logarithms. Then approximate its value to four decimal places. (Lesson 10-4)

49. $\log_2 5 \frac{\log 5}{\log 2}$; 2.3219	50. $\log_3 10 \frac{1}{\log 3}$; 2.0959	51. log ₅ 8 log 8 log 5 ; 1.2920
---	---	--

Determine any vertical asymptotes and holes in the graph of each rational function. (Lesson 9-3) 54. hole: x = -3

52. $f(x) = \frac{1}{x^2 + 5x + 6}$ **53.** $f(x) = \frac{x + 2}{x^2 + 3x - 4}$ **54.** $f(x) = \frac{x^2 + 4x + 3}{x + 3}$

x = -2, x = -353. asymptotes: x = -4, x = 1

52. asymptotes:

Without writing the equation in standard form, state whether the graph of each equation is a parabola, circle, ellipse, or hyperbola. (Lesson 8-6)

55. $x^2 - 6x - y^2 - 3 = 0$ hyperbola **56.** $4y - x + y^2 = 1$ parabola

Determine whether each pair of functions are inverse functions. (Lesson 7-8)

57. $f(x) = x + 3$ yes	58. $f(x) = 2x + 1$ no
g(x)=x-3	$g(x) = \frac{x+1}{2}$

the Next Lesson

explanations.

Getting Ready for PREREQUISITE SKILL State whether each statement is true or false when n = 1. Explain. (To review evaluating expressions, see Lesson 1-1.) **59–62. See margin for 59.** $1 = \frac{n(n+1)}{2}$ **true 61.** $1 = \frac{n^2(n+1)^2}{4}$ true

60.
$$1 = \frac{(n+1)(2n+1)}{2}$$
 false
62. $3^n - 1$ is even. true

Practice Quiz 2 Lessons 11-4 through 11-7 Find the sum of each geometric series. (Lessons 11-4 and 11-5) $2 \cdot \sum_{n=1}^{6} 2(-3)^{n-1} - 364$ $4 \cdot 5 + 1 + \frac{1}{5} + \dots + \frac{25}{4}$ **1.** $a_1 = 5, r = 3, n = 12$ **1,328,600** 3. $\sum_{n=1}^{\infty} 8\left(\frac{2}{3}\right)^{n-1}$ 24

Find the first five terms of each sequence. (Lesson 11-6)

5.
$$a_1 = 1, a_{n+1} = 2a_n + 3$$
 1, 5, 13, 29, 61
6. $a_1 = 2, a_{n+1} = a_n + 2n$ **2, 4, 8, 14, 22**

7. Find the first three iterates of the function f(x) = -3x + 2 for an initial value of $x_0 = -1$. (Lesson 11-6) **5**, **-13**, **41**

Expand each power. (Lesson 11-7) 8. $243x^5 + 405x^4y + 270x^3y^2 + 90x^2y^3 + 15xy^4 + y^5$ 9. $(a + 2)^6 a^6 + 12a^5 + 60a^4 + 160a^3 +$ 8. $(3x + y)^5$ 240*a*² + 192*a* + 64 **10.** Find the fifth term of the expansion of $(2a + b)^9$. (Lesson 11-7) **4032** a^5b^4

Lesson 11-7 The Binomial Theorem 617

A55855

Open-Ended Assessment

Writing Have students write their own example of a binomial expansion, using colored pens or pencils to emphasize the patterns.

Intervention Invite students to share their confusions about this

material in small groups or with a partner in order to clear up any problems.

Getting Ready for Lesson II-8

PREREQUISITE SKILL Students will prove statements using mathematical induction in Lesson 11-8. This will include their showing that a statement is true for n = 1by evaluating an equation for that value. Use Exercises 59-62 to determine your students' familiarity with evaluating equations for a given value.

Assessment Options

Practice Quiz 2 The quiz provides students with a brief review of the concepts and skills in Lessons 11-4 through 11-7. Lesson numbers are given to the right of the exercises or instruction lines so students can review concepts not yet mastered.

Answers

59.
$$\frac{1(1+1)}{2} = \frac{1(2)}{2}$$
 or 1
60. $\frac{(1+1)(2 \cdot 1 + 1)}{2} = \frac{2(3)}{2}$ or 3
61. $\frac{1^2(1+1)^2}{4} = \frac{1(4)}{4}$ or 1
62. $3^1 - 1 = 2$, which is even

Lesson Notes

Focus

5-Minute Check Transparency 11-8 Use as a quiz or review of Lesson 11-7.

Mathematical Background notes are available for this lesson on p. 576D.

How does the concept of a ladder help you prove statements about numbers?

Ask students:

Why is it not enough to prove only Step 2 and Step 3? **Steps 2** and 3 prove the statement for the next integer, given that it is true for some integer. You must prove the statement for some specific value of *n* in order to prove that the statement is true for any value of *k* that is greater than or equal to *n*.

11-8 Proof and Mathematical Induction

What You'll Learn

- Prove statements by using mathematical induction.
- Disprove statements by finding a counterexample.

How does the concept of a ladder help you prove statements about numbers?

Imagine the positive integers as a ladder that goes upward forever. You know that you cannot leap to the top of the ladder, but you can stand on the first step, and no matter which step you are on, you can always climb one step higher. Is there any step you cannot reach?

MATHEMATICAL INDUCTION Mathematical induction is used to prove statements about positive integers. An induction proof consists of three steps.

Key C	oncept Mathematical Ir	nduction
Step 1 S	how that the statement is true for some integer <i>n</i> .	
	Assume that the statement is true for some positive integer <i>k</i> , where his assumption is called the inductive hypothesis.	$e k \ge n.$
Step 3 S	how that the statement is true for the next integer $k + 1$.	
xample	1 Summation Formula	
	hat the sum of the squares of the first <i>n</i> positive integers is $\frac{(2n + 1)}{2}$ That is, prove that $1^2 + 2^2 + 3^2 + + n^2 = \frac{n(n + 1)(2n)}{6}$	+ 1).
Step 1	When $n = 1$, the left side of the given equation is 1^2 or 1. The riside is $\frac{1(1 + 1)[2(1) + 1]}{6}$ or 1. Thus, the equation is true for $n = 1$	
Step 2	Assume $1^2 + 2^2 + 3^2 + \dots + k^2 = \frac{k(k+1)(2k+1)}{6}$ for a positive int	eger k.
Step 3	Show that the given equation is true for $n = k + 1$.	
	$1^2 + 2^2 + 3^2 + \dots + k^2 + (k+1)^2 = \frac{k(k+1)(2k+1)}{6} + (k+1)^2$	Add $(k + 1)$ to each sid
	$=\frac{k(k+1)(2k+1)+6(k+1)^2}{6}$	Add.
	$=\frac{(k+1)[k(2k+1)+6(k+1)]}{6}$	Factor.
	$=\frac{(k+1)[2k^2+7k+6]}{6}$	Simplify.
	$=\frac{(k+1)(k+2)(2k+3)}{6}$	Factor.
	$= \frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}$	- 1]

618 Chapter 11 Sequences and Series

Vocabulary

Study Tip

In many cases, it will be

helpful to let n = 1.

Step 1

mathematical induction

inductive hypothesis

Resource Manager

Workbook and Reproducible Masters

Chapter 11 Resource Masters

• Study Guide and Intervention, pp. 673-674

- Skills Practice, p. 675
- Practice, p. 676
- Reading to Learn Mathematics, p. 677
- Enrichment, p. 678
- Assessment, p. 694

Transparencies

5-Minute Check Transparency 11-8 Answer Key Transparencies

Technology

Interactive Chalkboard

The last expression on page 618 is the right side of the equation to be proved, where *n* has been replaced by k + 1. Thus, the equation is true for n = k + 1.

This proves that $1^2 + 2^2 + 3^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all positive integers *n*.

Example 2 Divisibility

Prove that $7^n - 1$ is divisible by 6 for all positive integers *n*.

- **Step 1** When n = 1, $7^n 1 = 7^1 1$ or 6. Since 6 is divisible by 6, the statement is true for n = 1.
- **Step 2** Assume that $7^k 1$ is divisible by 6 for some positive integer *k*. This means that there is a whole number *r* such that $7^k 1 = 6r$.
- **Step 3** Show that the statement is true for n = k + 1.

$7^k - 1 = 6r$	Inductive hypothesis
$7^k = 6r + 1$	Add 1 to each side.
$7(7^k) = 7(6r + 1)$	Multiply each side by 7.
$7^{k+1} = 42r + 7$	Simplify.
$7^{k+1} - 1 = 42r + 6$	Subtract 1 from each side.
$7^{k+1} - 1 = 6(7r+1)$	Factor.
and the second	

Since *r* is a whole number, 7r + 1 is a whole number. Therefore, $7^{k+1} - 1$ is divisible by 6. Thus, the statement is true for n = k + 1.

This proves that $7^n - 1$ is divisible by 6 for all positive integers *n*.

COUNTEREXAMPLES Of course, not every formula that you can write is true. A formula that works for a few positive integers may not work for *every* positive integer. You can show that a formula is not true by finding a *counterexample*. This often involves trial and error.

Example 3 Counterexample

Find a counterexample for the formula $1^4 + 2^4 + 3^4 + ... + n^4 = 1 + (4n - 4)^2$. Check the first few positive integers.

n	Left Side of Formula	Right Side of Formula	
1	1 ⁴ or 1	$1 + [4(1) - 4]^2 = 1 + 0^2 \text{ or } 1$	true
2	$1^4 + 2^4 = 1 + 16 \text{ or } 17$	$1 + [4(2) - 4]^2 = 1 + 4^2$ or 17	true
3	$1^4 + 2^4 + 3^4 = 1 + 16 + 81$ or 98	$1 + [4(3) - 4]^2 = 1 + 64 \text{ or } 65$	false

The value n = 3 is a counterexample for the formula.

Check for Understanding

Concept Chec 1–2. See pp. 629A–629F.

- *Concept Check* **1. Describe** some of the types of statements that can be proved by using mathematical induction.
 - **2.** Explain the difference between mathematical induction and a counterexample.
 - **3. OPEN ENDED** Write an expression of the form $b^n 1$ that is divisible by 2 for all positive integers *n*. **Sample answer:** $3^n 1$

www.algebra2.com/extra_examples

Lesson 11-8 Proof and Mathematical Induction 619

DALLY INTERVENTION

Differentiated Instruction

Visual/Spatial Have students demonstrate proof by induction by laying out a "train" of dominoes. Have them relate the steps in an inductive proof to the requirements that (1) the first domino must fall and (2) if any one domino falls, the next one must fall.

In-Class Examples Power Point Prove that 1 + 3 + 5 + ... + $(2n - 1) = n^2$. Step 1: When n = 1, the left side of the given equation is 1. The right side is 1^2 . Since $1 = 1^2$, the equation is true for n = 1. Step 2: Assume $1 + 3 + 5 + ... + (2k - 1) = k^2$ for a positive integer k. Step 3: Does 1 + 3 + 5 + ... + $[2(k + 1) - 1] = (k + 1)^2$? Yes. the left side simplifies to $k^{2} + 2k + 1$ or $(k + 1)^{2}$ which is equal to the right side. Prove that $6^n - 1$ is divisible by 5 for all positive integers *n*. Proof uses steps similar to those in Example 2 in the Student

Teach

MATHEMATICAL INDUCTION

COUNTEREXAMPLES

Edition.

Power Point[®]

- Find a counterexample for the formula that $n^2 + n + 5$ is always a prime number for any positive integer *n*. n = 4
 - any positive integer n. $\mathbf{n} =$

Study Notebook

Have students—

- complete the definitions/examples for the remaining terms on their
 Vocabulary Builder worksheets for
 Chapter II.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

a positive integer. This type of reasoning will help students analyze the factorizations that they obtain in Exercises 7, 19, and 20.

TEACHING TIP

Point out that, since k is

a positive integer, $7^{k} - 1$

Therefore, r must also be

is a positive integer.

Study Tip

Reading Math One of the meanings of *counter* is *to oppose*, so a counterexample is an example that opposes a hypothesis.

About the Exercises... **Organization by Objective**

- Mathematical Induction: 11 - 24
- Counterexamples: 25–30

Odd/Even Assignments

Exercises 11–20 and 25–30 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 11–27 odd, 31–42 Average: 11–29 odd, 31–42 Advanced: 12–30 even, 31–42

ASSESS

Open-Ended Assessment

Speaking Have students explain how you can prove or disprove statements by using induction and counterexamples.

Tids for New Teachers

Intervention Use simple examples to help students

understand the principles of an inductive proof before they get involved in elaborate calculations.

Assessment Options

Quiz (Lessons 11-7 and 11-8) is available on p. 694 of the Chapter 11 Resource Masters.

GUIDED PRACTICE KEY			
Exercises	Examples		
4, 5, 10	1		
6, 7	2		
8, 9	3		

Guided Practice Prove that each statement is true for all positive integers. 4-7. See pp. 629A-629F.

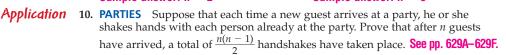
KEY	
oles	6. $4^n - 1$ is divisible by 3.

 $n = \frac{n(n+1)}{2}$ 5. $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$ 5. $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$ 5. $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$ 7. $5^n + 3$ is divisible by 4.

Find a counterexample for each statement.

```
8. 1 + 2 + 3 + \ldots + n = n^2
   Sample answer: n = 2
```

9. $2^n + 2n$ is divisible by 4. Sample answer: n = 3



★ indicates increased difficulty

Practice and Annly

Homework Help	Prove that each statement is true for all positive integers.
For See Exercises Examples	11. $1 + 5 + 9 + + (4n - 3) = n(2n - 1)$ 11–20. See pp. 629A–629F.
11–23, 31 1 24 1, 2	12. $2 + 5 + 8 + \dots + (3n - 1) = \frac{n(3n + 1)}{2}$
25-30 3 Extra Practice	13. $1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$
See page 853.	14. $1^2 + 3^2 + 5^2 + \ldots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{2n}$
	15. $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^n} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right)$
	16. $\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots + \frac{1}{4^n} = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$
	17. $8^n - 1$ is divisible by 7.
	18. $9^n - 1$ is divisible by 8.
More About	19. $12^n + 10$ is divisible by 11.
	20. $13^n + 11$ is divisible by 12.
Architecture	• 21. ARCHITECTURE A memorial being constructed in a city park will be a brick wall, with a top row of six gold-plated bricks engraved with the names of six local war veterans. Each row has two more bricks than the row above it. Prove that the number of bricks in the top <i>n</i> rows is $n^2 + 5n$. See pp. 629A–629F.
The Vietnam Veterans Memorial lists the names of 58,220 deceased or missing soldiers.	22. GEOMETRIC SERIES Use mathematical induction to prove the formula $a_1 + a_1r + a_1r^2 + \ldots + a_1r^{n-1} = \frac{a_1(1 - r^n)}{1 - r}$ for the sum of a finite geometric series
Source: National Parks Service	23. ARITHMETIC SERIES Use mathematical induction to prove the formula
	$a_1 + (a_1 + d) + (a_1 + 2d) + \dots + [a_1 + (n-1)d] = \frac{n}{2}[2a_1 + (n-1)d]$ for
22–23. See pp. 629A–629F.	the sum of an arithmetic series.
	24. PUZZLES Show that a 2 ^{<i>n</i>} by 2 ^{<i>n</i>} checkerboard with the top right square missing can always be covered by nonoverlapping L-shaped tiles like the one at the right. See pp. 629A–629F .

Answer

31. Write 7^n as $(6 + 1)^n$. Then use the Binomial Theorem.

$$7^{n} - 1 = (6 + 1)^{n} - 1$$

= 6ⁿ + n \cdot 6^{n-1} + \frac{n(n-1)}{2} 6^{n-2} + \dots + n \cdot 6 + 1 - 1
= 6^{n} + n \cdot 6^{n-1} + \frac{n(n-1)}{2} 6^{n-2} + \dots + n \cdot 6

Since each term in the last expression is divisible by 6, the whole expression is divisible by 6. Thus, $7^n - 1$ is divisible by 6.

Find a counterexample for each statement.

25. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(3n-1)}{2}$ Sample answer: n = 3**26.** $1^3 + 3^3 + 5^3 + \ldots + (2n - 1)^3 = 12n^3 - 23n^2 + 12n$ Sample answer: n = 4**27.** $3^n + 1$ is divisible by 4. Sample answer: n = 2**28.** $2^n + 2n^2$ is divisible by 4. **Sample answer:** n = 3

- **★ 29.** $n^2 n + 11$ is prime. Sample answer: n = 11
 - **★ 30.** $n^2 + n + 41$ is prime. Sample answer: n = 41
- 31. See margin.
- 31. CRITICAL THINKING Refer to Example 2. Explain how to use the Binomial Theorem to show that $7^n - 1$ is divisible by 6 for all positive integers *n*.
- 32. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 629A–629F.

How does the concept of a ladder help you prove statements about numbers? Include the following in your answer:

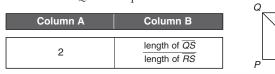
- an explanation of which part of an inductive proof corresponds to stepping onto the bottom step of the ladder, and
- · an explanation of which part of an inductive proof corresponds to climbing from one step on the ladder to the next.

Standardized **Test Practice** 33. $\frac{x - \frac{4}{x}}{1 - \frac{4}{x} + \frac{4}{x^2}} = \mathbf{C}$ (A) $\frac{x}{x-2}$ (B) $\frac{x^2+2}{x-2}$ (C) $\frac{x^2+2x}{x-2}$ (D) $\frac{x^2+2x}{(x-2)^2}$

34. Quantitative Comparison

Compare the quantity in Column A and the quantity in Column B. Then determine whether:

- (A) the quantity in Column A is greater,
- **B** the quantity in Column B is greater,
- C the two quantities are equal, or
- **D** the relationship cannot be determined from the information given. PQRS is a square. A



Maintain Your Skills

Mixed Review Expand each power. (Lesson 11-7) 35-37. See margin. 35. $(x + y)^6$

36. $(a - b)^7$ 37. $(2x + y)^8$

Find the first three iterates of each function for the given initial value. (Lesson 11-6)

38. f(x) = 3x - 2, $x_0 = 2$ **4, 10, 28 39.** $f(x) = 4x^2 - 2$, $x_0 = 1$ **2, 14, 782**

40. **BIOLOGY** Suppose an amoeba divides into two amoebas once every hour. How long would it take for a single amoeba to become a colony of 4096 amoebas? (Lesson 10-2) 12 h

Solve each equation. Check your solutions. (Lesson 9-6)

1.
$$\frac{1}{y+1} - \frac{3}{y-3} = 2$$
 0, **1**

4 www.algebra2.com/self_check_quiz

42.
$$\frac{6}{a-7} = \frac{a-49}{a^2-7a} + \frac{1}{a}$$
 -14
Lesson 11-8 Proof and Mathematical Induction 621

Answers

- 35. $x^6 + 6x^5y + 15x^4y^2 + 20x^3y^3 +$ $15x^2y^4 + 6xy^5 + y^6$
- 36. $a^7 7a^6b + 21a^5b^2 35a^4b^3 +$ $35a^3b^4 - 21a^2b^5 + 7ab^6 - b^7$
- $37.256x^8 + 1024x^7y + 1792x^6y^2 +$ $1792x^5y^3 + 1120x^4y^4 +$ $448x^{3}y^{5} + 112x^{2}y^{6} + 16xy^{7} + y^{8}$

Enrichment, p. 678

Proof by Induction

- Mathematical induction is a useful tool when you want to prove that a statement is true for all natural numbers. The three steps in using induction are

2. Suppose $1 + 3 + 5 + ... + (2n - 1) = n^2$. Show that $+ (2n - 1) + \cdots + (2n$

Follow the steps to complete each proof.

Theorem A: The sum of the first n odd natural numbers is equal to n².
 1. Show that the theorem is true for n = 1.
 1 = (1)²

Study Guide and Intervention, p. 673 (shown) and p. 674 Mathematical Induction Mathematical induction is a method of proof used to prove statements about positive integers. Step 1 Show that the statement is true for some integer n. Step 2 Assume that the statement is true for some positive integer k where $k \ge n$. This assumption is called the inductive hypothesis. Step 3 Show that the statement is true for the next integer k + 1. $\begin{array}{ll} = 3(k^2+2k+1)+2(k+1) & \mbox{Factor.} \\ = 3(k+1)^2+2(k+1) & \mbox{Factor.} \end{array}$ The last expression above is the right side of the equation to be proved, where n has been replaced by k + 1. Thus the equation is true for n = k + 1. This proves that $5 + 11 + 17 + ... + (6n - 1) = 3n^2 + 2n$ for all positive integers n Exercises Prove that each statement is true for all positive integers. 1. $3 + 7 + 11 + ... + (4n - 1) = 2n^2 + n^2$ Last +1 it +1 it +1 is the order -1 between -1 since 4(1) - 1 = 3 and $2(1)^2 + 1 = 3$. Step 2 Assume that $3 + 7 + 11 + ... + (4k - 1) = 2k^2 + k$ for some positive integer k. Step 3 Adding the (k + 1) st term to each side from step 2, we get $-3 + 7 + 11 + ... + (4k - 1) + [4(k + 1) - 1] = 2k^2 + k + [4(k + 1) - 1]$ Step 3 Adding the (k + 1)st term to each side rom step 2, we get $3 + 7 + 11 + ... + (4k - 1) + (4(k + 1) - 11) = 2k^2 + k + (4(k + 1) - 11)$. Simplifying the right side of the equation gives $2(k + 1)^2 + (k + 1)$, which is the statement to be proved. 2. $500 + 100 + 20 + ... + 4 \cdot 5^{4-n} = 625(1 - \frac{1}{5^n})$.

Step 1 The statement is true for $n = 1, 5^{5/7}$ $625(1 - \frac{1}{5^7}) = \frac{4}{5}(625) = 500.$

- Step 2 Assume that 500 + 100 + 20 + ... + $4 \cdot 5^{4-k} = 625(1-\frac{1}{5^k})$ for some positive integer k. Step 3 Adding the (k + 1)st term to each side from step 2 and simplifying gives 500 + 100 + 20 + ... + $4 \cdot 5^{4-k} + 4 \cdot 5^{3-k} = 625(1-\frac{1}{5^{k+1}})$, which is the statement to be more d
- to be pro

Skills Practice, p. 675 and Practice, p. 676 (shown)

Prove that each statement is true for all positive integ

- Prove time cent solution is the or an positive integers. 1.1 + 2 + 4 + 8 + ... + 2ⁿ⁻¹ + 2ⁿ⁻¹ = 2ⁿ = 1 = 2¹ 1. So, the equation is true for n = 1. Step 2: Assume that 1 + 2 + 4 + 8 + ... + 2^{k-1} = 2^k 1 for some positive integer k. Step 3: Show that the equation is true for n = k + 1. $1 = 2^{k-1} + 2^{k-2} 2^{k-1} = 2^{k-1} (2^{k-1}) + 2^{(k+1)-1}$ $1 = 2^{k-1} + 2^{k-2} 2^{k-1} = 2^{k-1} (2^{k-1}) + 2^{(k+1)-1}$ So, 1 + 2 + 4 + 8 + ... + 2ⁿ⁻¹ = 2ⁿ 1 for all positive integers n.

2. $1 + 4 + 9 + \ldots + n^2 = \frac{n(n+1)(2n+1)}{n}$

- Step 1: When n = 1, $n^2 = 1^2 = 1 = \frac{1(1+1)(2+1+1)}{6}$; true for n = 1.
- Step 2: Assume that $1 + 4 + 9 + ... + k^2 = \frac{k(k+1)(2k+1)}{6}$ for some positive integer k. Step 3: Show that the given equation is true for n = k + 1.
 - $1 + 4 + 9 + ... + k^2 + (k + 1)^2 = \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2$
 - $= \frac{k(k+1)(2k+1)}{6} + \frac{6(k+1)^2}{6} = \frac{(k+1)[k(2k+1)+6(k+1)]}{6}$ $=\frac{(k+1)(2k^2+7k+6)}{(k+1)[(k+2)(2k+3)]}=\frac{(k+1)[(k+2)(2k+3)]}{(k+1)[(k+2)(2k+3)]}$
 - $= \frac{(k+1)[(k+1)+1][2(k+1)+1]}{(k+1)(k+1)(k+1)(k+1)(k+1)(k+1)(k+1))}$

So, $1 + 4 + 9 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$ for all positive integers *n*.

- So, $1 + 4 + 9 + \dots + r = -\frac{6}{6}$ for all positive integers *n*. Site 1 is a multiple of 17. Step 1: When $n = 1, 18^n 1 = 18 1$ or 17; true for n = 1. Step 2: Assume that 18⁴ 1 = 115 divisible by 17 for some positive integer *k*. This means that there is a whole number *r* such that $18^4 1 = 177$. Step 3: Show that the statement is true for n = k + 1. $18^6 1 = 177$, so $18^6 = 17r + 1$, and $18(18^6) = 18(17r + 1)$. This is equivalent to $18^{k+1} 1 = 177(18^{k+1} 1)$. Since $\frac{1}{18^{k+1}} 1 = 177(18^{k+1}) = 30r + 115$ as whole number, and $18^{k+1} 1$ is divisible by 17 for call positive integers *n*.
- Find a counterexample for each statement. **4.** $1 + 4 + 7 + \dots + (3n - 2) = n^3 - n^2 + 1$ **5.** $5^n - 2n - 3$ is divisible by 3. Sample answer: n = 3 Sample answer: n = 3
- Sample answer: n = 3 **6.** $1 + 3 + 5 + \dots + (2n - 1) = \frac{n^2 + 3n - 2}{2}$ **7.** $1^3 + 2^3 + 3^3 + \dots + n^3 = n^4 - n^3 + 1$
- Sample answer: n = 3

Reading to Learn ELL Mathematics, p. 677

Pre-Activity How does the concept of a ladder help you prove statements about numbers? Read the introduction to Lesson 11-8 at the top of page 618 in your textbool What are two ways in which a ladder could be constructed so that you could not reach every step of the ladder? Sample answer: 1. The first step could be too far off the ground for you to climb on it. 2. The steps could be too far apart for you to go up from one step to the next. Reading the Lesson

1. Fill in the blanks to describe the three steps in a proof by mathematical induction

- Step 1 Show that the statement is ______ for the number ______ Step 2 Assume that the statement is true for some positive integer This assumption is called the inductive hypothesis
- Step 3 Show that the statement is <u>true</u> for the next integer k + 1. Suppose that you wanted to prove that the following statement is true for all positive integers.
 - $3 + 6 + 9 + ... + 3n = \frac{3n(n + 1)}{2}$
 - **a.** Which of the following statements shows that the statement is true for n = 1? **ii** i. $3 = \frac{3 \cdot 2 + 1}{2}$ ii. $3 = \frac{3 \cdot 1 \cdot 2}{2}$ iii. $3 = \frac{3 + 1 + 2}{2}$
 - **b.** Which of the following is the statement for n = k + 1? **iv**
 - i. $3 + 6 + 9 + \ldots + 3^k = \frac{3k(k+1)}{2}$
 - ii. 3 + 6 + 9 + ... + 3^{k + 1} = $\frac{3k(k + 1)}{2}$
 - iii. $3 + 6 + 9 + \ldots + 3^{k+1} = 3(k+1)(k+2)$
 - iv. $3 + 6 + 9 + \ldots + 3(k + 1) = \frac{3(k + 1)(k + 2)}{2}$

Helping You Remember

3. Many students confuse the roles of n and k in a proof by mathematical induction. What is a good way to remember the difference in the ways these variables are used in such a proof. Sample answer: The letter n stands for "number" and is used as a variable to represent any natural number. The letter k is used to represent a number and the standard standard

Chapter Study Guide and Review

Vocabulary and Concept Check

- This alphabetical list of vocabulary terms in Chapter 11 includes a page reference where each term was introduced.
- **Assessment** A vocabulary test/review for Chapter 11 is available on p. 692 of the *Chapter 11 Resource Masters*.

Lesson-by-Lesson Review

For each lesson,

- the main ideas are summarized,
- additional examples review concepts, and
- practice exercises are provided.

0

Vocabulary PuzzleMaker

ELL The Vocabulary PuzzleMaker software improves students' mathematics vocabulary using four puzzle formats crossword, scramble, word search using a word list, and word search using clues. Students can work on a computer screen or from a printed handout.

MindJogger Videoquizzes

ELL MindJogger Videoquizzes provide an alternative review of concepts presented in this chapter. Students work in teams in a game show format to gain points for correct answers. The questions are presented in three rounds.

Round 1 Concepts (5 questions) Round 2 Skills (4 questions)

Round 3 Problem Solving (4 questions)

Study Guide and Review

Vocabulary and Concept Check

a a E C C f	arithmetic means (p. 580) arithmetic sequence (p. 578) arithmetic series (p. 583) Binomial Theorem (p. 613) common difference (p. 578) common ratio (p. 588) factorial (p. 613) Fibonacci sequence (p. 606)	geometric means (p. 590) geometric sequence (p. 588) geometric series (p. 594) index of summation (p. 585) inductive hypothesis (p. 618) infinite geometric series (p. 599) iteration (p. 608) mathematical induction (p. 618)	partial sum (p. 599) Pascal's triangle (p. 612) recursive formula (p. 606) sequence (p. 578) series (p. 583) sigma notation (p. 585) term (p. 578)		
1 2 4 5 5	Choose the term from the list above that best completes each statement. 1. A(n) of an infinite series is the sum of a certain number of terms. partial sum 2. If a sequence has a common ratio, then it is a(n) geometric sequence 3. Using, the series $2 + 5 + 8 + 11 + 14$ can be written as $\sum_{n=1}^{5} (3n - 1)$. 4. Eleven and 17 are the two between 5 and 23 in the sequence 5, 11, 17, 23. arithmetic means 5. Using the, $(a - 2)^4$ can be expanded to $a^4 - 8a^3 + 24a^2 - 32a + 16$. Binomial Theorem 6. The of the sequence 3, 2, $\frac{4}{3}$, $\frac{8}{9}$, $\frac{16}{27}$ is $\frac{2}{3}$. common ratio 7. The 11 + 16.5 + 22 + 27.5 + 33 has a sum of 110. arithmetic series				
622 Chapter	11 Sequences and Series		www.algebra2.com/vocabulary_rev	view	

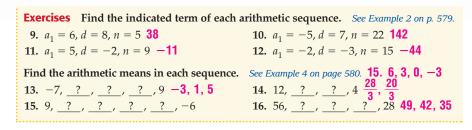
FOLDA BLES

For more information about Foldables, see *Teaching Mathematics with Foldables.* Students are usually interested in doing well on various kinds of tests. One way to achieve this goal is by writing their own questions about the material. Have student volunteers read some of their questions. Have other student volunteers answer, and have the writer of the question comment on the answer. Ask students to use what they have learned in this discussion to revise their own Foldables.

Encourage students to refer to their Foldables while completing the Study Guide and Review and to use them in preparing for the Chapter Test.

Chapter 11 Study Guide and Review

Study Guide and Review



2 Arithmetic Series

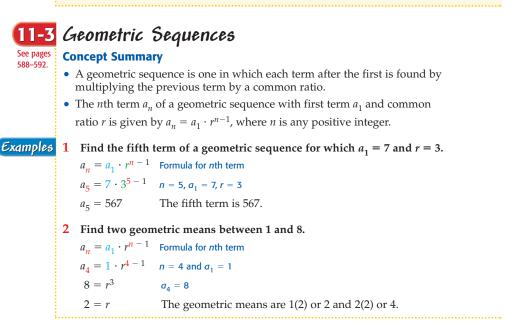
See pages Concept Summary 583–587.

• The sum S_n of the first *n* terms of an arithmetic series is given by $S_n = \frac{n}{2}[2a_1 + (n-1)d]$ or $S_n = \frac{n}{2}(a_1 + a_n)$.

Example Find S_n for the arithmetic series with $a_1 = 34$, $a_n = 2$, and n = 9.

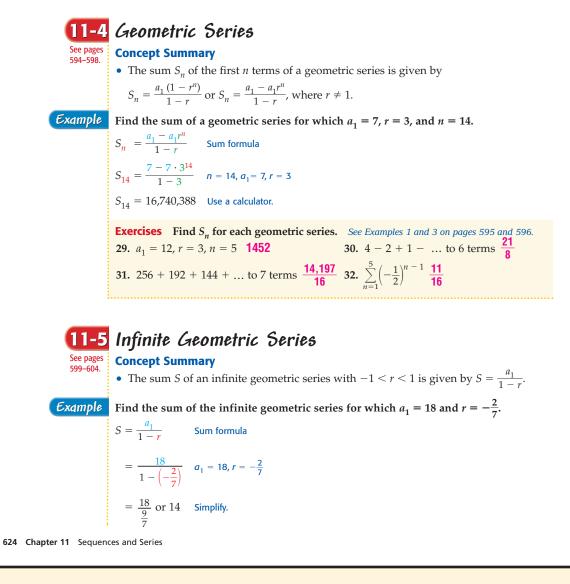
 $S_n = \frac{n}{2}(a_1 + a_n) \quad \text{Sum formula}$ $S_9 = \frac{9}{2}(34 + 2) \quad n = 9, a_1 = 34, a_n = 2$ $S_9 = 162 \quad \text{Simplify.}$

Exercises Find S_n for each arithmetic series. See Examples on pages 584 and 585. **17.** $a_1 = 12, a_n = 117, n = 36$ **2322 18.** 4 + 10 + 16 + ... + 106 **990 19.** 10 + 4 + (-2) + ... + (-50) **-220 20.** $\sum_{n=2}^{13} (3n + 1)$ **282**



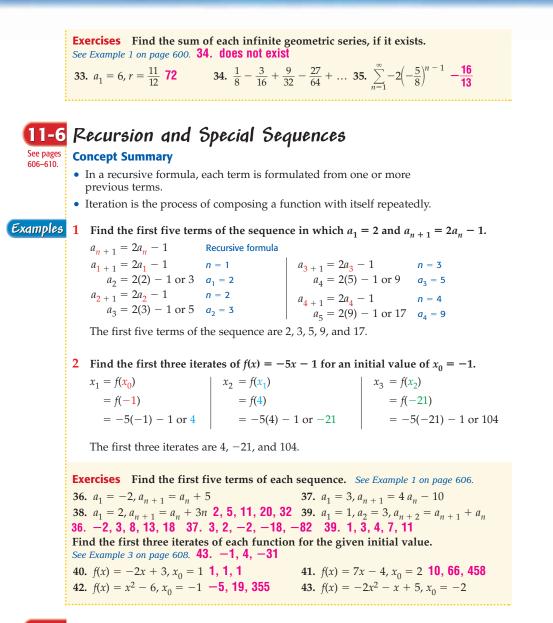
Chapter 11 Study Guide and Review 623

	geometric sequence.
= 2, <i>n</i> = 5 32	22. $a_1 = 7, r = 2, n = 4$ 56
$r = -\frac{1}{3}, n = 5$ 3	24. a_6 for $\frac{2}{3}, \frac{4}{3}, \frac{8}{3}, \dots \frac{64}{3}$
metric means in each sequence	•. See Example 5 on page 590. $\pm 15, 30, \pm 60$
<u>?</u> , 24 6, 12	26. 7.5, <u>?</u> , <u>?</u> , <u>?</u> , 120
$?, ?, ?, ?, \frac{1}{4}$ 4, 2, 1, $\frac{1}{2}$	28. 5, <u>?</u> , <u>?</u> , <u>?</u> , ⁸⁰ ±10, 20, ±40
	Find the indicated term of each on page 589. = 2, $n = 5$ 32 , $r = -\frac{1}{3}$, $n = 5$ 3 ometric means in each sequence $\frac{?}{?}$, $\frac{24}{9}$ 6 , 12 $\frac{?}{?}$, $\frac{?}{?}$, $\frac{?}{?}$, $\frac{1}{4}$ 4 , 2 , 1 , $\frac{1}{2}$



Chapter 11 Study Guide and Review

Study Guide and Review



.

The Binomial Theorem

Concept Summary

• Pascal's triangle can be used to find the coefficients in a binomial expansion.

The Binomial Theorem:
$$(a + b)^n = \sum_{k=0}^{n} \frac{n!}{(n-k)!k!} a^{n-k} b^k$$

Chapter 11 Study Guide and Review 625

Study Guide and Review

chapte

Answers

44. $x^3 + 3x^2y + 3xy^2 + y^3$ 45. $x^4 - 8x^3 + 24x^2 - 32x + 16$ 46. $243r^5 + 405r^4s + 270r^3s^2 +$ $90r^2s^3 + 15rs^4 + s^5$ 49. Step 1: When n = 1, the left side of the given equation is 1. The right side is $2^1 - 1$ or 1, so the equation is true for n = 1. Step 2: Assume $1 + 2 + 4 + \ldots + 2^{k-1} = 2^k - 1$ for some positive integer k. Step 3: $1 + 2 + 4 + ... + 2^{k-1} +$ 2(k+1) - 1 $= 2^{k} - 1 + 2^{(k+1)} - 1$ $= 2^{k} - 1 + 2^{k}$ $= 2 \cdot 2^{k} - 1$ $= 2^{k+1} - 1$ The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1. Therefore, $1 + 2 + 4 + \ldots + 2^{n-1} = 2^n - 1$ for all positive integers n. 50. Step 1: $6^1 - 1 = 5$, which is divisible by 5. The statement is true for n = 1. Step 2: Assume that $6^k - 1$ is divisible by 5 for some positive integer k. This means that $6^k - 1 = 5r$ for some whole number r. Step 3: $6^k - 1 = 5r$ $6^{k} = 5r + 1$ $6(6^k) = 6(5r+1)$ $6^{k+1} = 30r + 6$ $6^{k+1} - 1 = 30r + 5$ $6^{k+1} - 1 = 5(6r + 1)$ Since r is a whole number, 6r + 1is a whole number. Thus, $6^{k+1} - 1$ is divisible by 5, so the statement is true for n = k + 1.

Therefore, $6^n - 1$ is divisible by 5 for all positive integers *n*.

Example Expand $(a - 2b)^4$. $(a-2b)^4 = \sum_{k=1}^{4} \frac{4!}{(4-k)!k!} a^{4-k} (-2b)^k$ Binomial Theorem $=\frac{4!}{4!0!}a^4(-2b)^0 + \frac{4!}{3!1!}a^3(-2b)^1 + \frac{4!}{2!2!}a^2(-2b)^2 + \frac{4!}{1!3!}a^1(-2b)^3 + \frac{4!}{0!4!}a^0(-2b)^4$ $= a^4 - 8a^3b + 24a^2b^2 - 32ab^3 + 16b^4$ Simplify. Exercises Expand each power. See Examples 1, 2, and 4 on pages 613 and 614. **44.** $(x + y)^3$ **45.** $(x - 2)^4$ **44-46.** See margin. **48.** -13,107,200 x^9 **46**. $(3r + s)^5$ Find the indicated term of each expansion. See Example 5 on page 615. **47.** fourth term of $(x + 2y)^6$ **160** x^3y^3 **48.** second term of $(4x - 5)^{10}$ **11-8** Proof and Mathematical Induction See pages **Concept Summary** 618-621. Mathematical induction is a method of proof used to prove statements about the positive integers. Example Prove $1 + 5 + 25 + ... + 5^{n-1} = \frac{1}{4}(5^n - 1)$ for all positive integers *n*. **Step 1** When n = 1, the left side of the given equation is 1. The right side is $\frac{1}{4}(5^1 - 1)$ or 1. Thus, the equation is true for n = 1. **Step 2** Assume that $1 + 5 + 25 + ... + 5^{k-1} = \frac{1}{4}(5^k - 1)$ for some positive integer *k*. **Step 3** Show that the given equation is true for n = k + 1. $1 + 5 + 25 + \ldots + 5^{k-1} + 5^{(k+1)-1} = \frac{1}{4}(5^k - 1) + 5^{(k+1)-1}$ Add $5^{(k+1)-1}$ to each side. $=\frac{1}{4}(5^k-1)+5^k$ Simplify the exponent. $=\frac{5^k-1+4\cdot 5^k}{4}$ $=\frac{5\cdot 5^k-1}{4}$ Common denominator **Distributive Property** $=\frac{1}{4}(5^{k+1}-1)$ $5 \cdot 5^{k} = 5^{k+1}$ The last expression above is the right side of the equation to be proved, where nhas been replaced by k + 1. Thus, the equation is true for n = k + 1. This proves that $1 + 5 + 25 + \dots + 5^{n-1} = \frac{1}{4}(5^n - 1)$ for all positive integers *n*. **Exercises** Prove that each statement is true for all positive integers. See Examples 1 and 2 on pages 618 and 619. 49–50. See margin. **49.** $1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$ **50.** $6^n - 1$ is divisible by 5.

626 Chapter 11 Sequences and Series

Vocabulary and Concepts

Choose the correct term to complete each sentence.

- **1.** A sequence in which each term after the first is found by adding a constant to the previous term is called a(n) (*arithmetic*, *geometric*) sequence.
- 2. A (*Fibonacci sequence*, <u>series</u>) is a sum of terms of a sequence.
- **3.** (*<u>Pascal's triangle</u>, Recursive formulas*) and the Binomial Theorem can be used to expand powers of binomials.

Skills and Applications

- 4. Find the next four terms of the arithmetic sequence 42, 37, 32, 27, 22, 17, 12
- **5.** Find the 27th term of an arithmetic sequence for which $a_1 = 2$ and d = 6. **158**
- 6. Find the three arithmetic means between -4 and 16. 1, 6, 11

7. Find the sum of the arithmetic series for which $a_1 = 7$, n = 31, and $a_n = 127$. **2077**

- 8. Find the next two terms of the geometric sequence $\frac{1}{81}, \frac{1}{27}, \frac{1}{9}, \dots, \frac{1}{3}, 1$
- **9.** Find the sixth term of the geometric sequence for which $a_1 = 5$ and r = -2. **-160**
- 10. Find the two geometric means between 7 and 189. 21, 63
- **11.** Find the sum of the geometric series for which $a_1 = 125$, $r = \frac{2}{5}$, and n = 4. **203**

Find the sum of each series, if it exists. 13. does not exist

12. $\sum_{k=3}^{15} (14-2k)$ -52 **13.** $\sum_{n=1}^{\infty} \frac{1}{3} (-2)^{n-1}$ **14.** 91 + 85 + 79 + ... + (-29) **651 15.** 12 + (-6) + 3 - $\frac{3}{2}$ + ...

Find the first five terms of each sequence.

16. $a_1 = 1, a_{n+1} = a_n + 3$ **1, 4, 7, 10, 13**

17. $a_1 = -3$, $a_{n+1} = a_n + n^2$ **-3**, **-2**, **2**, **11**, **27**

Chapter 11 Practice Test 627

18. Find the first three iterates of $f(x) = x^2 - 3x$ for an initial value of $x_0 = 1$. **-2**, **10**, **70**

19. Expand $(2s - 3t)^5$. $32s^5 - 240s^4t + 720s^3t^2 - 1080s^2t^3 + 810st^4 - 243t^5$

20. Find the third term of the expansion of $(x + y)^{10}$. **45***x*⁸*y*²

Prove that each statement is true for all positive integers. 21–22. See pp. 629A-629F.

21. $1 + 3 + 5 + \ldots + (2n - 1) = n^2$

22. $14^n - 1$ is divisible by 13.

- 23. DESIGN A landscaper is designing a wall of white brick and red brick. The pattern starts with 20 red bricks on the bottom row. Each row above it contains 3 fewer red bricks than the preceding row. If the top row contains no red bricks, how many rows are there and how many red bricks were used? 8 rows, 77 bricks
- 24. RECREATION One minute after it is released, a gas-filled balloon has risen 100 feet. In each succeeding minute, the balloon rises only 50% as far as it rose in the previous minute. How far will the balloon rise in 5 minutes? 193.75 ft

25. STANDARDIZED TEST PRACTICE Find the next term in the geometric sequence 8, 6, $\frac{9}{2}$, $\frac{27}{8}$, ... **D** (A) $\frac{11}{9}$ (B) $\frac{27}{14}$ (C) $\frac{9}{4}$ (D) $\frac{81}{22}$

A	8			⋓	16
www	v.alg	ebra2.com	/chap	oter_	test

Introduction Throughout this course, you have been working in groups to solve problems.

Ask Students What roles do you play in the group?

- Do you help to keep your group on task? ask questions? just listen and copy down answers?
- List some ways you are a good group member and some ways you could do better.
- Place your responses in your portfolio.

chapter **11** Practice Test

Assessment Options

Vocabulary Test A vocabulary test/review for Chapter 11 can be found on p. 692 of the *Chapter* 11 *Resource Masters*.

Chapter Tests There are six Chapter 11 Tests and an Open-Ended Assessment task available in the *Chapter 11 Resource Masters*.

Chapter 11 Tests			
Form	Туре	Level	Pages
1	MC	basic	679–680
2A	MC	average	681–682
2B	MC	average	683–684
2C	FR	average	685–686
2D	FR	average	687–688
3	FR	advanced	689–690

MC = multiple-choice questions FR = free-response questions

Open-Ended Assessment

Performance tasks for Chapter 11 can be found on p. 691 of the *Chapter 11 Resource Masters*. A sample scoring rubric for these tasks appears on p. A31.

TestCheck and Worksheet Builder

This **networkable software** has three modules for assessment.

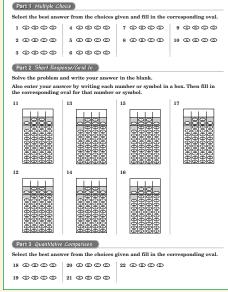
- Worksheet Builder to make worksheets and tests.
- **Student Module** to take tests on-screen.
- Management System to keep student records.

chapter Standardized **Test Practice**

These two pages contain practice questions in the various formats that can be found on the most frequently given standardized tests.

A practice answer sheet for these two pages can be found on p. A1 of the Chapter 11 Resource Masters.

Standardized Test Practice Student Recording Sheet, p. A1



Additional Practice

See pp. 697-698 in the Chapter 11 Resource Masters for additional standardized test practice.

chapte, **Standardized Test Practice**

Part 1 Multiple Choice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. For all positive integers, let $\begin{vmatrix} n \end{vmatrix} = n + g$, where *g* is the greatest factor of *n*, and g < n. If 18 = x, then x = C

A 9.	B 8.
C 27.	D 36.

2. If *p* is positive, what percent of 6*p* is 12? **D**

(A)
$$\frac{p}{100}\%$$
 (B) $\frac{p}{2}\%$
(C) $\frac{12}{p}\%$ (D) $\frac{200}{p}\%$

3. A box is 12 units tall, 6 units long, and 8 units wide. A designer is creating a new box that must have the same volume as the first box. If the length and width of the new box are each 50% greater than the length and width of the first box, about how many units tall will the new box be? A

A 5.3	B 6.8
C 7.1	D 8.5

4. Which of the following statements must be true when 0 < m < 1? A

I
$$\frac{\sqrt{m}}{m} > 1$$
 II $4m < 1$ III $m^2 - m^3 < 0$

A I only

B III only

C I and II only

D I, II, and III

5. If
$$3kx - \frac{4s}{t} = 3ky$$
, then $x - y = ?$ D
(A) $-\frac{4s}{3kt}$ (B) $\frac{-4s}{t} + \frac{1}{3k}$
(C) $\frac{4s}{3t} - k$ (D) $\frac{4s}{3tt}$

628 Chapter 11 Standardized Test Practice

Log On for Test Practice

Princeton The Princeton Review offers Review additional test-taking tips and practice problems at their web site. Visit www.princetonreview.com or www.review.com

6. For all $n \neq 0$, what is the slope of the line passing through (3n, -k) and (-n, -k)?

A 0	$\textcircled{B} \frac{k}{2n}$
$\bigcirc \frac{2n}{k}$	(D) undefined

7. Which is the graph of the equation $x^{2} + (y - 4)^{2} = 20?$ C

(A) line	🕲 parabola
© circle	D ellipse

8.
$$\frac{x - \frac{9}{x}}{1 - \frac{6}{x} + \frac{9}{x^2}} = \mathbf{C}$$

(A) $\frac{x}{x - 3}$ (B) $\frac{x^2 + 3}{x - 3}$
(C) $\frac{x^2 + 3x}{x - 3}$ (D) $\frac{x^2 + 3x}{(x - 3)^2}$

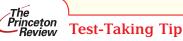
9. What is the sum of the positive even factors of 30? C

(B) $\frac{x^2+3}{x-3}$

140°

A 18	B 30
© 48	D 72

10. If ℓ_1 is parallel to ℓ_2 in the figure, what is the value of *x*? **D** A 30 **B** 40 C 70



Question 5 Some questions ask you to find the value of an expression. It is often not necessary to find the value of each variable in the expression. For example, to answer Question 5, it is not necessary to find the values of x and y. Isolate the expression x - y on one side of the equation.

TestCheck and Worksheet Builder

Special banks of standardized test questions similar to those on the SAT, ACT, TIMSS 8, NAEP 8, and Algebra 1 End-of-Course tests can be found on this CD-ROM.

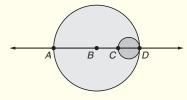
Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

- **11.** *AA* <u>+ *BB*</u>
 - CC

If *A*, *B*, and *C* are each digits and A = 3B, then what is one possible value of *C*? **4 or 8**

12. In the figure, each arc is a semicircle. If *B* is the midpoint of \overline{AD} and *C* is the midpoint of \overline{BD} , what is the ratio of the area of the semicircle \overline{CD} to the area of the semicircle \overline{AD} ? **1/16**



13. Two people are 17.5 miles apart. They begin to walk toward each other along a straight line at the same time. One walks at the rate of 4 miles per hour, and the other walks at the rate of 3 miles per hour. In how many hours will they meet? **2.5 or 5/2**

14. If
$$\frac{x+y}{x} = \frac{5}{4}$$
, then $\frac{y}{x} = \frac{1}{4}$ or .25

- **15.** A car's gasoline tank is $\frac{1}{2}$ full. After adding 7 gallons of gas, the gauge shows that the tank is $\frac{3}{4}$ full. How many gallons does the tank hold? **28**
- **16.** If a = 15 b, what is the value of 3a + 3b? **45**
- **17.** If $x^9 = \frac{45}{y}$ and $x^7 = \frac{1}{5y'}$ and x > 0, what is the value of *x*? **15**
- www.algebra2.com/standardized_test

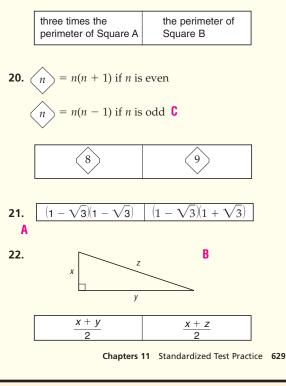
Part 3 Quantitative Comparison

Compare the quantity in Column A and the quantity in Column B. Then determine whether:

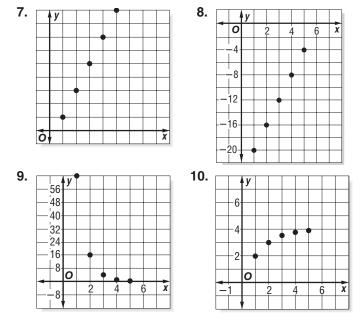
- (A) the quantity in Column A is greater,
- **B** the quantity in Column B is greater,
- C the two quantities are equal, or
- **D** the relationship cannot be determined from the information given.

	Column A	Column B
18.	the arithmetic mean of three consecutive integers where <i>x</i> is the median	the arithmetic mean of five consecutive integers where <i>x</i> is the median
C		

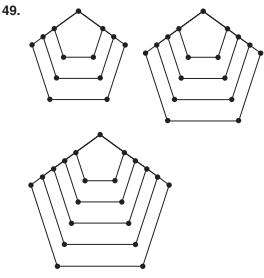
19. The area of Square B is equal to nine times the area of Square A. **C**



Page 577, Chapter 11 Getting Started



Page 582, Lesson 11-1



Page 587, Lesson 11-2

- **48.** Arithmetic series can be used to find the seating capacity of an amphitheater. Answers should include the following.
 - The sequence represents the numbers of seats in the rows. The sum of the first *n* terms of the series is the seating capacity of the first *n* rows.
 - One method is to write out the terms and add them: 18 + 22 + 26 + 30 + 34 + 38 + 42 + 46 + 50 + 54 = 360. Another method is to use the formula

$$S_n = \frac{n}{2}[2a_1 + (n-1)d]:$$

 $S_{10} = \frac{10}{2}[2(18) + (10 - 1)4] \text{ or } 360.$

Page 596, Lesson 11-4

3. Sample answer: The first term is $a_1 = 2$. Divide the second term by the first to find that the common ratio is r = 6. Therefore, the *n*th term of the series is given by $2 \cdot 6^{n-1}$. There are five terms, so the series can be written as $\sum_{n=1}^{5} 2 \cdot 6^{n-1}$.

Page 603, Lesson 11-5

48.
$$S = a_{1} + a_{1}r + a_{1}r^{2} + a_{1}r^{3} + \dots$$

$$(-) rS = a_{1}r + a_{1}r^{2} + a_{1}r^{3} + a_{1}r^{4} + \dots$$

$$S - rS = a_{1} + 0 + 0 + 0 + \dots$$

$$S(1 - r) = a_{1}$$

$$S = \frac{a_{1}}{1 - r}$$

- **49.** The total distance that a ball bounces, both up and down, can be found by adding the sums of two infinite geometric series. Answers should include the following.
 - $a_n = a_1 \cdot r^{n-1}, S_n = \frac{a_1(1-r^n)}{1-r}, \text{ or } S = \frac{a_1}{1-r}$
 - The total distance the ball falls is given by the infinite geometric series $3 + 3(0.6) + 3(0.6)^2 + \dots$ The sum of this series is $\frac{3}{1 0.6}$ or 7.5. The total distance the ball bounces up is given by the infinite geometric series $1.8(0.6) + 1.8(0.6)^2 + 1.8(0.6)^3 + \dots$ The sum of this series is $\frac{1.8(0.6)}{1 0.6}$ or 2.7. Thus, the total distance the ball travels is 7.5 + 2.7 or 10.2 feet.

Page 611, Follow-Up of Lesson 11-6 Algebra Activity

- **4.** The von Koch snowflake has infinite perimeter. As *n* increases, the perimeter P_n of Stage *n* increases without bound. That is, the limit of $27\left(\frac{4}{3}\right)^{n-1}$ is ∞ .
- **5.** Stage 1 is an equilateral triangle with sides of length 9 units, so its area is $\frac{81\sqrt{3}}{4}$ units². Each subsequent stage encloses $3 \cdot 4^{n-2}$ additional equilateral triangular regions of area $\frac{81\sqrt{3}}{4 \cdot 3^{2n-2}}$ units². Thus, the additional area at each stage is $3 \cdot 4^{n-2} \cdot \frac{81\sqrt{3}}{4 \cdot 3^{2n-2}}$ or $\frac{4^{n-3}\sqrt{3}}{3^{2n-7}}$ units². This is the general term of the series for $n \ge 2$.
- Beginning with the second term, the terms of the series in Exercise 5 form an infinite geometric series with

common ratio $\frac{4}{9}$. Therefore, the sum of the whole series in Exercise 5 is $\frac{81\sqrt{3}}{4} + \frac{\frac{27\sqrt{3}}{4}}{1-\frac{4}{9}}$ or $\frac{162\sqrt{3}}{5}$. The area of the von Koch snowflake is $\frac{162\sqrt{3}}{5}$ units².

7. Sample answer: No, they show that it is possible for a figure with infinite perimeter to enclose only a finite amount of area.

Page 616, Lesson 11-7

42. $\frac{12!}{7!5!}$ and $\frac{12!}{6!6!}$ represent the sixth and seventh entries in the row for n = 12 in Pascal's triangle. $\frac{13!}{7!6!}$ repre-

sents the seventh entry in the row for n = 13.

Since
$$\frac{13!}{7!6!}$$
 is below $\frac{12!}{7!5!}$ and $\frac{12!}{6!6!}$ in Pascal's triangle,
 $\frac{12!}{7!5!} + \frac{12!}{6!6!} = \frac{13!}{7!6!}$.

- **43.** The coefficients in a binomial expansion give the numbers of sequences of births resulting in given numbers of boys and girls. Answers should include the following.
 - $(b + g)^5 = b^5 + 5b^4g + 10b^3g^2 + 10b^2g^3 + 5bg^4 + g^5$; There is one sequence of births with all five boys, five sequences with four boys and one girl, ten sequences with three boys and two girls, ten sequences with two boys and three girls, five sequences with one boy and four girls, and one sequence with all five girls.
 - The number of sequences of births that have exactly k girls in a family of n children is the coefficient of $b^{n-k}g^k$ in the expansion of $(b + g)^n$. According to the Binomial Theorem, this coefficient is $\frac{n!}{(n-k)!k!}$.

Pages 619–621, Lesson 11-8

- 1. Sample answers: formulas for the sums of powers of the first *n* positive integers and statements that expressions involving exponents of *n* are divisible by certain numbers
- 2. Mathematical induction is used to show that a statement is true. A counterexample is used to show that a statement is false.
- **4.** Step 1: When n = 1, the left side of the given equation is 1. The right side is $\frac{1(1 + 1)}{2}$ or 1, so the equation is true for n = 1.

Step 2: Assume $1 + 2 + 3 + ... + k = \frac{k(k+1)}{2}$ for some positive integer *k*.

Step 3:1 + 2 + 3 + ... + k + (k + 1)

$$= \frac{k(k+1)}{2} + (k + 1)$$

$$= \frac{k(k+1) + 2(k+1)}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$ for all positive integers *n*.

5. Step 1: When n = 1, the left side of the given equation is $\frac{1}{2}$. The right side is $1 - \frac{1}{2}$ or $\frac{1}{2}$, so the equation is true for n = 1.

Step 2: Assume $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k} = 1 - \frac{1}{2^k}$ for some positive integer *k*.

Step 3: $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^k} + \frac{1}{2^{k+1}} = 1 - \frac{1}{2^k} + \frac{1}{2^{k+1}}$ $= 1 - \frac{2}{2^{k+1}} + \frac{1}{2^{k+1}}$ $= 1 - \frac{1}{2^{k+1}}$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \dots + \frac{1}{2^n} = 1 - \frac{1}{2^n}$ for all positive integers *n*.

6. Step 1: $4^1 - 1 = 3$, which is divisible by 3. The statement is true for n = 1.

Step 2: Assume that $4^k - 1$ is divisible by 3 for some positive integer *k*. This means that $4^k - 1 = 3r$ for some whole number *r*.

Step 3:
$$4^{k} - 1 = 3r$$

 $4^{k} = 3r + 1$
 $4^{k+1} = 12r + 4$
 $4^{k+1} - 1 = 12r + 3$
 $4^{k+1} - 1 = 3(4r + 1)$

Since *r* is a whole number, 4r + 1 is a whole number. Thus, $4^{k+1} - 1$ is divisible by 3, so the statement is true for n = k + 1. Therefore, $4^n - 1$ is divisible by 3 for all positive integers *n*.

7. Step 1: $5^1 + 3 = 8$, which is divisible by 4. The statement is true for n = 1.

Step 2: Assume that $5^k + 3$ is divisible by 4 for some positive integer *k*. This means that 5k + 3 = 4r for some positive integer *r*.

Step 3:
$$5^{k} + 3 = 4r$$

 $5^{k} = 4r - 3$
 $5^{k+1} = 20r - 15$
 $5^{k+1} + 3 = 20r - 12$
 $5^{k+1} + 3 = 4(5r - 3)$

Since *r* is a positive integer, 5r - 3 is a positive integer. Thus, $5^{k+1} + 3$ is divisible by 4, so the statement is true for n = k + 1.

Therefore, $5^n + 3$ is divisible by 4 for all positive integers *n*.

10. Step 1: After the first guest has arrived, no handshakes have taken place. $\frac{1(1-1)}{2} = 0$, so the formula is correct for n = 1.

Step 2: Assume that after k guests have arrived, a

total of $\frac{k(k-1)}{2}$ handshakes have take place, for some positive integer *k*.

Step 3: When the (k + 1)st guest arrives, he or she shakes hands with the *k* guests already there, so the total number of handshakes that have then taken place is $\frac{k(k-1)}{k} + k$

place is
$$\frac{k(k-1)}{2} + k$$
.
 $\frac{k(k-1)}{2} + k = \frac{k(k-1) + 2k}{2}$
 $= \frac{k[(k-1) + 2]}{2}$
 $= \frac{k(k+1)}{2}$ or $\frac{(k+1)k}{2}$

The last expression is the formula to be proved, where n = k + 1. Thus, the formula is true for n = k + 1. Therefore, the total number of handshakes is $\frac{n(n-1)}{2}$ for all positive integers *n*.

11. Step 1: When n = 1, the left side of the given equation is 1. The right side is 1[2(1) - 1] or 1, so the equation is true for n = 1.

Step 2: Assume 1 + 5 + 9 + ... + (4k - 3) = k(2k - 1) for some positive integer *k*.

Step 3:
$$1 + 5 + 9 + ... + (4k - 3) + [4(k + 1) - 3]$$

 $= k(2k - 1) + [4(k + 1) - 3]$
 $= 2k^2 - k + 4k + 4 - 3$
 $= 2k^2 + 3k + 1$
 $= (k + 1)(2k + 1)$
 $= (k + 1)[2(k + 1) - 1]$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, 1 + 5 + 9 + ... + (4n - 3) = n(2n - 1) for all positive integers *n*.

12. Step 1: When n = 1, the left side of the given equation is 2. The right side is $\frac{1[3(1) + 1]}{2}$ or 2, so the equation is true for n = 1.

Step 2: Assume $2 + 5 + 8 + ... + (3k - 1) = \frac{k(3k + 1)}{2}$ for some positive integer *k*.

Step 3:
$$2 + 5 + 8 + ... + (3k - 1) + [3(k + 1) - 1]$$

= $\frac{k(3k + 1)}{2} + [3(k + 1) - 1]$

$$= \frac{k(3k+1) + 2[3(k+1) - 1]}{2}$$

= $\frac{3k^2 + k + 6k + 6 - 2}{2}$
= $\frac{3k^2 + 7k + 4}{2}$
= $\frac{(k+1)(3k+4)}{2}$
= $\frac{(k+1)[(3(k+1) + 1])}{2}$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $2 + 5 + 8 + ... + (3n - 1) = \frac{n(3n + 1)}{2}$ for all positive integers *n*.

13. Step 1: When n = 1, the left side of the given equation is 1³ or 1. The right side is $\frac{1^2(1 + 1)^2}{4}$ or 1, so the equation is true for n = 1.

Step 2: Assume $1^3 + 2^3 + 3^3 + ... + k^3 = \frac{k^2(k+1)^2}{4}$ for some positive integer *k*.

Step 3:
$$1^3 + 2^3 + 3^3 + \dots + k^3 + (k+1)^3$$

$$= \frac{k^2(k+1)^2}{4} + (k+1)^3$$

$$= \frac{k^2(k+1)^2 + 4(k+1)^3}{4}$$

$$= \frac{(k+1)^2[k^2 + 4(k+1)]}{4}$$

$$= \frac{(k+1)^2(k^2 + 4k + 4)}{4}$$

$$= \frac{(k+1)^2(k+2)^2}{4}$$
 $(k+1)^2[(k+1) + 1]^2$

4

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1. Therefore, $1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$ for all

Therefore, $1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n(n+1)}{4}$ for all positive integers *n*.

14. Step 1: When n = 1, the left side of the given equation is 1^2 or 1. The right side is $\frac{1[2(1) - 1][2(1) + 1]}{3}$ or 1, so the equation is true for n = 1.

Step 2: Assume $1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 = \frac{k(2k - 1)(2k + 1)}{3}$ for some positive integer *k*.

Step 3:
$$1^2 + 3^2 + 5^2 + ... + (2k - 1)^2 + [2(k + 1) - 1]^2$$

$$= \frac{k(2k - 1)(2k + 1)}{3} + [2(k + 1) - 1]^2$$

$$= \frac{k(2k - 1)(2k + 1) + 3(2k + 1)^2}{3}$$

$$= \frac{(2k + 1)[k(2k - 1) + 3(2k + 1)]}{3}$$

$$= \frac{(2k + 1)(2k^2 - k + 6k + 3)}{3}$$

$$= \frac{(2k + 1)(2k^2 + 5k + 3)}{3}$$

$$= \frac{(2k + 1)(2k^2 + 5k + 3)}{3}$$

$$= \frac{(2k + 1)(k + 1)(2k + 3)}{3}$$

$$= \frac{(k + 1)[2(k + 1) - 1][2(k + 1) + 1]}{3}$$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $1^2 + 3^2 + 5^2 + ... + (2n - 1)^2 = \frac{n(2n - 1)(2n + 1)}{3}$ for all positive integers *n*.

15. Step 1: When n = 1, the left side of the given equation is $\frac{1}{3}$. The right side is $\frac{1}{2}\left(1 - \frac{1}{3}\right)$ or $\frac{1}{3}$, so the equation is true for n = 1. Step 2: Assume $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^k} = \frac{1}{2}\left(1 - \frac{1}{3^k}\right)$ for some positive integer k.

Step 3:
$$\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^k} + \frac{1}{3^{k+1}}$$

$$= \frac{1}{2} \left(1 - \frac{1}{3^k} \right) + \frac{1}{3^{k+1}}$$

$$= \frac{1}{2} - \frac{1}{2 \cdot 3^k} + \frac{1}{3^{k+1}}$$

$$= \frac{3^{k+1} - 3 + 2}{2 \cdot 3^{k+1}}$$

$$= \frac{3^{k+1} - 1}{2 \cdot 3^{k+1}}$$

$$= \frac{1}{2} \left(\frac{3^{k+1} - 1}{3^{k+1}} \right)$$

$$= \frac{1}{2} \left(1 - \frac{1}{3^{k+1}} \right)$$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $\frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots + \frac{1}{3^n} = \frac{1}{2} \left(1 - \frac{1}{3^n} \right)$ for all positive integers *n*.

16. Step 1: When n = 1, the left side of the given equation is $\frac{1}{4}$. The right side is $\frac{1}{3}\left(1 - \frac{1}{4}\right)$ or $\frac{1}{4}$, so the equation is true for n = 1.

is true for n = 1. **Step 2:** Assume $\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots + \frac{1}{4^k} = \frac{1}{3} \left(1 - \frac{1}{4^k} \right)$ for some positive integer *k*.

Step 3:
$$\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + \dots + \frac{1}{4^k} + \frac{1}{4^{k+1}}$$

$$= \frac{1}{3} \left(1 - \frac{1}{4^k} \right) + \frac{1}{4^{k+1}}$$

$$= \frac{1}{3} - \frac{1}{3 \cdot 4^k} + \frac{1}{4^{k+1}}$$

$$= \frac{4^{k+1} - 4 + 3}{3 \cdot 4^{k+1}}$$

$$= \frac{4^{k+1} - 1}{3 \cdot 4^{k+1}}$$

$$= \frac{1}{3} \left(\frac{4^{k+1} - 1}{4^{k+1}} \right)$$

$$= \frac{1}{3} \left(1 - \frac{1}{4^{k+1}} \right)$$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $\frac{1}{4} + \frac{1}{4^2} + \frac{1}{4^3} + ... + \frac{1}{4^n} = \frac{1}{3} \left(1 - \frac{1}{4^n} \right)$ for all positive integers *n*.

17. Step 1: $8^1 - 1 = 7$, which is divisible by 7. The statement is true for n = 1.

Step 2: Assume that $8^k - 1$ is divisible by 7 for some positive integer *k*. This means that $8^k - 1 = 7r$ for some whole number *r*.

Step 3: $8^{k} - 1 = 7r$ $8^{k} = 7r + 1$ $8^{k+1} = 56r + 8$ $8^{k+1} - 1 = 56r + 7$ $8^{k+1} - 1 = 7(8r + 1)$

Since *r* is a whole number, 8r + 1 is a whole number. Thus, $8^{k+1} - 1$ is divisible by 7, so the statement is true for n = k + 1.

Therefore, $8^n - 1$ is divisible by 7 for all positive integers *n*.

18. Step 1: $9^1 - 1 = 8$, which is divisible by 8. The statement is true for n = 1. Step 2: Assume that $9^k - 1$ is divisible by 8 for some positive integer *k*. This means that $9^k - 1 = 8r$ for

some whole number r.
Step 3:
$$9^{k} - 1 = 8r$$

 $9^{k} = 8r + 1$
 $9^{k+1} = 72r + 9$
 $9^{k+1} - 1 = 72r + 8$
 $9^{k+1} - 1 = 8(9r + 1)$

Since *r* is a whole number, 9r + 1 is a whole number. Thus, $9^{k+1} - 1$ is divisible by 8, so the statement is true for n = k + 1.

Therefore, $9^n - 1$ is divisible by 8 for all positive integers *n*.

19. Step 1: $12^1 + 10 = 22$, which is divisible by 11. The statement is true for n = 1.

Step 2: Assume that $12^k + 10$ is divisible by 11 for some positive integer *k*. This means that $12^k + 10 = 11r$ for some positive integer *r*.

Step 3:
$$12^{k} + 10 = 11r$$

 $12^{k} = 11r - 10$
 $12^{k+1} = 132r - 120$
 $12^{k+1} + 10 = 132r - 110$
 $12^{k+1} + 10 = 11(12r - 10)$

Since *r* is a positive integer, 12r - 10 is a positive integer. Thus, $12^{k+1} + 10$ is divisible by 11, so the statement is true for n = k + 1.

Therefore, $12^n + 10$ is divisible by 11 for all positive integers *n*.

20. Step 1: $13^1 + 11 = 24$, which is divisible by 12. The statement is true for n = 1.

Step 2: Assume that $13^k + 11$ is divisible by 12 for some positive integer *k*. This means that $13^k + 11 = 12r$ for some positive integer *r*.

Step 3: $13^{k} + 11 = 12r$ $13^{k} = 12r - 11$ $13^{k+1} = 156r - 143$ $13^{k+1} + 11 = 156r - 132$ $13^{k+1} + 11 = 12(13r - 11)$

Since *r* is a positive integer, 13r - 11 is a positive integer. Thus, $13^{k+1} + 11$ is divisible by 12, so the statement is true for n = k + 1.

Therefore, $13^n + 11$ is divisible by 12 for all positive integers *n*.

21. Step 1: There are 6 bricks in the top row, and $1^2 + 5(1) = 6$, so the formula is true for n = 1.

Step 2: Assume that there are $k^2 + 5k$ bricks in the top *k* rows for some positive integer *k*.

Step 3: Since each row has 2 more bricks than the one above, the numbers of bricks in the rows form an arithmetic sequence. The number of bricks in the (k + 1)st row is 6 + [(k + 1) - 1](2) or 2k + 6. Then the number of bricks in the top k + 1 rows is $k^2 + 5k + (2k + 6)$ or $k^2 + 7k + 6$.

 $k^2 + 7k + 6 = (k + 1)^2 + 5(k + 1)$, which is the formula to be proved, where n = k + 1. Thus, the formula is true for n = k + 1.

Therefore, the number of bricks in the top *n* rows is $n^2 + 5n$ for all positive integers *n*.

22. Step 1: When n = 1, the left side of the given equation is a_1 . The right side is $\frac{a_1(1 - r^1)}{1 - r}$ or a_1 , so the equation is true for n = 1.

Step 2: Assume $a_1 + a_1r + a_1r^2 + \dots + a_1r^{k-1} = \frac{a_1(1-r^k)}{1-r}$ for some positive integer k. Step 3: $a_1 + a_1r + a_1r^2 + \dots + a_1r^{k-1} + a_1r^k$ $= \frac{a_1(1-r^k)}{1-r} + a_1r^k$ $= \frac{a_1(1-r^k) + (1-r)a_1r^k}{1-r}$ $= \frac{a_1-a_1r^k + a_1r^k - a_1r^{k+1}}{1-r}$ $= \frac{a_1(1-r^{k+1})}{1-r}$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $a_1 + a_1r + a_1r^2 + \ldots + a_1r^{n-1} = \frac{a_1(1-r^n)}{1-r}$ for all positive integers *n*.

23. Step 1: When n = 1, the left side of the given equation is a_1 . The right side is $\frac{1}{2}[2a_1 + (1 - 1)d]$ or a_1 , so the equation is true for n = 1.

Step 2: Assume $a_1 + (a_1 + d) + (a_1 + 2d) + ... + [a_1 + (k - 1)d] = \frac{k}{2}[2a_1 + (k - 1)d]$ for some positive integer *k*.

Step 3:
$$a_1 + (a_1 + d) + (a_1 + 2d) + \dots + [a_1 + (k - 1)d] + [a_1 + (k + 1 - 1)d]$$

$$= \frac{k}{2}[2a_1 + (k - 1)d] + [a_1 + (k + 1 - 1)d]$$

$$= \frac{k}{2}[2a_1 + (k - 1)d] + a_1 + kd$$

$$= \frac{k[2a_1 + (k - 1)d] + 2(a_1 + kd)}{2}$$

$$= \frac{k \cdot 2a_1 + (k^2 - k)d + 2a_1 + 2kd}{2}$$

$$= \frac{(k + 1)2a_1 + (k^2 - k + 2k)d}{2}$$

$$= \frac{(k + 1)2a_1 + k(k + 1)d}{2}$$

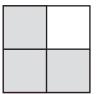
$$= \frac{k + 1}{2}(2a_1 + kd)$$

$$= \frac{k + 1}{2}[2a_1 + (k + 1 - 1)d]$$

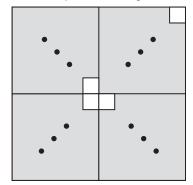
The last expression is the right side of the formula to be proved, where n = k + 1. Thus, the formula is true for n = k + 1.

Therefore, $a_1 + (a_1 + d) + (a_1 + 2d) + \dots + [a_1 + (n - 1)d] = \frac{n}{2}[2a_1 + (n - 1)d]$ for all positive integers *n*.

24. Step 1: The figure below shows how to cover a 2^1 by 2^1 board, so the statement is true for n = 1.



Step 2: Assume that a 2^k by 2^k board can be covered for some positive integer *k*.



Step 3: Divide a 2^{k+1} by 2^{k+1} board into four quadrants. By the inductive hypothesis, the first quadrant can be covered. Rotate the design that covers Quadrant I 90° clockwise and use it to cover Quadrant II. Use the design that covers Quadrant I to cover Quadrant III. Rotate the design that covers Quadrant I 90° counter-clockwise and use it to cover Quadrant IV. This leaves three empty squares near the center of the board, as shown. Use one more L-shaped tile to cover these 3 squares. Thus, a 2^{k+1} by 2^{k+1} board can be covered. The statement is true for n = k + 1.

Therefore, a 2^n by 2^n checkerboard with the top right square missing can be covered for all positive integers *n*.

- **32.** An analogy can be made between mathematical induction and a ladder with the positive integers on the steps. Answers should include the following.
 - Showing that the statement is true for n = 1 (Step 1).
 - Assuming that the statement is true for some positive integer k and showing that it is true for k + 1 (Steps 2 and 3).

Page 627, Chapter 11 Practice Test

21. Step 1: When n = 1, the left side of the given equation is 1. The right side is 1^2 or 1, so the equation is true for n = 1.

Step 2: Assume $1 + 3 + 5 + ... + (2k - 1) = k^2$ for some positive integer *k*.

Step 3: 1 + 3 + 5 + ... + (2k - 1) + [2(k + 1) - 1]= $k^2 + [2(k + 1) - 1]$ = $k^2 + 2k + 2 - 1$ = $k^2 + 2k + 1$ = $(k + 1)^2$

The last expression is the right side of the equation to be proved, where n = k + 1. Thus, the equation is true for n = k + 1.

Therefore, $1 + 3 + 5 + \dots + (2n - 1) = n^2$ for all positive integers *n*.

22. Step 1: $14^1 - 1 = 13$, which is divisible by 13. The statement is true for n = 1.

Step 2: Assume that $14^{k} - 1$ is divisible by 13 for some positive integer *k*. This means that $14^{k} - 1 = 13r$ for some whole number *r*.

Step 3:
$$14^{k} - 1 = 13r$$

 $14^{k} = 13r + 1$
 $14^{k+1} = 182r + 14$
 $14^{k+1} - 1 = 182r + 13$
 $14^{k+1} - 1 = 13(14r + 1)$

Since *r* is a whole number, 14r + 1 is a whole number. Thus, $14^{k+1} - 1$ is divisible by 13, so the statement is true for n = k + 1.

Therefore, $14^n - 1$ is divisible by 13 for all positive integers *n*.