Probability and Statistics Chapter Overview and Pacing

LESSON OBJECTIVES	PACING (days)			
	Regular		Block	
	Basic/ Average	Advanced	Basic/ Average	Advanced
12-1 The Counting Principle (pp. 632-637) - Solve problems involving independent events. - Solve problems involving dependent events.	1	1	0.5	0.5
12-2 Permutations and Combinations (pp. 638-643) - Solve problems involving linear permutations. - Solve problems involving combinations.	1	1	0.5	0.5
12-3 Probability (pp. 644-650) - Find the probability and odds of events. - Create and use graphs of probability distributions.	1	1	0.5	0.5
12-4 Multiplying Probabilities (pp. 651-657) - Find the probability of two independent events. - Find the probability of two dependent events.	1	1	0.5	0.5
12-5 Adding Probabilities (pp. 658-663) - Find the probability of mutually exclusive events. - Find the probability of inclusive events.	1	1	0.5	0.5
12-6 Statistical Measures (pp. 664-670) - Use measures of central tendency to represent a set of data. - Find measures of variation for a set of data.	1	1	0.5	0.5
12-7 The Normal Distribution (pp. 671-675) - Determine whether a set of data appears to be normally distributed or skewed. - Solve problems involving normally distributed data.	2	1	1.5	0.5
12-8 Binomial Experiments (pp. 676-681) - Use binomial expansions to find probabilities. - Find probabilities for binomial experiments. Follow-Up: Simulations	2	2 (with 12-8 (Follow-Up)	1	1.5 (with 12-8 (Follow-Up)
12-9 Sampling and Error (pp. 682-686) - Determine whether a sample is unbiased. - Find margins of sampling error. Follow-Up: Testing Hypotheses	1	2 (with 12-9 (Follow-Up)	0.5	1
Study Guide and Practice Test (pp. 687-693) Standardized Test Practice (pp. 694-695)	1	1	0.5	0.5
Chapter Assessment	1	1	0.5	0.5
TOTAL	13	13	7	7

Pacing suggestions for the entire year can be found on pages T20-T21.

Chapter Resource Manager

All-In-One Planner and Resource Center

See pages T12-T13.

*Key to Abbreviations: GCS = Graphing Calculator and Speadsheet Masters,
$\begin{aligned} S C & =\text { School-to-Career Masters, } \\ \text { SM } & =\text { Science and Mathematics Lab Manual }\end{aligned}$

Continuity of Instruction

Prior Knowledge

Some of the notation used in this chapter will be familiar, including factorials and binomial expansion. Also, some of the content will be familiar, including simple probability, relative frequency, and finding means, medians, and modes.

This Chapter

Students learn to represent counting situations using permutations and combinations. They describe the likelihood of single events using odds and probability, and they calculate probabilities for pairs of dependent or independent events, mutually exclusive or inclusive events, and binomial experiments. They calculate the central tendency and variation of data sets by calculating means, medians, variance, and standard deviations, and they explore normal distributions, skewed distributions, and sampling error.

Future Connections

Students will continue to use permutations, combinations, and probabilities in their math classes. They will study the mathematical underpinnings of statistical ideas in later math courses, and they will apply those statistical ideas in courses on behavioral science, psychology, economics, and many other fields.

12-1 The Counting Principle

In this lesson students investigate the Fundamental Counting Principle. The Fundamental Counting Principle states that the total number of options for a succession of choices is the product of the number of options for the individual choices. Students use exponents and factorials to express answers to counting problems.

12-2 Permutations and Combinations

The real-world situations in this lesson involve selecting some number of objects from a larger group of objects. If the order of selection is one of the attributes that differentiates among the selected objects, then the selection is called a permutation. If the order does not differentiate among the selected objects, then the selection is called a combination. As students analyze and apply the formulas for permutations, they consider situations in which some of the items in the large group are duplicates. Students also explore the relationship between permutations and combinations, which can be represented by the formula $C(n, r)=\frac{P(n, r)}{r!}$.

12-3 Probability

In this lesson, students analyze the likelihood that a particular event will happen. The likelihood of an event can be described in terms of odds and probability. Some of the mathematical properties of these expressions are that the odds of success and the odds of failure for any given event are reciprocals, that each probability is a number between 0 and 1 , inclusive, and that if you add the probability of success and the probability of failure for any given event, the sum is 1 . As students explore these descriptions of likelihood, they compare the probabilities for all the events in a sample space. They investigate the probabilities by looking at tables of probability distributions and by graphing those distributions as relative-frequency histograms.

12-4 Multiplying Probabilities

In this lesson, students consider the likelihood that two events will both happen and determine how that likelihood is related to the probabilities of the separate events. If two events A and B are independent, then the probability that both A and B occur is the product of the individual probabilities. If the two events are dependent, then the probability of both occurring is the product of the probability of A occurring times the probability of B occurring given that A occurred. Students explore problems in which they calculate values of $P(A), P(B)$, and $P(B$ following $A)$, and use those values to calculate the value $P(A$ and $B)$.

12-5 Adding Probabilities

This lesson considers the likelihood that at least one of two events will happen, and relates that likelihood to the probabilities of the separate events. If it is not possible that two events A and B both occur, then A and B are mutually exclusive and $P(A$ or $B)$ is $P(A)+P(B)$. If two events are not mutually exclusive, then $P(A$ or $B)$ is the probability that A will happen, plus the probability that B will happen, minus the probability that both will happen. Formulas can clarify the relationship between mutually exclusive and inclusive events. Starting with $P(A$ or $B)=P(A)+$ $P(B)-P(A$ and $B)$, if $P(A$ and $B)=0$ then the events cannot both happen, so they are mutually exclusive. In that case, $P(A$ or $B)=P(A)+P(B)$.

12-6 Statistical Measures

Students investigate how the values of a data set are distributed. They will choose the most appropriate measure of central tendency for a given set of data. For the dispersion of the data, they find the variance by using a formula whose key step is to look at how the individual data values differ from the mean of the set. They also calculate the standard deviation, which is the square root of the variance.

12-7 The Normal Distribution

For a large data set, the heights of the bars of a relative-frequency histogram can be replaced with a curve. A curve is a normal distribution curve if the probability distribution curve is symmetric and the mean, median, and mode are indicated by the peak of the curve. Another condition for a distribution to be normal involves the percent of data values that are within one, two, or three standard deviations of the mean. A data set with a long tail above the mean is positively skewed, while a data set with a long tail below the mean is negatively skewed.

12-8 Binomial Experiments

One or more terms of the binomial expansion $(p+q)^{n}$ can be used to calculate the probability for a binomial experiment. In a binomial experiment there are exactly two outcomes for each trial, there is a fixed number of trials, each trial is independent, and the probability of success or failure is the same for each trial. Tossing a coin five times is an example of a binomial experiment because each of these conditions is met.

12-9 Sampling and Error

In this lesson, students investigate sampling. They discuss how the response from a sample reflects what the responses might be from the entire population. If everyone in the population has an equal chance to be in the sample, then the sample is called an unbiased or random sample. For unbiased samples, students will describe the difference between sample and population responses by calculating the margin of sampling error (ME). If some percent p of people in a sample answer a question in a particular way, then for that question the percent of the population expected to answer the same way will be in the interval $p \pm M E$. A formula lets students calculate the ME based on the sample size and the value of p.

	Type	Student Edition	Teacher Resources	Technology/Internet
	Ongoing	```Prerequisite Skills, pp. 631, 637, 643,650, 657, 663, 670, 675, 60 Practice Quiz 1, p. }65 Practice Quiz 2, p. }67```	5-Minute Check Transparencies Quizzes, CRM pp. 767-768 Mid-Chapter Test, CRM p. 769 Study Guide and Intervention, CRM pp. 699-700, $\begin{aligned} & 705-706,711-712,717-718,723-724,729-730, \\ & 735-736,741-742,747-748 \end{aligned}$	Alge2PASS: Tutorial Plus www.algebra2.com/self_check_quiz www.algebra2.com/extra_examples
	Mixed Review	$\begin{aligned} & \text { pp. } 637,643,650,657,663, \\ & 670,675,681,685 \end{aligned}$	Cumulative Review, CRM p. 770	
	Error Analysis	Find the Error, pp. 654, 660 Common Misconceptions, p. 659	Find the Error, TWE pp. 654, 660 Unlocking Misconceptions, TWE p. 639 Tips for New Teachers, TWE pp. 648, 668	
	Standardized Test Practice	pp. 633, 634, 636, 642, 649, 657, 662, 669, 675, 680, 685, 693, 694-695	TWE p. 633 Standardized Test Practice, CRM pp. 771-772	Standardized Test Practice CD-ROM www.algebra2.com/ standardized_test
	Open-Ended Assessment	Writing in Math, pp. 636, 642, 649, 657, 662, 669, 675, 679, 685 Open Ended, pp. 634, 641, 647, 654, 660, 666, 673, 678, 683	Modeling: TWE pp. 650, 663 Speaking: TWE pp. 643, 657, 680, 684 Writing: TWE pp. 637, 670, 675 Open-Ended Assessment, CRM p. 765	
	Chapter Assessment	Study Guide, pp. 687-692 Practice Test, p. 693	Multiple-Choice Tests (Forms 1, 2A, 2B), CRM pp. 753-758 Free-Response Tests (Forms 2C, 2D, 3), CRM pp. 759-764 Vocabulary Test/Review, CRM p. 766	TestCheck and Worksheet Builder (see below) MindJogger Videoquizzes www.algebra2.com/ vocabulary_review www.algebra2.com/chapter_test

Key to Abbreviations: TWE = Teacher Wraparound Edition; CRM = Chapter Resource Masters

Additional Intervention Resources

The Princeton Review's Cracking the SAT \& PSAT The Princeton Review's Cracking the ACT

ALEKS

TestCheck and Worksheet Builder

This networkable software has three modules for intervention and assessment flexibility:

- Worksheet Builder to make worksheet and tests
- Student Module to take tests on screen (optional)
- Management System to keep student records (optional)

Special banks are included for SAT, ACT, TIMSS, NAEP, and End-of-Course tests.

Intervention Technology

Alge2PASS: Tutorial Plus CD-ROM offers a complete, self-paced algebra curriculum.

Algebra 2 Lesson	Alge2PASS Lesson
$12-2$	$22 \quad$ Combinations and Permutations
$12-4$	$23 \quad$ Integration: Introduction to Probability

ALEKS is an online mathematics learning system that adapts assessment and tutoring to the student's needs. Subscribe at www.k12aleks.com.

Intervention at Home

Log on for student study help.

- For each lesson in the Student Edition, there are Extra Examples and Self-Check Quizzes. www.algebra2.com/extra_examples www.algebra2.com/self_check_quiz
- For chapter review, there is vocabulary review, test practice, and standardized test practice.
www.algebra2.com/vocabulary_review
www.algebra2.com/chapter_test www.algebra2.com/standardized_test

For more information on Intervention and

 Assessment, see pp. T8-T11.
Reading and Writing in Mathematics

Glencoe Algebra 2 provides numerous opportunities to incorporate reading and writing into the mathematics classroom.

Student Edition

- Foldables Study Organizer, p. 631
- Concept Check questions require students to verbalize and write about what they have learned in the lesson. (pp. 634, 641, 647, 654, 660, 666, 673, 678, 683, 687)
- Writing in Math questions in every lesson, pp. 636, 642, 649, 657, 662, 669, 675, 679, 685
- Reading Study Tip, pp. 633, 638, 644, 646, 665, 669
- WebQuest, pp. 635, 685

Teacher Wraparound Edition

- Foldables Study Organizer, pp. 631, 687
- Study Notebook suggestions, pp. 635, 641, 647, 654, 660, 667, 673, 678, 681, 684, 686
- Modeling activities, pp. 650, 663
- Speaking activities, pp. 643, 657, 680, 684
- Writing activities, pp. 637, 670, 675
- Differentiated Instruction, (Verbal/Linguistic), p. 683
- ELL Resources, pp. 630, 636, 642, 649, 656, 662, 669, 674, 679, 683, 685, 687

Additional Resources

- Vocabulary Builder worksheets require students to define and give examples for key vocabulary terms as they progress through the chapter. (Chapter 12 Resource Masters, pp. vii-viii)
- Reading to Learn Mathematics master for each lesson (Chapter 12 Resource Masters, pp. 703, 709, 715, 721, 727, 733, 739, 745, 751)
- Vocabulary PuzzleMaker software creates crossword, jumble, and word search puzzles using vocabulary lists that you can customize.
- Teaching Mathematics with Foldables provides suggestions for promoting cognition and language.
- Reading and Writing in the Mathematics Classroom
- WebQuest and Project Resources

For more information on Reading and Writing in Mathematics, see pp. T6-T7.

What You'll Learn

Have students read over the list of objectives and make a list of any words with which they are not familiar.

Why It's Important

Point out to students that this is only one of many reasons why each objective is important. Others are provided in the introduction to each lesson.

Lesson	NCTM Standards	Local Objectives
$12-1$	$1,5,6,8,9,10$	
$12-2$	$1,5,6,8,9,10$	
$12-3$	$1,5,6,8,9,10$	
$12-4$	$1,5,6,8,9,10$	
$12-5$	$1,5,6,8,9,10$	
$12-6$	$1,5,6,8,9,10$	
$12-7$	$1,5,6,8,9,10$	
$12-8$	$1,5,6,8,9,10$	
$12-8$	$1,5,6,9,10$	
Follow-Up		
$12-9$	$1,5,6,8,9,10$	
$12-9$ Follow-Up	$5,7,8,9,10$	

Key to NCTM Standards:

1=Number \& Operations, 2=Algebra,

3=Geometry, 4=Measurement,
5=Data Analysis \& Probability, 6=Problem
Solving, 7=Reasoning \& Proof,
8=Communication, 9=Connections,
10=Representation Statistics

What You'll Learn

Lessons 12-1 and 12-2 Solve problems involving independent events, dependent events, permutations, and combinations.

- Lessons 12-3, 12-4, 12-5, and 12-8 Find probability and odds.
- Lesson 12-6 Find statistical measures.
- Lesson 12-7 Use the normal distribution.
- Lesson 12-9 Determine whether a sample is unbiased.

Why It's Important

Being able to analyze data is an important skill for every citizen. Business decision-makers rely on statistical measures to ensure quality products, medical researchers test and design new treatments by performing experiments with sample populations, and sports coaches use probabilities to design a winning team.

Each day during a presidential election campaign, journalists report the results of public opinion polls. Pollsters must make sure that the sample they choose accurately represents all of the voters. You will investigate how opinion polls are used in political campaigns in Lesson 12-9.

Vocabulary Builder

The Key Vocabulary list introduces students to some of the main vocabulary terms included in this chapter. For a more thorough vocabulary list with pronunciations of new words, give students the Vocabulary Builder worksheets found on pages vii and viii of the Chapter 12 Resource Masters. Encourage them to complete the definition of each term as they progress through the chapter. You may suggest that they add these sheets to their study notebooks for future reference when studying for the Chapter 12 test.

Getting Started

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 12 .

For Lesson 12-3

Find Simple Probability
Find each probability if a die is rolled once. 6. $\frac{5}{6}$

1. $P(2) \frac{1}{6}$
2. $P(5) \frac{1}{6}$
3. P (even number) $\frac{1}{2}$
4. P (odd number) $\frac{1}{2}$
5. P (numbers less than 5$) \frac{2}{3}$
6. P (numbers greater than 1)

For Lesson 12-6
Box-and-Whisker Plots
Make a box-and-whisker plot for each set of data. (For review, see pages 826 and 827.)
7. $\{24,32,38,38,26,33,37,39,23,31,40,21\} 7-10$. See margin.
8. $\{25,46,31,53,39,59,48,43,68,64,29\}$
9. $\{51,69,46,27,60,53,55,39,81,54,46,23\}$
10. $\{13.6,15.1,14.9,15.7,16.0,14.1,16.3,14.3,13.8\}$

For Lesson 12-6
Evaluate Expressions
Evaluate $\sqrt{\frac{(a-b)^{2}+(c-b)^{2}}{d}}$ for each set of values. (For review, see Lesson 5-6.)
11. $a=4, b=7, c=1, d=53$
12. $a=2, b=6, c=9, d=5 \sqrt{5}$
13. $a=5, b=1, c=7, d=4 \sqrt{13}$
14. $a=3, b=4, c=11, d=10 \sqrt{5}$

For Lesson 12-8 15. $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
Expand Binomials
Expand each binomial. (For review, see Lesson 5-2.) 16. $c^{4}+4 c^{3} d+6 c^{2} d^{2}+4 c d^{3}+d^{4}$
15. $(a+b)^{3}$
16. $(c+d)^{4}$
17. $(m-n)^{5}$
17. $m^{5}-5 m^{4} n+10 m^{3} n^{2}-10 m^{2} n^{3}+5 m n^{4}-n^{5}$
18. $(x+y)^{6}$
18. $x^{6}+6 x^{5} y+15 x^{4} y^{2}+20 x^{3} y^{3}+15 x^{2} y^{4}+6 x y^{5}+y^{6}$

FOLDABLES

Study Organizer
Make this Foldable to help you organize information about probability and statistics. Begin with one sheet of $11^{\prime \prime}$ by $17^{\prime \prime}$ paper.

Step 3 Staple and Label

Reading and Writing As you read and study the chapter, you can write notes and examples on index cards and store the cards in the Foldable pockets.

Chapter 12 Probability and Statistics 631

FOLDABLES

Study Organizer

For more information about Foldables, see Teaching Mathematics with Foldables.

Organization of Data and Statistics in Writing After students make their Foldable, have them label the four pockets with the key topics of this chapter-The Counting Principle, Permutations and Combinations, Probability, and Statistics. Throughout the chapter, students might record examples of probability and statistics they see in everyday print (newspapers, magazines, and advertisements). They should note how writers use statistics to prove or disprove points of view and discuss the ethical responsibilities writers have when using statistics.

Getting Started

This section provides a review of the basic concepts needed before beginning Chapter 12. Page references are included for additional student help.

Prerequisite Skills in the Getting Ready for the Next Lesson section at the end of each exercise set review a skill needed in the next lesson.

For Lesson	Prerequisite Skill
$12-2$	Factorials (p. 637)
$12-3$	Evaluating Expressions (p. 643)
$12-6$	Mean, Median, Mode, and Range (p. 663)
$12-8$	Binomial Expansions (p. 675)
$12-9$	Radical Expressions (p. 680)

Answers

9.

10.

1 Focus

5-Minute Check

Transparency 12-1 Use as a quiz or review of Chapter 11.

Mathematical Background notes are available for this lesson on p. 630C.

How
 can you count the maximum number of

 license plates a state can issue? Ask students:- How many letters are there on the license plate? how many digits? 3; 3
- How many possibilities are there to fill the first place on this plate? 26 (assuming all letters are possibilities)
- How many possibilities are there to fill the fourth place on this plate? 10 (assuming all digits are possibilities)

12-1 The Counting Principle

What Youll Learn

- Solve problems involving independent events
- Solve problems involving dependent events

Vocabulary
outcomes
sample space
event
independent events
Fundamental Counting
Principle
dependent events

How can you count the maximum number
of license plates a state can issue?
Most states have letters and digits on their license plates. The number of possible plates is too great to count by listing all of the possibilities. It is much more efficient to count the number of possibilities by using the Fundamental Counting Principle.

INDEPENDENT EVENTS An outcome is the result of a single trial. For example, the trial of flipping a coin once has two outcomes: head or tail. The set of all possible outcomes is called the sample space. An event consists of one or more outcomes of a trial. The choices of letters and digits to be put on a license plate are called independent events because each letter or digit chosen does not affect the choices for the others.

For situations in which the number of choices leads to a small number of total possibilities, you can use a tree diagram or a table to count them.

Example 1 Independent Events

FOOD A sandwich cart offers customers a choice of hamburger, chicken, or fish on either a plain or a sesame seed bun. How many different combinations of meat and a bun are possible?
First, note that the choice of the type of meat does not affect the choice of the type of bun, so these events are independent.

Method 1 Tree Diagram
Let H represent hamburger, C, chicken, F, fish, P, plain, and S, sesame seed. Make a tree diagram in which the first row shows the choice of meat and the second row shows the choice of bun.

There are six possible outcomes.
Method 2 Make a Table
Make a table in which each row represents a type of meat and each column represents a type of bun.

This method also shows that there are six outcomes.

Resource Manager

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 699-700
- Skills Practice, p. 701
- Practice, p. 702
- Reading to Learn Mathematics, p. 703
- Enrichment, p. 704

Transparencies

5-Minute Check Transparency 12-1
Answer Key Transparencies

Notice that in Example 1, there are 3 ways to choose the type of meat, 2 ways to choose the type of bun, and $3 \cdot 2$ or 6 total ways to choose a combination of the two. This illustrates the Fundamental Counting Principle.

Key Concept Fundamental Counting Principle

- Words If event M can occur in m ways and is followed by event N that can occur in n ways, then event M followed by event N can occur in $m \cdot n$ ways.
- Example If event M can occur in 2 ways and event N can occur in 3 ways, then M followed by N can occur in $2 \cdot 3$ or 6 ways.

This rule can be extended to any number of events.

Standardized Example 2 Fundamental Counting Principle
 Test Practice
 (A) (B) C D
 Multiple-Choice Test Item

Kim won a contest on a radio station. The prize was a restaurant gift certificate and tickets to a sporting event. She can select one of three different restaurants and tickets to a football, baseball, basketball, or hockey game. How many different ways can she select a restaurant followed by a sporting event?
(A) 7
(B) 12
(C) 15
(D) 16

Read the Test Item

Her choice of a restaurant does not affect her choice of a sporting event, so these events are independent.

Solve the Test Item

There are 3 ways she can choose a restaurant and there are 4 ways she can choose the sporting event. By the Fundamental Counting Principle, there are $3 \cdot 4$ or 12 total ways she can choose her two prizes. The answer is B.

The Fundamental Counting Principle can be used to count the number of outcomes possible for any number of successive events.

Example 3 More than Two Independent Events

COMMUNICATION Many answering machines allow owners to call home and get their messages by entering a 3-digit code. How many codes are possible?
The choice of any digit does not affect the other two digits, so the choices of the digits are independent events.

There are 10 possible first digits in the code, 10 possible second digits, and 10 possible third digits. So, there are $10 \cdot 10 \cdot 10$ or 1000 possible different code numbers.

DEPENDENT EVENTS Some situations involve dependent events. With dependent events, the outcome of one event does affect the outcome of another event. The Fundamental Counting Principle applies to dependent events as well as independent events.
www.algebra2.com/extra_examples
Lesson 12-1 The Counting Principle 633

Standardized Test Practice

A B C C
Example 2 Have students draw tree diagrams to show the possible prize outcomes. Make sure students recognize that which restaurant is chosen has no affect on the choice of sporting event Kim attends.

2 Teach

INDEPENDENT EVENTS

In-Class Examples

Point ${ }^{\circledR}$
1 A sandwich menu offers customers a choice of white, wheat, or rye bread with one spread chosen from butter, mustard, or mayonnaise. How many different combinations of bread and spread are possible? 9
Teaching Tip Make sure students know how to read a tree diagram so that they can identify the possibilities.

2 For their vacation, the Murray family is choosing a trip to the beach or to the mountains. They can select their transportation from a car, plane, or train. How many different ways can they select a destination followed by a means of transportation? C
A 2
B 5
C 6
D 9

3 How many codes are possible if the code is just two digits? 100

Interactive Chalkboard PowerPoint ${ }^{\circledR}$ Presentations

This CD-ROM is a customizable Microsoft $®$ PowerPoint $®$ presentation that includes:

- Step-by-step, dynamic solutions of each In-Class Example from the Teacher Wraparound Edition
- Additional, Your Turn exercises for each example
- The 5-Minute Check Transparencies
- Hot links to Glencoe Online Study Tools

DEPENDENT EVENTS

In-Class Example

Refer to the table in Example 4 in the Student Edition. How many different schedules could a student have who is planning to take only 4 different classes? 24

Example 4 Dependent Events

SCHOOL Charlita wants to take 6 different classes next year. Assuming that each class is offered each period, how many different schedules could she have?
When Charlita schedules a given class for a given period, she cannot schedule that class for any other period. Therefore, the choices of which class to schedule each period are dependent events.

There are 6 classes Charlita can take during first period. That leaves 5 classes she can take second period. After she chooses which classes to take the first two periods, there are 4 remaining choices for third period, and so on.

Period	1st	2nd	3rd	4th	5th	6th
Number of Choices	6	5	4	3	2	1

There are $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ or 720 schedules that Charlita could have. Note that $6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=6!$!

Concept Summary Independent and Dependent Events

- Words If the outcome of an event does not affect the outcome of another event, the two events are independent.
- Example Tossing a coin and rolling a die are independent events.

Words If the outcome of an event does affect the outcome of another event, the two events are dependent.

- Example Taking a piece of candy from a jar and then taking a second piece without replacing the first are dependent events because taking the first piece affects what is available to be taken next.

Check for Understanding

colors

Standardized

Test Practice
(A) (B) CD

Concept Check
 2. Sample answer: buying a shirt that comes in 3 sizes and 6
 Guided Practice
 GUIDED PRACTICE KEY
 Exercises \quad Examples
 4-9 1-4
 1. List the possible outcomes when a coin is tossed three times. Use H for heads and T for tails. HHH, HHT, HTH, HTT, THH, THT, TTH, TTT
 2. OPEN ENDED Describe a situation in which you can use the Fundamental Counting Principle to show that there are 18 total possibilities.
 3. Explain how choosing to buy a car or a pickup truck and then selecting the color of the vehicle could be dependent events. The available colors for the car could be different from those for the truck
 State whether the events are independent or dependent.
 4. choosing the color and size of a pair of shoes independent
 5. choosing the winner and runner-up at a dog show dependent
 Solve each problem.

6. An ice cream shop offers a choice of two types of cones and 15 flavors of ice cream. How many different 1 -scoop ice cream cones can a customer order? 30
7. Lance's math quiz has eight true-false questions. How many different choices for giving answers to the eight questions are possible? 256
8. For a college application, Macawi must select one of five topics on which to write a short essay. She must also select a different topic from the list for a longer essay. How many ways can she choose the topics for the two essays? 20
9. A bookshelf holds 4 different biographies and 5 different mystery novels. How many ways can one book of each type be selected? D
(A) 1
(B) 9
(C) 10
(D) 20

Differentiated Instruction

Interpersonal Have students work in pairs or small groups. Give each group a menu from a neighborhood restaurant, or have them design a brief menu. Then ask each group to use their menu to write, and answer, four problems similar to Examples 1 through 4. Have groups exchange problems and solve.

Homework Help	
For	\vdotsSee Exercises
Examples	
$10-23$,	$1-4$
$25-27$	

Extra Practice See page 854.
12. independent

Webluest

You can use the Fundamental Counting Principle to list possible outcomes in games. Visit www.algebra2.com/ webquest to continue work on your WebQuest project.

State whether the events are independent or dependent.
10. choosing a president, vice president, secretary, and treasurer for Student Council, assuming that a person can hold only one office dependent
11. selecting a fiction book and a nonfiction book at the library independent
12. Each of six people guess the total number of points scored in a basketball game. Each person writes down his or her guess without telling what it is.
13. The letters A through Z are written on pieces of paper and placed in a jar. Four of them are selected one after the other without replacing any of them. dependent
Solve each problem.
14. Tim wants to buy one of three different albums he sees in a music store. Each is available on tape and on CD. From how many combinations of album and format does he have to choose? 6
15. A video store has 8 new releases this week. Each is available on videotape and on DVD. How many ways can a customer choose a new release and a format to rent? 16
16. Carlos has homework to do in math, chemistry, and English. How many ways can he choose the order in which to do his homework? 6
17. The menu for a banquet has a choice of 2 types of salad, 5 main courses, and 3 desserts. How many ways can a salad, main course, and dessert be selected to form a meal? 30
18. A golf club manufacturer makes drivers with 4 different shaft lengths, 3 different lofts, 2 different grips, and 2 different club head materials. How many different combinations are possible? 48
19. Each question on a five-question multiple-choice quiz has answer choices labeled A, B, C, and D. How many different ways can a student answer the five questions? 1024
太 20. How many ways can six different books be arranged on a shelf if one of the books is a dictionary and it must be on an end? 240
ฝ 21. In how many orders can eight actors be listed in the opening credits of a movie if the leading actor must be listed first or last? 10,080
22. PASSWORDS Abby is registering at a Web site. She must select a password containing 6 numerals to be able to use the site. How many passwords are allowed if no digit may be used more than once? 151,200
23. ENTERTAINMENT Solve the problem in the comic strip below. Assume that the books are all different. 362,880

Peanuts ${ }^{\circledR}$

24. CRITICAL THINKING The members of the Math Club need to elect a president and a vice-president. They determine that there are a total of 272 ways that they can fill the positions with two different members. How many people are in the Math Club? 17
www.algebra2.com/self_check_quiz

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- include their own examples of both independent and dependent events.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises... Organization by Objective
 - Independent Events: 11, 12
 - Dependent Events: 10, 13
 Odd/Even Assignments

Exercises 10-21 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercise 28 involves research on the Internet or other reference materials.

Assignment Guide

Basic: 11-19 odd, 23-25, 29-31, 34-63
Average: 11-25 odd, 29-31, 34-63 (optional: 32, 33)
Advanced: 10-24 even, 26-55 (optional: 56-63)

Study Guide and Intervention,

p. 699 (shown) and p. 700

Independent Events If the outcome of one event does not affect the o ot another event and vice versa, the events are called independent events.

Example Food For the Breakfast Special at the Country Pantry, customers an choose their eggs scrambled, fried, or poached, whole wheat or white
and either orange, apple, tomato, or grapefruit juice. How many different and either orange, apple, tomato, or grap
Breakfast Specials can a customer order?
A customer's chice of eggs does not affect his or her choice of toast or juice, so the events
are independent. There are 3 ways to choose eggs, 2 ways to choose toast, and 4 ways to choose juice. By the Fundamental Counting Principle, there are $3 \cdot 2 \cdot 4$ or 24 ways to choose juice. By the F undame
choose the Breakfast Speciil

Exercises

1. The Palace of Pizza offers small, medium, or large pizzas with 14 different toppings
available. How many different one-topping pizzas do they serve? 42

Te B
file. How many passwords are possible if letters can be repeated? 256
3. A restaurant serves 5 main dishes, 3 salads, and 4 desserts. How many different meals
could be ordered if each has a main dish, s salad, and a dessert? 60
4. Marissa brought 87 T.shirts and 6 pairs of shorts to summer camp. How many different
outfits consisting of a T-shirt and a pair of shorts does she have? 48
5. There are 6 different packages available for school pictures. The studio offers 5 different
backgrounds and 2 different finishes. How many different options are availabbee 60
6. How many 5 -digit even numbers can be formed using the digits $4,6,7,2,8$ if digits car
be repeated? 2500
7. How many license plate numbers consisting of three l
are possible when repetition is allowed? $17,576,000$
8. 4 digit positive even integers are there? 4500

Skills Practice, p. 701 and
Practice, p. 702 (shown)
State whether the events are independent or dependent.

1. choosing an ice cream flayor and choosing a topping for the ice cream independent 2. choosing an offensive player of the game and a defensive player of the game in a
professional football game independent
```
\. From 15 entries in an art
```

4. Jillian is selecting two more courses for her block schedule next semester. She must
select one of three morning history classes and one of two afternoon math classes. select one of thre
independent

olve each problem.

5. A briefase lock has 3 rota
codes are possible? 1000
6. Agorclul manuacturer makes irons with 7 different shaft lengths, 3 different grips, different lies, and $2 \mathrm{~d}_{\text {offered? } 210}$ dead materials. Thations
7. There are five different routes that a commuter can take from her home to the office. In how many
going? 20
8. In how many ways can the four call letters of a radio station be arranged if the first
letter must be W or K and no letters repeat? 27,600
9. How many 7 -digit phone numbers can be formed if the first digit cannot be 0 or 1 , and
any digit can be repeated? $8,000,000$
10. How many 7 -digit phone numbers can be formed if the first digit cannot be 0 , and an
11. How many 7 -didit phone numbers can be formed if the first digit cannot be 0 or 1 , and i
no digit can be repeated? 483,840
12. How many 7 -digit phone numbers can be formed if the first digit cannot be 0 , and if no
digit can be repeated? 544,320
13. How many 6 -character passwords can be formed if the first character is a digit and the
remaining 5 characters are letters that can be repeated? $118,813,760$
14. How many 6-character passwords can be formed if the first and last characters ar
digits and the remaining characters are letters? Assume that any character can be digits and the remaining characters are letters? Assume that any character can b
repeated. $45,697,600$

Reading to Learn

 ELL
Mathematics, p. 103

Pre-Activity $\begin{gathered}\text { How can } \\ \text { can issue }\end{gathered}$
Read the introduction to Lesson 12-1 at the top of page 632 in your textbook, Assume that all Florida license plates have three letters followed by three digits, and that there are no rules against using the same letter or number
more than once. How many choices are there for each letter? for each digit?
$26 ; 10$ ${ }_{26}$ more tha

Reading the Lesson

1. Shamim is signing up for her classes. Most of her classes are reguired, but she has two
electives. For her arts class, she can chose between Art, Band, Chorus, or Drama. For her language class, she can choose between French, German, and Spanish
a. To organize her choices, Shamim decides to make a tree diagram. Let A, B, C, and D represent Art, Band, Chorus, and Drama, and F, G and S represent French , Germa

b. How could Shamim have found the number of possible combinations without making a tree diagram? Sample answer: Multiply the number of choices for her arts
class by the number of choices for her language class: $3 \times 4=12$.
2. A ar contains 6 red marbles, 4 blue marbles, and 3 yellow marbles. Indicate whether the
events described are dependent or independent.
a. A marble is drawn out of the jar and is not replaced. A second marble is drawn
b. A marble is drawn out of the e are and is put back in. The jar is shaken. A second
marble is drawn. independent

Helping You Remember

3. One definition of independent is "not determined or influenced by someone or something nd dependent tevents? Sample answer: If the outcome of one event does not affect or influence the outcome of another, the events are independent. If
he outcome of one event does affect or influence the outcome of

Area Codes a..........
Before 1995, area codes had the following format.

(XYZ)

$X=2,3, \ldots$ or 9
$\mathrm{Y}=0$ or 1
$Z=0,1,2, \ldots$, or 9
Source: www.nanpa.com

Standardized Test Practice
A) (B) C D
25. HOME SECURITY How many different 5-digit codes are possible using the keypad shown at the right if the first digit cannot be 0 and no digit may be used more than once? 27,216

AREA CODES For Exercises 26 and 27, refer to the information about telephone area codes at the left.
26. How many area codes were possible before 1995? 160
27. In 1995, the restriction on the middle digit was removed, allowing any digit in that position. How many total codes were possible after this change was made? 800
28. RESEARCH Use the Internet or other resource to find the configuration of letters and numbers on license plates in your state. Then find the number of possible plates. See students' work.
29. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How can you count the maximum number of license plates a state can issue? Include the following in your answer:

- an explanation of how to use the Fundamental Counting Principle to find the number of different license plates in a state such as Florida, which has 3 letters followed by 3 numbers, and
- a way that a state can increase the number of possible plates without increasing the length of the plate number.

30. How many numbers between 100 and 999 , inclusive, have 7 in the tens place? A
(A) 90
(B) 100
(C) 110
(D) 120
31. A coin is tossed four times. How many possible sequences of heads or tails are possible? C
(A) 4
(B) 8
(C) 16
(D) 32

Extending the Lesson

For Exercises 32 and 33, use the following information. A finite graph is a collection of points, called vertices, and segments, called edges, connecting the vertices. For example, the graph shown at the right has 4 vertices and 2 edges.
32. Suppose a graph has 10 vertices and each pair of vertices is connected by exactly one edge. Find the number of edges in the graph. (Hint: If you use the Fundamental Counting Principle, be sure to count each edge only once.) 45
33. TRANSPORTATION The table shows the distances in miles of the roads between some towns. Draw a graph in which the vertices represent the towns and the edges are labeled with the lengths of the roads. Use your graph to find the length of the shortest route from Greenville to Red Rock. 20 mi

Route	Miles
Greenville to Roseburg	14
Greenville to Bluemont	12
Greenville to Whiteston	9
Roseburg to Bluemont	8
Bluemont to Whiteston	5
Roseburg to Red Rock	7
Bluemont to Red Rock	9
Whiteston to Red Rock	11

636 Chapter 12 Probability and Statistics

Maintain Your Skills

Mixed Review
34. Prove that $4+7+10 \cdots+(3 n+1)=\frac{n(3 n+5)}{2}$ for all positive integers n. (Lesson 11-8) See pp. 695A-695B.

Find the indicated term of each expansion. (Lesson 11-7)
35. third term of $(x+y)^{8} 28 x^{6} y^{2}$
36. fifth term of $(2 a-b)^{7} 280 a^{3} b^{4}$

Evaluate each expression. (Lesson 10-2)
37. $\log _{2} 1287$
38. $\log _{3} 2435$
39. $\log _{9} 3 \frac{1}{2}$

Simplify each expression. (Lesson 9-1)
40. $-\frac{x^{2}-y^{2}}{x+y} \cdot \frac{1}{x-y}-1$
41. $\frac{\frac{x^{2}}{x^{2}-25 y^{2}}}{\frac{x}{5 y-x}}-\frac{x}{x+5 y}$
42. CARTOGRAPHY Edison is located at $(9,3)$ in the coordinate system on a road map. Kettering is located at $(12,5)$ on the same map. Each side of a square on the map represents 10 miles. To the nearest mile, what is the distance between Edison and Kettering? (Lesson 8-1) 36 mi

Solve each equation. (Lesson 7-3)
43. $x^{4}-5 x^{2}+4=0 \pm 1, \pm 2$
44. $y^{4}+4 y^{3}+4 y^{2}=00,-2$

Write an equation for the parabola with the given vertex that passes through the given point. (Lesson 6-6)
45. vertex $(3,2)$
46. vertex $(-1,4)$
47. vertex $(0,8)$
point $(5,6)$
point $(-2,2)$
$y=-2(x+1)^{2}+4$
Solve each equation. (Lesson 5-8)
48. $\sqrt{2 x+1}=34$
49. $3+\sqrt{x+1}=53$
50. $\sqrt{x}+\sqrt{x+5}=54$

Find the inverse of each matrix, if it exists. (Lesson 4-7)
51. $\left[\begin{array}{rr}3 & 1 \\ -4 & 1\end{array}\right] \frac{1}{7}\left[\begin{array}{rr}1 & -1 \\ 4 & 3\end{array}\right]$
52. $\left[\begin{array}{ll}4 & -5 \\ 2 & -1\end{array}\right] \frac{1}{6}\left[\begin{array}{ll}-1 & 5 \\ -2 & 4\end{array}\right]$
53. $\left[\begin{array}{ll}-3 & 2 \\ -6 & 4\end{array}\right] \begin{aligned} & \text { exists } \\ & \text { no inverse }\end{aligned}$

Write an equation in slope-intercept form for each graph. (Lesson 2-4)
54.

$y=-2 x-2$
55.

$$
y=\frac{2}{3} x+\frac{1}{3}
$$

Getting Ready for the Next Lesson

PREREQUISITE SKILL Evaluate each expression.
56. $\frac{5!}{2!} 60$
57. $\frac{6!}{4!} 30$
58. $\frac{7!}{3!} 840$
59. $\frac{6!}{1!} 720$
60. $\frac{4!}{2!2!} 6$
61. $\frac{6!}{2!4!} 15$
62. $\frac{8!}{3!5!} 56$
63. $\frac{5!}{5!0!} 1$

4 Assess

Open-Ended Assessment

Writing Ask students to write a brief explanation of the difference between independent and dependent events, and to give several examples for each.

Getting Ready for
 Lesson 12-2

PREREQUISITE SKILL Lesson 12-2 presents solving problems involving permutations and combinations. Students will use their familiarity with evaluating expressions involving factorials as they apply formulas for permutations and combinations. Exercises 56-63 should be used to determine your students' familiarity with evaluating factorials.

Answer

29. The maximum number of license plates is a product with factors of 26s and 10s, depending on how many letters are used and how many digits are used. Answers should include the following.

- There are 26 choices for the first letter, 26 for the second, and 26 for the third. There are 10 choices for the first number, 10 for the second, and 10 for the third. By the Fundamental Counting Principle, there are $26^{3} \cdot 10^{3}$ or 17,576,000 possible license plates.
- Replace positions containing numbers with letters.

1 Focus

5-Minute Check

Transparency 12-2 Use as a quiz or review of Lesson 12-1.

Mathematical Background notes are available for this lesson on p. 630C.

How do permutations and combinations apply to softball?

Ask students:

- Is a lineup or batting order for the first batters of $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D different from a lineup of D, C, B, A? Yes, the order matters.
- Is the number of ways, 840 , equal to either 7 ! or 4!? no
- How could you write $7 \cdot 6 \cdot 5 \cdot 4$ as an expression in terms of 7 ! and $4!? \frac{7!}{(7-4)!}$

Permutations and

 Combinations
What Youll Learn

- Solve problems involving linear permutations.
- Solve problems involving combinations.

Vocabulary

permutation linear permutation combination

Study Tip

Reading Math The expression $P(n, r)$ is read the number of permutations of n objects taken r at a time. It is sometimes written as ${ }_{n} P_{r}$.

How do permutations and combinations apply to softball?
When the manager of a softball team fills out her team's lineup card before the game, the order in which she fills in the names is important because it determines the order in which the players will bat.

Suppose she has 7 possible players in mind for the top 4 spots in the lineup. You know from the Fundamental Counting Principle that there are $7 \cdot 6 \cdot 5 \cdot 4$ or 840 ways that she could assign players to the top 4 spots.

PERMUTATIONS When a group of objects or people are arranged in a certain order, the arrangement is called a permutation. In a permutation, the order of the objects is very important. The arrangement of objects or people in a line is called a linear permutation.

Notice that $7 \cdot 6 \cdot 5 \cdot 4$ is the product of the first 4 factors of 7 !. You can rewrite this product in terms of 7 !.

$$
\begin{array}{rlrl}
7 \cdot 6 \cdot 5 \cdot 4 & =7 \cdot 6 \cdot 5 \cdot 4 \cdot \frac{3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} \quad & & \text { Multiply by } \frac{3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} \text { or } 1 . \\
& =\frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1} \text { or } \frac{7!}{3!} \quad 7!=7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 \text { and } 3!=3 \cdot 2 \cdot 1
\end{array}
$$

Notice that 3 ! is the same as $(7-4)$!.
The number of ways to arrange 7 people or objects taken 4 at a time is written $P(7,4)$. The expression for the softball lineup above is a case of the following formula.

Key Concept

Permutations

The number of permutations of n distinct objects taken r at a time is given by

$$
P(n, r)=\frac{n!}{(n-r)!} .
$$

Example 1 Permutation

FIGURE SKATING There are 10 finalists in a figure skating competition. How many ways can gold, silver, and bronze medals be awarded?

Since each winner will receive a different medal, order is important. You must find the number of permutations of 10 things taken 3 at a time.

638 Chapter 12 Probability and Statistics

Resource Manager

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 705-706
- Skills Practice, p. 707
- Practice, p. 708
- Reading to Learn Mathematics, p. 709
- Enrichment, p. 710

Graphing Calculator and Spreadsheet Masters, p. 50

Transparencies

5-Minute Check Transparency 12-2
Answer Key Transparencies

- Technology

Alge2PASS: Tutorial Plus, Lesson 22
Interactive Chalkboard

$$
\begin{array}{rlrl}
P(n, r) & =\frac{n!}{(n-r)!} & & \text { Permutation formula } \\
P(10,3) & =\frac{10!}{(10-3!)} & & n=10, r=3 \\
& =\frac{10!}{7!} & & \text { Simplify. } \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7 \cdot \frac{1}{6} \cdot \frac{1}{5} \cdot \frac{1}{4} \cdot \frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{1}}{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \text { or } 720 & & \text { Divide by common factors. } \\
11111111 & 1
\end{array}
$$

The gold, silver, and bronze medals can be awarded in 720 ways.

Notice that in Example 1, all of the factors of $(n-r)$! are also factors of $n!$. Instead of writing all of the factors, you can also evaluate the expression in the following way.

$$
\begin{aligned}
\frac{10!}{(10-3)!} & =\frac{10!}{7!} & & \text { Simplify. } \\
& =\frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!} & & \frac{7!}{7!}=1 \\
& =10 \cdot 9 \cdot 8 \text { or } 720 & & \text { Multiply. }
\end{aligned}
$$

Suppose you want to rearrange the letters of the word geometry to see if you can make a different word. If the two e^{\prime} 's were not identical, the eight letters in the word could be arranged in $P(8,8)$ or 8 ! ways. To account for the identical e^{\prime} s, divide $P(8,8)$ or 40,320 by the number of arrangements of e. The two e 's can be arranged in $P(2,2)$ or 2 ! ways.

$$
\begin{array}{rlrl}
\frac{P(8,8)}{P(2,2)} & =\frac{8!}{2!} & & \text { Divide. } \\
& =\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2!}{2!} \text { or } 20,160 & \text { Simplify. }
\end{array}
$$

Thus, there are 20,160 ways to arrange the letters in geometry.
When some letters or objects are alike, use the rule below to find the number of permutations.

Key Concept Permutations with Repetitions

The number of permutations of n objects of which p are alike and q are alike is $\frac{n!}{p!q!}$.

This rule can be extended to any number of objects that are repeated.

Example 2 Permutation with Repetition

How many different ways can the letters of the word MISSISSIPPI be arranged?
The second, fifth, eighth, and eleventh letters are each I.
The third, fourth, sixth, and seventh letters are each S.
The ninth and tenth letters are each P .
You need to find the number of permutations of 11 letters of which 4 of one letter, 4 of another letter, and 2 of another letter are the same.
$\frac{11!}{4!4!2!}=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{4!4!2!}$ or 34,650
There are 34,650 ways to arrange the letters.

PERMUTATIONS

In-Class Examples

1 Eight people enter the Best Pie contest. How many ways can blue, red, and green ribbons be awarded? 336

2 How many different ways can the letters of the word BANANA be arranged? 60

D A \| L Y

INIERVENTION

Unlocking Misconceptions

Discuss the notation for $P(n, r)$. Students might reasonably think that this expression could be an ordered pair, or function notation. However, when the P is used, the expression is probably for permutation notation, which can also be written as ${ }_{n} P_{r}$.

3 Five cousins at a family reunion decide that three of them will go to pick up a pizza. How many ways can they choose the three people to go? 10

4 Six cards are drawn from a standard deck of cards. How many hands consist of two hearts and four spades? 55,770
\qquad
\qquad

Study Tip

Permutations and Combinations

- If order in an arrangement is important, the arrangement is a permutation.
- If order is not important, the arrangement is a combination.
\qquad

COMBINATIONS An arrangement or selection of objects in which order is not important is called a combination. The number of combinations of n objects taken r at a time is written $C(n, r)$. It is sometimes written ${ }_{n} C_{r}$.
You know that there are $P(n, r)$ ways to select r objects from a group of n if the order is important. There are r ! ways to order the r objects that are selected, so there are r ! permutations that are all the same combination. Therefore,

$$
C(n, r)=\frac{P(n, r)}{r!} \text { or } \frac{n!}{(n-r)!r!}
$$

Key Concept

Combinations
The number of combinations of n distinct objects taken r at a time is given by

$$
C(n, r)=\frac{n!}{(n-r)!r!} .
$$

Example 3 Combination

A group of seven students working on a project needs to choose two from their group to present the group's report to the class. How many ways can they choose the two students?
Since the order they choose the students is not important, you must find the number of combinations of 7 students taken 2 at a time.

$$
\begin{aligned}
C(n, r) & =\frac{n!}{(n-r)!r!} \quad \text { Combination formula } \\
C(7,2) & =\frac{7!}{(7-2)!2!} \quad n=7 \text { and } r=2 \\
& =\frac{7!}{5!2!} \text { or } 21 \quad \text { Simplify. }
\end{aligned}
$$

There are 21 possible ways to choose the two students.

In more complicated situations, you may need to multiply combinations and/or permutations.

Example 4 Multiple Events

Five cards are drawn from a standard deck of cards. How many hands consist of three clubs and two diamonds?
By the Fundamental Counting Principle, you can multiply the number of ways to select three clubs and the number of ways to select two diamonds.
Only the cards in the hand matter, not the order in which they were drawn, so use combinations.
$C(13,3)$ Three of 13 clubs are to be drawn.
$C(13,2)$ Two of 13 diamonds are to be drawn.
$\begin{aligned} C(13,3) \cdot C(13,2) & =\frac{13!}{(13-3)!3!} \cdot \frac{13!}{(13-2)!2!} & & \text { Combination formula } \\ & =\frac{13!}{10!3!} \cdot \frac{13!}{11!2!} & & \text { Subtract. } \\ & =286 \cdot 78 \text { or } 22,308 & & \text { Simplify. }\end{aligned}$
There are 22,308 hands consisting of 3 clubs and 2 diamonds.

D A I L Y INIERVENTION
 Differentiated Instruction

Visual/Spatial Have students model the various problems by writing letters, names, or other labels on index cards. After students have tried to model and tally possible combinations, they will soon realize that the formulas save lots of time.

Concept Check

1. OPEN ENDED Describe a situation in which the number of outcomes is given by $P(6,3)$. See margin.
2. Show that $C(n, n-r)=C(n, r)$. See margin.
3. Determine whether the statement $C(n, r)=P(n, r)$ is sometimes, always, or never true. Explain your reasoning.
Sometimes; the statement is true when $r=1$.
Guided Practice Evaluate each expression.

GUIDED PRACTICE KEY	
Exercises	Examples
4,5	1
$6,7,11$	3
8,9	1,3
10	2

4. $P(5,3) 60$
5. $P(6,3) 120$
6. $C(4,2) 6$
7. $C(6,1) 6$

Determine whether each situation involves a permutation or a combination. Then find the number of possibilities.
8. choosing 2 different pizza toppings from a list of 6 combination; 15
9. seven shoppers in line at a checkout counter permutation; 5040
10. an arrangement of the letters in the word intercept permutation; 90,720

Application 11. SCHOOL The principal at Cobb County High School wants to start a mentoring group. He needs to narrow his choice of students to be mentored to six from a group of nine. How many ways can a group of six be selected? 84

* indicates increased difficulty

Practice and Apply

Homework For Exercises	Help
Examples	

Extra Practice
See page 854.

Languages
The Hawaiian language consists of only twelve letters, the vowels $\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}$, and u and the consonants h, k, l, m, n, p, and w. Source: www.andhawaii.com

Evaluate each expression.
12. $P(8,2) 56$
14. $P(7,5) 2520$
16. $C(5,2) 10$
18. $C(12,7) 792$
20. $C(12,4) \cdot C(8,3) 27,720$

Determine whether each situation involves a permutation or a combination. Then find the number of possibilities. 22. permutation; 5040 26. combination; 220
22. the winner and first, second, and third runners-up in a contest with 10 finalists
23. selecting two of eight employees to attend a business seminar combination; 28
24. an arrangement of the letters in the word algebra permutation; 2520
25. placing an algebra book, a geometry book, a chemistry book, an English book, and a health book on a shelf permutation; 120
26. selecting nine books to check out of the library from a reading list of twelve
27. an arrangement of the letters in the word parallel permutation; 3360
28. choosing two CDs to buy from ten that are on sale combination; 45
29. selecting three of fifteen flavors of ice cream at the grocery store combination; 455
30. MOVIES The manager of a four-screen movie theater is deciding which of 12 available movies to show. The screens are in rooms with different seating capacities. How many ways can he show four different movies on the screens? 11,880
-31. LANGUAGES How many different arrangements of the letters of the Hawaiian word aloha are possible? 60
32. GOVERNMENT How many ways can five members of the 100 -member United States Senate be chosen to be put on a committee? 75,287,520
www.algebra2.com/self_check_quiz
Lesson 12-2 Permutations and Combinations 641

Teacher to Teacher

Harry Rattien Townsend Harris H.S. at Queens College, Flushing, NY
I use the following mnemonic device to help my students remember the difference between permutations and combinations.

$$
\text { Permutation } \rightarrow \text { place } \quad \text { Combination } \rightarrow \text { choose }
$$

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- include their own examples for different kinds of permutations and combinations.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises... Organization by Objective

- Permutations: 12-15, 22, 24, 25, 27
- Combinations: 16-21, 23, 26, 28, 29

Odd/Even Assignments

Exercises 12-29 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13-19 odd, 23-31 odd, 37-40, 44-72
Average: 13-35 odd, 37-40, 44-72 (optional: 41-43)
Advanced: 12-36 even, 37-68
(optional: 69-72)

Answers

1. Sample answer: There are six people in a contest. How many ways can the first, second, and third prizes be awarded?
2. $C(n, n-r)$
$=\frac{n!}{[n-(n-r)]!(n-r)!}$

$$
=\frac{n!}{r!(n-r)!}
$$

$=\frac{n!}{(n-r)!r!}$
$=C(n, r)$

Study Guide and Intervention, p. 705 (shown) and p. 706	
Permutations When a group of objects or people are arranged in a certain order, the arrangement is called a permutation.	
Pemumations	
The rule for permutations with repetitions can be extended to any number of objects that are repeated.	
Example From a list of 20 books, each student must choose 4 books for book reports. The first report is a traditional book report, the second a poster, the third a newspaper interview with one of the characters, and the plot. How many different orderings of books can be chosen? Since each book report has a different format, order is important. You must find the number of permutations of 20 objects taken 4 at a time.	
${ }^{\text {P }}$ (, ,	
$\begin{aligned} P(20,4) & =\frac{20!}{(20-4)} \\ & =2!\end{aligned}$	
fort	
Exercses	
Evaluate each expression.	
1. $\mathrm{P}(6,3) 120$	5) 6720 3.P9, ${ }^{\text {a }} 3024$
How many different ways can the letters of each word be arranged?	
5. мом 3	6. Monday $720 \quad 7$. Stereo 3
8. SCHOOL The high school chorus has been practicing 12 songs, but there is time for only 5 of them at the spring concert. How may different orderings of 5 songs are possible? 95,040	
Skills Practice, p. 707 and Practice, p. 708 (shown)	
Evaluate each expression.	
1. P P8, 6) 20,160	2. $2 . P(9,7) 1818,440$
4. $P(4,3) 24$	
7. $\mathrm{C}(8,2) 28$	C(11, 3) 165 9.C C(20, 18) 190
9) 1	${ }^{11} . C(3,1) 3$ 3 $12 . C(9,3) \cdot C(6,2) 12$
Determine whether each situation involves a permutation find the number of possibilities.	
13. selecting a 4-person bobsled team from a group of 9 athletes combination; 126	
14. an arrangement of the letters in the word Canada permutation; 120	
15. arranging 4 charms on a bracelet that has a clasp, a front, and a back permutation; 24	
16. selecting 3 desserts from 10 desserts that are displayed on a dessert cart in a restaurant combination; 120	
17. an arrangement of the letters in the word annually permutation; 5040	
18. forming a 2-person sales team from a group of 12 salespeople combination; 66	
19. making 5 -sided polygons by choosing any 5 of 11 points located on a circle to be the vertices combination; 462	
20. seating 5 men and 5 women alternately in a row, beginning with a woman permutation; 14,400	
21. STUDENT GROUPS Farmington High is planning its academic festival. All math classes will send 2 representatives to compete in the math bowl. How many different groups of students can be chosen from a class of 16 students? 120	
22. PHOTOGRAPHY A photographer is taking pictures of a bride and groom and their 6 attendants. If she takes photographs of 3 people in a group, how many different groups can she photograph? 56	
23. AIRLINES An airline is hiring 5 flight attendants. If 8 people apply for the job, how many different groups of 5 attendants can the airline hire? 56	
24. SUBSCRIPTIONS A school librarian would like to buy subscriptions to 7 new magazines. Her budget, however, will allow her to buy only 4 new subscriptions. How many different groups of 4 magazines can she choose from the 7 magazines? 35	
Reading to Learn Mathematics, p. 709	
Pre-Activity How do permutations and combinations apply to softball? Read the introduction to Lesson 12-2 at the top of page 638 in your textbook. Suppose that 20 students enter a math contest. In how many ways can first, second, and third places be awarded? (Write your answer as a product. Do not calculate the product.) $20 \cdot 19 \cdot 18$	
Reading the Lesson	
1. Indicate wheth a. choosing fiv b. arranging fiv c. drawing a h d. arranging th	ther each situation involves a permutation or a combination. five students from a class to work on a special project combination five pictures in a row on a wall permutation hand of 13 cards from a 52 -card deck combination the letters of the word algebra permutation
2. Write an expression that can be used to calculate each of the following. a. number of combinations of n distinct objects taken r at a time $\frac{n!}{(n-r)!r!}$ b. number of permutations of n objects of which p are alike and q are alike $\frac{n!}{p!q!}$ c. number of permutations of n distinct objects taken r at a time $\frac{n!}{(n-r)!}$	
3. Five cards are drawn from a standard deck of cards. Suppose you are asked to determine how many possible hands consist of one heart, two diamonds, and two spades	
a. Which of the following would you use to solve this problem: Fundamental Counting Principle, permutations, or combinations? (More than one of these may apply.)	
Fundamental Counting Principle, combinations	
b. Write an expression that involves the notation $P(n, r)$ and/or $C(n, r)$ that you would use to solve this problem. (Do not do any calculations.)$C(13,1) \cdot C(13,2) \cdot C(13,2)$	
Helping You Remember	
4. Many students have trouble knowing when to use permutations and when to use combinations to solve counting problems. How can the idea of order help you to remember the difference between permutations and combinations? Sample answer: A permutation is an arrangement of objects in which order is important. A combination is a selection of objects in which order is not important.	

\star 33. How many ways can a hand of five cards consisting of four cards from one suit and one card from another suit be drawn from a standard deck of cards? 111,540

More About.

Card Games o..........:
Hanafuda cards are often called "flower cards" because each suit is depicted by a different flower. Each flower is representative of the calendar month in which the flower blooms.
Source: www.gamesdomain.com

Standardized

 Test Practice34. How many ways can a hand of five cards consisting of three cards from one suit and two cards from another suit be drawn from a standard deck of cards? 267,696
35. LOTTERIES In a multi-state lottery, the player must guess which five of forty nine white balls numbered from 1 to 49 will be drawn. The order in which the balls are drawn does not matter. The player must also guess which one of fortytwo red balls numbered from 1 to 42 will be drawn. How many ways can the player fill out a lottery ticket? $80,089,128$
36. CARD GAMES Hanafuda is a Japanese game that uses a deck of cards made up of 12 suits, with each suit having four cards. How many 7 -card hands can be formed so that 3 are from one suit and 4 are from another? 528
37. CRITICAL THINKING Show that $C(n-1, r)+C(n-1, r-1)=C(n, r)$. See pp. 695A-695B.
38. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 695A-695B.

How do permutations and combinations apply to softball?

Include the following in your answer:

- an explanation of how to find the number of 9-person lineups that are possible, and
- an explanation of how many ways there are to choose 9 players if 16 players show up for a game.

39. How many ways can eight runners in an Olympic race finish in first, second, and third places? D
(A) 8
(B) 24
(C) 56
(D) 336
40. How many diagonals can be drawn in the pentagon? A
(A) 5
(B) 10
(C) 15
(D) 20

Extending the Lesson

When n distinct objects are arranged in a circle, there are n ways that the arrangement can be rotated to obtain an arrangement that is really the same as the original. For example, the two arrangements of three objects shown below are the same. Therefore, the number of circular permutations of n distinct objects is $\frac{n!}{n}$ or $(n-1)!\quad$ Note that the keys are not turned over.

Find the number of possibilities for each situation.

41. a basketball huddle of 5 players 24
42. four different dishes on a revolving tray in the middle of a table at a Chinese restaurant 6
43. six quarters with designs from six different states arranged in a circle on top of your desk 120

642 Chapter 12 Probability and Statistics

642 Chapter 12 Probability and Statistics

Maintain Your Skills

Mixed Review

44. Darius can do his homework in pencil or pen, using lined or unlined paper, and on one or both sides of each page. How many ways can he prepare his homework? (Lesson 12-1) 8
45. A customer in an ice cream shop can order a sundae with a choice of 10 flavors of ice cream, a choice of 4 flavors of sauce, and with or without a cherry on top. How many different sundaes are possible? (Lesson 12-1) 80
46. Sample answer: $n=3$
47. Sample answer: $n=2$
48. $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$
49. $\frac{(y-4)^{2}}{9}+$
$\frac{(x-4)^{2}}{4}=1$
Find a counterexample to each statement. (Lesson 11-8)
50. $1+2+3+\ldots+n=2 n-1$
51. $5^{n}+1$ is divisible by 6 .

Solve each equation or inequality. (Lesson 10-5)
48. $3 e^{x}+1=2-1.0986$
49. $e^{2 x}>5 x>0.8047$
50. $\ln (x-1)=321.0855$
51. CONSTRUCTION A painter works on a job for 10 days and is then joined by an associate. Together they finish the job in 6 more days. The associate could have done the job in 30 days. How long would it have taken the painter to do the job alone? (Lesson 9-8) 20 days

Write an equation for each ellipse. (Lesson 8-4)
52.

53.

Find $\boldsymbol{p}(-1)$ and $\boldsymbol{p}(5)$ for each function. (Lesson 7-1)
54. $p(x)=\frac{1}{2} x^{2}+3 x-1-\frac{7}{2} ; \frac{53}{2}$
55. $p(x)=x^{4}-4 x^{3}+2 x-7-4 ; 128$

Solve each equation by factoring. (Lesson 6-3)
56. $x^{2}-16=0\{-4,4\}$
57. $x^{2}-3 x-10=0$
58. $3 x^{2}+8 x-3=0$
$\{-2,5\}$
Simplify. (Lesson 5-6)
60. $\sqrt{3 x^{6} y^{4}}\left|x^{3}\right| y^{2} \sqrt{3}$
$\left\{-3, \frac{1}{3}\right\}$
59. $\sqrt{128} 8 \sqrt{2}$
61. $\sqrt{20}+2 \sqrt{45}-\sqrt{80}$ $4 \sqrt{5}$

Solve each system of equations by using inverse matrices. (Lesson 4-8)
62. $x+2 y=5(-1,3)$
$3 x-3 y=-12$
63. $5 a+2 b=4(0,2)$
$-3 a+b=2$

Find the slope of the line that passes through each pair of points. (Lesson 2-3)
$\begin{array}{lll}\text { 64. }(2,1),(5,-3)-\frac{4}{3} & \text { 65. }(0,4),(7,-2)-\frac{6}{7} & 66 .(5,3),(2,3) 0\end{array}$
Solve each equation. Check your solutions. (Lesson 1-4)
67. $|x-4|=11\{-7,15\}$
68. $|2 x+2|=-3 \varnothing$

Getting Ready for the Next Lesson

PREREQUISITE SKILL Evaluate the expression $\frac{x}{x+y}$ for the given values of x and y. (To review evaluating expressions, see Lesson 1-1.)
69. $x=3, y=2 \frac{3}{5}$
71. $x=2, y=8 \quad \frac{1}{5}$
70. $x=4, y=4 \frac{1}{2}$
72. $x=5, y=10$
72. $x=5, y=10 \quad \frac{1}{3}$

Lesson 12-2 Permutations and Combinations 643

4 Assess

Open-Ended Assessment

Speaking Ask students to work with a partner. One writes an expression, such as $C(3,2)$, and hands it to the other, who reads the notation aloud (for example, "the number of combinations of 3 things taken 2 at a time") and calculates the value. 3 The partners discuss and correct this value as necessary. Then they exchange roles.

Getting Ready for Lesson 12-3

PREREQUISITE SKILL Lesson 12-3 presents finding the probability and odds of events. Students will use their familiarity with evaluating rational expressions as they apply probability formulas. Exercises 69-72 should be used to determine your students' familiarity with evaluating rational expressions.

1 Focus

5-Minute Check

 Transparency 12-3 Use as a quiz or review of Lesson 12-2.Mathematical Background notes are available for this lesson on p. 630 C .

What

do probability and odds tell you about
life's risks?
Ask students:

- On average, out of 750,000 people, how many will be struck by lightning each year? 1
- If there are 260 million people in the United States, how many people will be struck by lightning each year? about 347
- Does probability say anything about where or why an event occurs? no

Vocabulary

probability
success

- failure
random
odds
random variable probability distribution
relative-frequency histogram

?

Resource Manager

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 711-712
- Skills Practice, p. 713
- Practice, p. 714
- Reading to Learn Mathematics, p. 715
- Enrichment, p. 716
- Assessment, p. 767

What Youll Learn

- Find the probability and odds of events.
- Create and use graphs of probability distributions

What do probability and odds tell you about life's risks?

The risk of getting struck by lightning in any given year is 1 in 750,000. The chances of surviving a lightning strike are 3 in 4 . These risks and chances are a way of describing the probability of an event. The probability of an event is a ratio that measures the chances of the event occurring.

PROBABILITY AND ODDS Mathematicians often use tossing of coins and rolling of dice to illustrate probability. When you toss a coin, there are only two possible outcomes-heads or tails. A desired outcome is called a success. Any other outcome is called a failure

Key Concept Probability of Success and Failure

If an event can succeed in s ways and fail in f ways, then the probabilities of success, $P(S)$, and of failure, $P(F)$, are as follows.

$$
P(S)=\frac{s}{s+f} \quad P(F)=\frac{f}{s+f}
$$

The probability of an event occurring is always between 0 and 1 , inclusive. The closer the probability of an event is to 1 , the more likely the event is to occur. The closer the probability of an event is to 0 , the less likely the event is to occur.

Example 1 Probability

When two coins are tossed, what is the probability that both are tails?
You can use a tree diagram to find the sample space.
First coin
Second coin

There are 4 possible outcomes. You can confirm this using the Fundamental Counting Principle. There are 2 possible results for the first coin and 2 for the second coin, so there are $2 \cdot 2$ or 4 possible outcomes. Only one of these outcomes, TT, is a success, so $s=1$. The other three outcomes are failures, so $f=3$.
$P($ two tails $)=\frac{s}{s+f} \quad$ Probability formula

$$
=\frac{1}{1+3} \text { or } \frac{1}{4} \quad s=1, f=3
$$

The probability of tossing two heads is $\frac{1}{4}$. This probability can also be written as a decimal, 0.25 , or as a percent, 25%.

Reading Math When P is followed by an event in parentheses, P stands for probability When there are two numbers in parentheses, P stands for permutations.

In more complicated situations, you may need to use permutations and/or combinations to count the outcomes. When all outcomes have an equally likely chance of occurring, we say that the outcomes occur at random.

Example 2 Probability with Combinations

Monifa has a collection of 32 CDs- 18 R\&B and 14 rap. As she is leaving for a trip, she randomly chooses 6 CDs to take with her. What is the probability that she selects 3 R\&B and 3 rap?

Step 1 Determine how many 6-CD selections meet the conditions.
$C(18,3) \quad$ Select 3 R\&B CDs. Their order does not matter.
$C(14,3) \quad$ Select 3 rap CDs.
Step 2 Use the Fundamental Counting Principle to find the number of successes.
$C(18,3) \cdot C(14,3)=\frac{18!}{15!3!} \cdot \frac{14!}{11!3!}$ or 297,024
Step 3 Find the total number, $s+f$, of possible 6-CD selections.
$C(32,6)=\frac{32!}{26!6!}$ or $906,192 \quad s+f=906,192$
Step 4 Determine the probability.

$$
\begin{aligned}
P(3 \text { R\&B CDs and } 3 \text { rap CDs }) & =\frac{s}{s+f} & \text { Probability formula } \\
& =\frac{297,024}{906,192} & \text { Substitute. } \\
& \approx 0.32777 & \text { Use a calculator. }
\end{aligned}
$$

The probability of selecting 3 R\&B CDs and 3 rap CDs is about 0.32777 or 33%.

Another way to measure the chance of an event occurring is with odds. The odds that an event will occur can be expressed as the ratio of the number of successes to the number of failures.

Key Concept

The odds that an event will occur can be expressed as the ratio of the number of ways it can succeed to the number of ways it can fail. If an event can succeed in s ways and fail in f ways, then the odds of success and of failure are as follows.

Odds of success $=s: f \quad$ Odds of failure $=f: s$

Example 3 Odds

LIFE EXPECTANCY According to the U.S. National Center for Health Statistics, the chances of a male born in 1990 living to be at least 65 years of age are about 3 in 4. For females, the chances are about 17 in 20.
a. What are the odds of a male living to be at least 65 ?

Three out of four males will live to be at least 65 , so the number of successes (living to 65) is 3 . The number of failures is $4-3$ or 1 .
odds of a male living to $65=s: f \quad$ Odds formula

$$
=3: 1 \quad s=3, f=1
$$

The odds of a male living to at least 65 are 3:1.

PROBABILITY AND ODDS

In-Class Examples

1 When three coins are tossed, what is the probability that all three are heads? $\frac{1}{8}$ or 12.5%
2 Roman has a collection of 26 books-16 are fiction and 10 are nonfiction. He randomly chooses 8 books to take with him on vacation. What is the probability that he chooses 4 fiction and 4 nonfiction? 0.24464 or 24.5%

3 Using the statistics in Example 3 in the Student Edition, what are the odds that a male born in 1990 will die before age 65? 1:3 a female born in 1990? 3:17

PROBABILITY DISTRIBUTIONS

In-Class Example

Power

Point ${ }^{\circledR}$
4 Use the table and graph in Example 4 in the Student Edition.
a. Use the graph to determine which outcomes are least likely. What is their probability? The least likely outcomes are 2 and 12 , with a probability of $\frac{1}{36}$ for each.
b. Use the table to find $P(S=11)$. What other sum has the same probability? The probability of a sum of 11 is $\frac{1}{18}$, which is the same as that for a sum of 3 .
c. What are the odds of rolling a sum of 5? 1:8
b. What are the odds of a female living to be at least 65?

Seventeen out of twenty females will live to be at least 65, so the number of successes in this case is 17 . The number of failures is $20-17$ or 3 .
odds of a female living to be $65=s: f \quad$ Odds formula

$$
=17: 3 \quad s=17, f=3
$$

The odds of a female living to at least 65 are 17:3.

PROBABILITY DISTRIBUTIONS Many experiments, such as rolling a die, have numerical outcomes. A random variable is a variable whose value is the numerical outcome of a random event. For example, when rolling a die we can let the random variable D represent the number showing on the die. Then D can equal $1,2,3,4,5$, or 6 . A probability distribution for a particular random variable is a function that maps the sample space to the probabilities of the outcomes in the sample space. The table below illustrates the probability distribution for rolling a die.

$$
\begin{array}{|l|c|c|c|c|c|c|}
\hline D=\text { Roll } & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline \text { Probability } & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} \\
\hline
\end{array} \quad P(D=4)=\frac{1}{6}
$$

To help visualize a probability distribution, you can use a table of probabilities or a graph, called a relative-frequency histogram.

Example 4 Probability Distribution

Suppose two dice are rolled. The table and the relative-frequency histogram show the distribution of the sum of the numbers rolled. You will be asked to verify some of these probabilities in Exercise 3.

$\boldsymbol{S}=$ Sum	2	3	4	5	6	7	8	9	10	11	12
Probability	$\frac{1}{36}$	$\frac{1}{18}$	$\frac{1}{12}$	$\frac{1}{9}$	$\frac{5}{36}$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{1}{9}$	$\frac{1}{12}$	$\frac{1}{18}$	$\frac{1}{36}$

a. Use the graph to determine which outcome is most likely. What is its probability?
The greatest probability in the graph is $\frac{1}{6}$. The most likely outcome is a sum of 7 and its probability is $\frac{1}{6}$.
b. Use the table to find $P(S=9)$. What other sum has the same probability? According to the table, the probability of a sum of 9 is $\frac{1}{9}$. The other outcome with a probability of $\frac{1}{9}$ is 5 .

D A I L Y INIERVENIION

Differentiated Instruction

Naturalist Ask students to find examples outside the classroom of odds and probabilities, perhaps from statistics on natural disasters or weather reports. Have them share these examples with the class.
c. What are the odds of rolling a sum of 7 ?

Step 1 Identify s and f.

$$
\begin{aligned}
P(\text { rolling a } 7) & =\frac{1}{6} \\
& =\frac{s}{s+f} s=1, f=5
\end{aligned}
$$

So, the odds of rolling a sum of 7 are 1:5.

Check for Understanding

Concept Check

1. OPEN ENDED Describe an event that has a probability of 0 and an event that has a probability of 1 . See margin.
2. Write the probability of an event whose odds are $3: 2$. $\frac{3}{5}$
3. Verify the probabilities given for sums of 2 and 3 in Example 4. See margin.

Guided Practice

Suppose you select 2 letters at random from the word compute. Find each probability.

GUIDED PRACTICE KEY	
Exercises	Examples
$4-6$	2
$7-12$	3
13,14	4
$15-18$	1

5. $P\left(2\right.$ consonants) $\frac{2}{7}$
6. $P(1$ vowel, 1 consonant $)$

Find the odds of an event occurring, given the probability of the event.
7. $\frac{8}{9} 8: 1$
8. $\frac{1}{6} 1: 5$
9. $\frac{2}{9} 2: 7$

Find the probability of an event occurring, given the odds of the event.
10. $6: 5 \frac{6}{11}$
11. $10: 1 \frac{10}{11}$
12. $2: 5 \frac{2}{7}$

The table and the relative-frequency histogram show the distribution of the number of heads when 3 coins are tossed. Find each probability.

$H=$ Heads	0	1	2	3
Probability	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$

13. $P(H=0)$
14. $P(H=2) \frac{3}{8}^{\frac{1}{8}}$

Application GEOGRAPHY For Exercises 15-18, find each probability if a state is chosen at random from the 50 states.

15. P (next to the Pacific Ocean) $\frac{1}{10}$
$\frac{1}{10}$
16. P (has at least five neighboring states)
17. P (borders Mexico) $\frac{2}{25}$
18. P (is surrounded by water) $\frac{1}{50}$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...

Organization by Objective

- Probability and Odds: 19-53
- Probability Distributions: 55-60

Odd/Even Assignments

Exercises 19-29, 34-49, and 55-60 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 19-59 odd, 62-65, 70-82
Average: 19-61 odd, 62-65,
70-82 (optional: 66-69)
Advanced: 20-60 even, 61-78
(optional: 79-83)
All: Practice Quiz 1 (1-10)

Answers

1. Sample answer: The event July comes before June has a probability of 0 . The event June comes before July has a probability of 1 .
2. There are 6 - 6 or 36 possible outcomes for the two dice. Only 1 outcome, 1 and 1 , results in a sum of 2 , so $P(2)=\frac{1}{36}$. There are 2 outcomes, 1 and 2 as well as 2 and 1 , that result in a sum of 3 , so $P(3)=\frac{2}{36}$ or $\frac{1}{18}$.

Intervention

Students may be confused about the nature of odds and probability. Lead students in a discussion about the difference between theoretical and experimental probability. If you have a state lottery, this may be an opportunity to examine mistaken beliefs about chance. Be sensitive to the fact that some students may have cultural or familial prohibitions against cards, dice, or gambling of any kind. Explain that historically the laws of probability were actually developed in the context of gambling, but they are now used in many other ways, including medicine and meteorology.

Practice and Apply

Homework Help	
For Exercises	See Examples
$19-33,54$	1,2
$34-53$	3
$55-60$	4

Extra Practice
See page 854.

Ebony has 4 male kittens and 7 female kittens. She picks up 2 kittens to give to a
friend. Find the probability of each selection.
19. $P(2$ male $) \frac{6}{55}$
20. $P\left(2\right.$ female) $\frac{21}{55}$
21. $P\left(1\right.$ of each $\frac{28}{55}$

Bob is moving and all of his CDs are mixed up in a box. Twelve CDs are rock, eight are jazz, and five are classical. If he reaches in the box and selects them at random, find each probability.
22. $P(3$ jazz $) \frac{14}{575}$
23. $P(3$ rock $) \frac{11}{115}$
25. $P\left(2\right.$ classical, 1 rock) $\frac{6}{115}$
27. $P(1$ classical, 1 jazz, 1 rock $) \frac{24}{115}$
29. $P(2$ jazz, 1 reggae $) 0$
24. $P(1$ classical, 2 jazz $) \frac{7}{115}$
26. $P\left(1\right.$ jazz, 2 rock) $\frac{132}{575} \quad 6$
28. $P(2$ rock, 2 classical $) \frac{6}{115}$
$\frac{24}{115}$
15
30. LOTTERIES The state of Florida has a lottery in which 6 numbers out of 53 are drawn at random. What is the probability of a given ticket matching all 6 numbers in any order? $\frac{1}{22,957,480}$

- ENTRANCE TESTS For Exercises 31-33, use the table that shows the college majors of the students who took the Medical College Admission Test (MCAT) in April 2000.
If a student taking the test were randomly selected, find each probability. Express as decimals rounded to the nearest thousandth

31. P (math or statistics) 0.007
32. P (biological sciences) 0.623
33. P (physical sciences) 0.109

Major	Students
biological sciences	15,819
humanities	963
math or statistics	179
physical sciences	2770
social sciences	2482
specialized health sciences	1431
other	1761

Find the odds of an event occurring, given the probability of the event.
34. $\frac{1}{2}$ 1:1
35. $\frac{3}{8} 3: 5$
36. $\frac{11}{12}$ 11:1
37. $\frac{5}{8}$ 5:3
38. $\frac{4}{7} 4: 3$
39. $\frac{1}{5}$ 1:4
40. $\frac{4}{11}$ 4:7
41. $\frac{3}{4} 3: 1$

Find the probability of an event occurring, given the odds of the event.
42. $6: 1 \frac{6}{7}$
43. $3: 7 \frac{3}{10}$
44. $5: 6 \frac{5}{11}$
45. $4: 5 \frac{4}{9}$
46. $9: 8 \frac{9}{17}$
47. $1: 8 \frac{1}{9}$
48. $7: 9 \frac{7}{16}$
49. $3: 2 \frac{3}{5}$
50. GENEOLOGY The odds that an American is of English ancestry are 1:9. What is the probability that an American is of English ancestry? $\frac{1}{10}$

GENETICS For Exercises 51 and 52, use the following information.
Eight out of 100 males and 1 out of 1000 females have some form of color blindness.
51. What are the odds of a male being color-blind? 2:23
52. What are the odds of a female being color-blind? 1:999
53. EDUCATION Josefina's guidance counselor estimates that the probability she will get a college scholarship is $\frac{4}{5}$. What are the odds that she will not earn a scholarship? 1:4

648 Chapter 12 Probability and Statistics

Answer

63. Probability and odds are good tools for assessing risk. Answers should include the following.

- $P($ struck by lightning $)=\frac{S}{s+f}=\frac{1}{750,000}$, so 0 dds $=1:(750,000-1)$ or 1:749,999.
$P($ surviving a lightning strike $)=\frac{S}{S+f}=\frac{3}{4}$, so $0 \mathrm{dds}=3:(4-3)$ or 3:1.
- In this case, success is being struck by lightning or surviving the lightning strike. Failure is not being struck by lightning or not surviving the lightning strike.
* 54. CARD GAMES The game of euchre is played using only the $9 \mathrm{~s}, 10 \mathrm{~s}$, jacks, queens, kings, and aces from a standard deck of cards. Find the probability of being dealt a 5-card euchre hand containing all four suits. $\frac{540}{1771}$

Three students are selected at random from a group of 3 sophomores and 3 juniors. The table and relative-frequency histogram show the distribution of the number of sophomores chosen. Find each probability.

Sophomores	0	1	2	3
Probability	$\frac{1}{20}$	$\frac{9}{20}$	$\frac{9}{20}$	$\frac{1}{20}$

$\begin{array}{llll}\text { 55. } P(0 \text { sophomores }) & \frac{1}{20} & \text { 56. } P(1 \text { sophomore }) \frac{9}{20} \\ \text { 57. } P(2 \text { sophomores }) & \frac{9}{20} & \text { 58. } P(3 \text { sophomores }) & \frac{1}{20} \\ \text { 59. } P(2 \text { juniors }) \frac{9}{20} & & \text { 60. } P(1 \text { junior }) \frac{9}{20} & \end{array}$

* 61. WRITING Josh types the 5 entries in the bibliography of his term paper in random order, forgetting that they should be in alphabetical order by author. What is the probability that he actually typed them in alphabetical order? $\frac{1}{120}$

62. CRITICAL THINKING Find the probability that a point chosen at random in the figure is in the shaded region. Write your answer in terms of $\pi . \pi-1$

Standardized 64. $\frac{6!}{2!}=$? C
Test Practice

63. WRITING IN MATH

Answer the question that was posed at the beginning of the lesson. See margin.
What do probability and odds tell you about life's risks?
Include the following in your answer:

- the odds of being struck by lightning and surviving the lightning strike, and
- a description of the meaning of success and failure in this case.
(A) 3
(B) 60
(C) 360
(D) 720

65. A jar contains 4 red marbles, 3 green marbles, and 2 blue marbles. If a marble is drawn at random, what is the probability that it is not green? D
(A) $\frac{2}{9}$
(B) $\frac{1}{3}$
(C) $\frac{4}{9}$
(D) $\frac{2}{3}$

Extending the Lesson

Theoretical probability is determined using mathematical methods and assumptions about the fairness of coins, dice, and so on. Experimental probability is determined by performing experiments and observing the outcomes.
Determine whether each probability is theoretical or experimental. Then find the probability.
66. theoretical; $\frac{1}{36}$
66. Two dice are rolled. What is the probability that the sum will be 12 ?
67. A baseball player has 126 hits in 410 at-bats this season. What is the probability that he gets a hit in his next at-bat? experimental; about 0.307
68. A bird watcher observes that 5 out of 25 birds in a garden are red. What is the probability that the next bird to fly into the garden will be red? experimental; $\frac{1}{5}$
69. A hand of 2 cards is dealt from a standard deck of cards. What is the probability that both cards are clubs? theoretical; $\frac{1}{17}$
www.algebra2.com/self_check_quiz

Study Guide and Intervention,

Reading to Learn Mathematics, p. 715

ELL

Pre-Activity What do probability and odds tell you about life's risks? Read the introduction to Lesson $12-3$ at the top of page 644 in your textbook What is the probability that a person will not be struck by lightning in a
iven year? 749,999 given year? $\frac{749,999}{750,000}$

Reading the Lesson

1. Indicate whether each of the following statements is true or false.
a. If an event can never occur, its probability is a negative number. false
b. If an event is certain to happen, its probability is 1 . true
c. If an event can succeed in s ways and fail in f ways, then the probability of success
is $\frac{8}{f}$. false
d. If an event can
are $s: f$ false
nhe thent
e. A probability distri
experiment. true
2. A weather forecast says that the chance of rain tomorrow is 40%
a. Write the probability that it will rain tomorrow as a fraction in lowest terms. $\frac{2}{5}$
b. Write the probability that it will not rain tomorrow as a fraction in lowest terms. $\frac{3}{5}$
c. What are the odds in favor of rain? $2: 3$
d. What are the odds against rain? $3: 2$
3. Refer to the table in Example 4 on page 646 in your textbook.
a. What other sum has the same probability as a sum of 11 ? 3
b. What are the odds of rolling a sum of 8? 5:31
c. What are the odds against rolling a sum of 9 ? 8:1

Helping You Remember
4. A good way to remember something is to explain it to someone else. Suppose that your
friend Roberto is having trouble remembering the difference between probability and Iriend Roberto is having trouble remembering the difference betw?
odds. What would you tell him to help him remember this easily?
Sample answer: Probability gives the ration of successses to the total
number of outcomes, while odds gives the ratio of successes to

4 Assess

Open-Ended Assessment

Modeling Have students create a simple probability experiment using manipulatives and classroom objects. Have students first calculate the probability and then perform the experiment to verify their calculations.

Assessment Options

Practice Quiz 1 The quiz provides students with a brief review of the concepts and skills in Lessons 12-1 through 12-3. Lesson numbers are given to the right of exercises or instruction lines so students can review concepts not yet mastered.

Quiz (Lessons 12-1 through

12-3) is available on p .767 of the Chapter 12 Resource Masters.

Getting Ready for
 Lesson 12-4

BASIC SKILL Lesson 12-4 presents finding the probability of two events. Students will use their familiarity with multiplying fractions as they calculate probabilities. Exercises 79-83 should be used to determine your students' familiarity with multiplying rational expressions.

Maintain Your Skills
Mixed Review Determine whether each situation involves a permutation or a combination. Then find the number of possibilities. (Lesson 12-2)
70. arranging 5 different books on a shelf permutation; 120
71. arranging the letters of the word arrange permutation; 1260
72. picking 3 apples from the last 7 remaining at the grocery store combination; 35
73. A mail-order computer company offers a choice of 4 amounts of memory, 2 sizes of hard drives, and 2 sizes of monitors. How many different systems are available to a customer? (Lesson 12-1) 16
74. How many ways can 4 different gifts be placed into 4 different gift bags if each bag gets exactly 1 gift? (Lesson 12-1) 24

Identify the type of function represented by each graph. (Lesson 9-5)
75.

direct variation
Solve each matrix equation. (Lesson 4-1)
77. $\left[\begin{array}{ll}x & y\end{array}\right]=\left[\begin{array}{ll}y & 4\end{array}\right](4,4)$

Getting Ready for the Next Lesson

BASIC SKILL Find each product if $a=\frac{3}{5}, b=\frac{2}{7}, c=\frac{3}{4}$, and $d=\frac{1}{3}$.
79. ab $\frac{6}{35}$
80. bc $\frac{3}{14}$
81. $c d \frac{1}{4}$
82. bd $\frac{2}{21}$
83. ac $\frac{9}{20}$

Practice Quiz 1

Lessons 12-1 through 12-3

1. At the Burger Bungalow, you can order your hamburger with or without cheese, with or without onions or pickles, and either rare, medium, or well-done. How many different ways can you order your hamburger? (Lesson 12-1) 24
2. For a particular model of car, a dealer offers 3 sizes of engines, 2 types of stereos, 18 body colors, and 7 upholstery colors. How many different possibilities are available for that model? (Lesson 12-1) 756
3. How many codes consisting of a letter followed by 3 digits can be made if no digit can be used more than once? (Lesson 12-1) 18,720

Evaluate each expression. (Lesson 12-2)
4. $P(12,3) 1320$
5. $C(8,3) 56$

Determine whether each situation involves a permutation or a combination. Then
find the number of possibilities. (Lesson 12-2)
6. 8 cars in a row parked next to a curb permutation; 40,320
7. a hand of 6 cards from a standard deck of cards combination; 20,358,520

Two cards are drawn from a standard deck of cards. Find each probability. (Lesson 12-3)
8. $P(2$ aces $) \frac{1}{221}$
9. $P\left(1\right.$ heart, 1 club) $\frac{13}{102}$
10. $P\left(1\right.$ queen, 1 king) $\frac{8}{663}$

[^0]
12-4 Multiplying Probabilities

What You'll Learn

- Find the probability of two independent events.
- Find the probability of two dependent events.

Vocabulary
- area diagram

How does probability apply to basketball?

Reggie Miller of the Indiana Pacers is one of the best free-throw shooters in the National Basketball Association. The table shows the five highest season free-throw statistics of his career. For any year, you can determine the probability that Miller will make two free throws in a row based on the probability of his making one free throw.

Season	FT\%
$1990-91$	91.8
$1993-94$	90.8
$1998-99$	91.5
$1999-00$	92.9
$2000-01$	92.8

Source: Sporting News

PROBABILITY OF INDEPENDENT EVENTS In a situation with two events
like shooting a free throw and then shooting another one, you can find the probability of both events occurring if you know the probability of each event occurring. You can use an area diagram to model the probability of the two events occurring at the same time.

Algebra Activity

Area Diagrams

Suppose there are 1 red and 3 blue paper clips in one drawer and 1 gold and 2 silver paper clips in another drawer. The area diagram represents the probabilities of choosing one colored paper clip and one metallic paper clip if one of each is chosen at random. For example, rectangle A represents drawing 1 silver clip and 1 blue clip.
Model and Analyze 1, 4. See pp. 695A-695B.

1. Find the areas of rectangles A, B, C, and D, and explain what each area represents. 2. $\frac{1}{6} \quad 3.1 ; 1 ; 1$; The sum of the probabilities must be 1 .
2. What is the probability of choosing a red paper clip and a silver paper clip?
3. What are the length and width of the whole square? What is the area? Why does the area need to have this value?
4. Make an area diagram that represents the probability of each outcome if you spin each spinner once. Label the diagram and describe what the area of each rectangle represents.

Lesson 12-4 Multiplying Probabilities 651

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 717-718
- Skills Practice, p. 719
- Practice, p. 720
- Reading to Learn Mathematics, p. 721
- Enrichment, p. 722

School-to-Career Masters, p. 23
Teaching Algebra With Manipulatives
Masters, pp. 291, 292-293

Resource Manager

Transparencies

5-Minute Check Transparency 12-4
Answer Key Transparencies

- Technology

Alge2PASS: Tutorial Plus, Lesson 23
Interactive Chalkboard

PROBABILITY OF INDEPENDENT EVENTS

In-Class Examples

1 Gerardo has 9 dimes and 7 pennies in his pocket. He randomly selects one coin, looks at it, and replaces it. He then randomly selects another coin. What is the probability that both of the coins he selects are dimes? $\frac{81}{256}$
2 When three dice are rolled, what is the probability that two dice show a 5 and the third die shows an even number? $\frac{1}{72}$
Teaching Tip To verify that students understand the notation in the Key Concept box, have them read aloud the expression $P(A$ and $B)=P(A) \cdot P(B)$ and ask them to explain it.

In Exercise 4 of the activity, spinning one spinner has no effect on the second spinner. These events are independent.

Key Concept

Probability of Two Independent Events
If two events, A and B, are independent, then the probability of both events occurring is $P(A$ and $B)=P(A) \cdot P(B)$.

This formula can be applied to any number of independent events.

Example 1 Two Independent Events

At a picnic, Julio reaches into an ice-filled cooler containing 8 regular soft drinks and 5 diet soft drinks. He removes a can, then decides he is not really thirsty, and puts it back. What is the probability that Julio and the next person to reach into the cooler both randomly select a regular soft drink?

Explore These events are independent since Julio replaced the can that he removed. The outcome of the second person's selection is not affected by Julio's selection.
Alternative Method
You could use the Fundamental Counting Principle to find the number of successes and the number of total outcomes. both regular $=8 \cdot 8$ or 64 total outcomes $=$ $13 \cdot 13$ or 169 So, P (both reg. $)=\frac{64}{169}$.

Since there are 13 cans, the probability of each person's getting a regular soft drink is $\frac{8}{13}$.

Solve
$P($ both regular $)=P($ regular $) \cdot P($ regular $) \quad$ Probability of independent events Substitute and multiply.
The probability that both people select a regular soft drink is $\frac{64}{169}$ or about 0.38.

Examine You can verify this result by making a
tree diagram that includes probabilities. Let R stand for regular and D stand for diet.
$P(R, R)=\frac{8}{13} \cdot \frac{8}{13}$

The formula for the probability of independent events can be extended to any number of independent events.

Example 2 Three Independent Events

In a board game, three dice are rolled to determine the number of moves for the players. What is the probability that the first die shows a 6 , the second die shows a 6 , and the third die does not?
Let A be the event that the first die shows a 6 .

$$
\rightarrow \quad P(A)=\frac{1}{6}
$$

Let B be the event that the second die shows a 6 .
$\rightarrow P(B)=\frac{1}{6}$
Let C be the event that the third die does not show a $6 . \rightarrow P(C)=\frac{5}{6}$

Algebra Activity

Materials (optional): paper clips in red, blue, gold, and silver; spinner with circle whose segments can be changed
Suggest that students use the least common denominator of the probabilities to choose the length of the side of the square for their area diagram. For example, when representing probabilities of $\frac{1}{6}, \frac{1}{2}$, and $\frac{1}{3}$, a square with sides of 6 centimeters works well.

$$
\begin{aligned}
P(A, B, \text { and } C) & =P(A) \cdot P(B) \cdot P(C) & & \text { Probability of independent events } \\
& =\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{5}{6} \text { or } \frac{5}{216} & & \text { Substitute and multiply. }
\end{aligned}
$$

The probability that the first die shows a 6 and the second die does not is $\frac{5}{36}$.

Study Tip

Conditional
Probability
The event of getting a regular soft drink the second time given that Julio got a regular soft drink the first time is called a conditional probability.

PROBABILITY OF DEPENDENT EVENTS In Example 1, what is the probability that both people select a regular soft drink if Julio does not put his back in the cooler? In this case, the two events are dependent because the outcome of the first event affects the outcome of the second event.

First selection Second selection

$P($ regular $)=\frac{8}{13} \quad P$ (regular $)=\frac{7}{12} \quad \begin{aligned} & \text { Notice that when Julio removes his can, } \\ & \text { there is not only one fewer regular soft }\end{aligned}$ drink but also one fewer drink in the cooler.
$P($ both regular $)=P($ regular $) \cdot P($ regular following regular $)$

$$
=\frac{8}{13} \cdot \frac{7}{12} \text { or } \frac{14}{39} \text { Substitute and multiply. }
$$

The probability that both people select a regular soft drink is $\frac{14}{39}$ or about 0.36 .

Key Concept
 Probability of Two Dependent Events

> If two events, A and B, are dependent, then the probability of both events occurring is $P(A$ and $B)=P(A) \cdot P(B$ following $A)$.

This formula can be extended to any number of dependent events.

Example 3 Two Dependent Events

The host of a game show is drawing chips from a bag to determine the prizes for which contestants will play. Of the 10 chips in the bag, 6 show television, 3 show vacation, and 1 shows car. If the host draws the chips at random and does not replace them, find each probability.
Because the first chip is not replaced, the events are dependent. Let T represent a television, V a vacation, and C a car.
a. a vacation, then a car

$$
\begin{array}{rlrl}
P(V, \text { then } C) & =P(V) \cdot P(C \text { following } V) & & \text { Dependent events } \\
& =\frac{3}{10} \cdot \frac{1}{9} \text { or } \frac{1}{30} & & \text { After the first chip is drawn, } \\
\text { there are } 9 \text { left. }
\end{array}
$$

The probability of a vacation and then a car is $\frac{1}{30}$ or about 0.03 .
b. two televisions
$P(T$, then $T)=P(T) \cdot P(T$ following $T)$

$$
=\frac{6}{10} \cdot \frac{5}{9} \text { or } \frac{1}{3}
$$

Dependent events If the first chip shows television, then 5 of the remaining 9 show television.

The probability of the host drawing two televisions is $\frac{1}{3}$.

PROBABILITY OF DEPENDENT EVENTS

In-Class Example

3 Refer to Example 3 in the Student Edition. The next week, the host of the game show draws from a bag of 20 chips, of which 11 say computer, 8 say trip, and 1 says truck. Drawing at random and without replacement, find each of the following probabilities.
a. a computer, then a truck $\frac{11}{380}$ or about 0.03
b. two trips $\frac{14}{95}$ or about 0.15

4 Three cards are drawn from a standard deck of cards without replacement. Find the probability of drawing a heart, another heart, and a spade in that order. $\frac{13}{850}$ or about 0.015

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

INIERVENIION FIND THE ERROR

Ask students to describe a situation in which Tabitha would be correct. Sample answer: Once a number is rolled with the die, that number roll is considered invalid and the die must be rolled again until a valid number is rolled.

Check for Understanding

Example 4 Three Dependent Events

Three cards are drawn from a standard deck of cards without replacement. Find the probability of drawing a diamond, a club, and another diamond in that order.
Since the cards are not replaced, the events are dependent. Let D represent a diamond and C a club.

$$
\begin{aligned}
P(D, C, D) & =P(D) \cdot P(C \text { following } D) \cdot P(D \text { following } D \text { and } C) \\
& =\frac{13}{52} \cdot \frac{13}{51} \cdot \frac{12}{50} \text { or } \frac{13}{850} \quad \begin{array}{l}
\text { If the first two cards are a diamond and a club, } \\
\text { then } 12 \text { of the remaining cards are diamonds. }
\end{array}
\end{aligned}
$$

The probability is $\frac{13}{850}$ or about 0.015 .

Concept Check

1. Sample answer: putting on your socks, and then your shoes
2. $P(A, B, C$, and $D)=$ $P(A) \cdot P(B) \cdot P(C)$. $P(D)$

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4,5,9,12$	1,2
$6-8,10,13$	3
11	4

1. OPEN ENDED Describe two real-life events that are dependent.
2. Write a formula for $P(A, B, C$, and $D)$ if A, B, C, and D are independent.
3. FIND THE ERROR Mario and Tabitha are calculating the probability of getting a 4 and then a 2 if they roll a die twice.

Mario	Tabitha	
$P(4$, then 2$)$	$=\frac{1}{6} \cdot \frac{1}{6}$	$P(4$, then 2$)$

Who is correct? Explain your reasoning. Mario; the probabilities of rolling a 4 and rolling a 2 are both $\frac{1}{6}$.
A die is rolled twice. Find each probability.
4. $P(5$, then 1$) \frac{1}{36}$
5. P (two even numbers) $\frac{1}{4}$

Two cards are drawn from a standard deck of cards. Find each probability if no
replacement occurs.
6. P (two hearts) $\frac{1}{17}$
7. P (ace, then king) $\frac{4}{663}$

There are 8 action, 3 romantic comedy, and 5 children's DVDs on a shelf. Suppose two DVDs are selected at random from the shelf. Find each probability.
8. $P\left(2\right.$ action DVDs), if no replacement occurs $\frac{7}{30}$
9. $P\left(2\right.$ action DVDs), if replacement occurs $\frac{1}{4}$
10. $P\left(\right.$ a romantic comedy $D V D$, then a children's DVD), if no replacement occurs $\frac{1}{16}$

Determine whether the events are independent or dependent. Then find the probability.
11. dependent; $\frac{21}{220}$
11. Yana has 7 blue pens, 3 black pens, and 2 red pens in his desk drawer. If he selects three pens at random with no replacement, what is the probability that he will first select a blue pen, then a black pen, and then another blue pen?
12. A black die and a white die are rolled. What is the probability that a 3 shows on the black die and a 5 shows on the white die? independent; $\frac{1}{36}$
654 Chapter 12 Probability and Statistics

D A I L Y

INIIERVENION

Differentiated Instruction

Naturalist Have students investigate how probability can be used to report the results of Mendel's famous experiments with seeds, and how it is used today by botanists who are developing desired characteristics in flowers and vegetables.

Application
13. ELECTIONS Tami, Sonia, Malik, and Roger are the four candidates for student council president. If their names are placed in random order on the ballot, what is the probability that Malik's name will be first on the ballot followed by Sonia's name second? $\frac{1}{12}$

* indicates increased difficulty

Practice and Apply

Homework	
For	
Fer	Hee
Seercises	
Examples	

Extra Practice

See page 855.
34. independent; $\frac{1}{32}$

A die is rolled twice. Find each probability.

14. $P(2$, then 3$) \frac{1}{36}$	15. $P($ no 6 s$) \frac{25}{36}$
16. $P($ two 4 s$) \frac{1}{36}$	17. $P\left(1\right.$, then any number) $\frac{1}{6}$
18. P (two of the same number) $\frac{1}{6}$	19. P (two different numbers) $\frac{5}{6}$

The tiles A, B, G, I, M, R, and S of a word game are placed face down in the lid of the game. If two tiles are chosen at random, find each probability.
20. $P(R$, then $S)$, if no replacement occurs $\frac{1}{42}$
21. $P(A$, then $M)$, if replacement occurs $\frac{1}{49} 25$
22. $P\left(2\right.$ consonants), if replacement occurs $\frac{25}{49}$
23. $P\left(2\right.$ consonants), if no replacement occurs $\frac{10}{21}$
24. $P(B$, then $D)$, if replacement occurs 0
25. P (selecting the same letter twice), if no replacement occurs 0

Ashley takes her 3-year-old brother Alex into an antique shop. There are 4 statues, 3 picture frames, and 3 vases on a shelf. Alex accidentally knocks 2 items off the shelf and breaks them. Find each probability.
26. P (breaking 2 vases) $\frac{1}{15}$
27. P (breaking 2 statues) $\frac{2}{15}$
28. P (breaking a picture frame, then a vase) $\frac{1}{10} 2$
29. P (breaking a statue, then a picture frame) $\frac{2}{15}$

Determine whether the events are independent or dependent. Then find the probability.
30. There are 3 miniature chocolate bars and 5 peanut butter cups in a candy dish. Judie chooses 2 of them at random. What is the probability that she chooses 2 miniature chocolate bars? dependent; $\frac{3}{28}$
31. A bowl contains 4 peaches and 5 apricots. Maxine randomly selects one, puts it back, and then randomly selects another. What is the probability that both selections were apricots? independent; $\frac{25}{81}$
32. A bag contains 7 red, 4 blue, and 6 yellow marbles. If 3 marbles are selected in succession, what is the probability of selecting blue, then yellow, then red, if replacement occurs each time? independent; $\frac{168}{4913}$
33. Joe's wallet contains three $\$ 1$ bills, four $\$ 5$ bills, and two $\$ 10$ bills. If he selects three bills in succession, find the probability of selecting a $\$ 10$ bill, then a $\$ 5$ bill, and then a $\$ 1$ bill if the bills are not replaced. dependent; $\frac{1}{21}$
34. What is the probability of getting heads each time if a coin is tossed 5 times?
\star 35. When Diego plays his favorite video game, the odds are 3 to 4 that he will reach the highest level of the game. What is the probability that he will reach the highest level each of the next four times he plays? dependent; $\frac{81}{2401}$

About the Exercises... Organization by Objective
 - Probability of Independent Events: 14-19, 21, 22, 24, 28, 29, 31, 32, 34
 - Probability of Dependent Events: 20, 23, 25-27, 30, 33, 35, 40-43

Odd/Even Assignments

Exercises 14-35 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15-23 odd, 27-33 odd, 45, 50-77
Average: 15-35 odd, 41-45 odd, 50-77
Advanced: 14-34 even, 36-39, 40-46 even, 47-71 (optional: 72-77)

Spelling..
The National Spelling Bee has been held every year since 1925, except for 1943-1945. Of the first 76 champions, 42 were girls and 34 were boys.
Source: wnw.spellingbee.com

For Exercises 36-39, suppose you spin the spinner twice.
36. Sketch a tree diagram showing all of the possibilities. Use it to find the probability of spinning red and then blue. 1; See pp. 695A-695B for diagram.
37. Sketch an ${ }^{9}$ area diagram of the outcomes. Shade the region on your area diagram corresponding to
 getting the same color twice. See pp. 695A-695B.
38. What is the probability that you get the same color on both spins? $\frac{1}{3}$
39. If you spin the same color twice, what is the probability that the color is red? $\frac{1}{3}$

Find each probability if 13 cards are drawn from a standard deck of cards and no replacement occurs.

$\star 4$

(all clubs) 635,013,559,600
42. P (all one suit)

158,753,389,900

\star 41. P (all black cards) $\frac{19}{1,160,054}$
$\star 43$. P (no aces) $\frac{6327}{20,825}$
44. UTILITIES A city water system includes a sequence of 4 pumps as shown below. Water enters the system at point A, is pumped through the system by pumps at locations $1,2,3$, and 4 , and exits the system at point B.

If the probability of failure for any one pump is $\frac{1}{100}$, what is the probability that water will flow all the way through the system from A to B? $\left(\frac{99}{100}\right)^{4}$ or about 0.96
-45. SPELLING Suppose a contestant in a spelling bee has a 93% chance of spelling any given word correctly. What is the probability that he or she spells the first five words in a bee correctly and then misspells the sixth word? about 4.87\%

غ 46. LITERATURE The following quote is from The Mirror Crack'd, which was written by Agatha Christie in 1962.
"I think you're begging the question," said Haydock, "and I can see looming ahead one of those terrible exercises in probability where six men have white hats and six men have black hats and you have to work it out by mathematics how likely it is that the hats will get mixed up and in what proportion. If you start thinking about things like that, you would go round the bend. Let me assure you of that!"

If the twelve hats are all mixed up and each man randomly chooses a hat, what is the probability that the first three men get their own hats? Assume that no replacement occurs. $\frac{1}{1320}$

For Exercises 47-49, use the following information.

You have a bag containing 10 marbles. In this problem, a cycle means that you draw a marble, record its color, and put it back.
47. You go through the cycle 10 times. If you do not record any black marbles, can you conclude that there are no black marbles in the bag? no
48. Can you conclude that there are none if you repeat the cycle 50 times? no
49. How many times do you have to repeat the cycle to be certain that there are no black marbles in the bag? Explain your reasoning. See margin.
50. CRITICAL THINKING If one bulb in a string of holiday lights fails to work, the whole string will not light. If each bulb in a set has a 99.5% chance of working, what is the maximum number of lights that can be strung together with at least a 90% chance of the whole string lighting? 21

656 Chapter 12 Probability and Statistics

Answer

49. Sample answer: As the number of trials increases, the results become more reliable. However, you cannot be absolutely certain that there are no black marbles in the bag without looking at all of the marbles.
50. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 695A-695B.
How does probability apply to basketball?
Include the following in your answer:

- an explanation of how a value such as one of those in the table at the beginning of the lesson could be used to find the chances of Reggie Miller making 0,1 , or 2 of 2 successive free throws, assuming the 2 free throws are independent, and
- a possible psychological reason why 2 free throws on the same trip to the foul line might not be independent.

Standardized
Test Practice
52. The spinner is spun four times. What is the probability that the spinner lands on 2 each time? D
(A) $\frac{1}{2}$
(B) $\frac{1}{4}$
(C) $\frac{1}{8}$
(D) $\frac{1}{16}$

53. A coin is tossed and a die is rolled. What is the probability of a head and a 3? C
(A) $\frac{1}{4}$
(B) $\frac{1}{8}$
(C) $\frac{1}{12}$
(D) $\frac{1}{24}$

Maintain Your Skills

Mixed Review

A gumball machine contains 7 red, 8 orange, 9 purple, 7 white, and 5 yellow gumballs. Tyson buys 3 gumballs. Find each probability, assuming that the machine dispenses the gumballs at random. (Lesson 12-3)
54. $P(3 \mathrm{red}) \frac{1}{204}$
55. $P\left(2\right.$ white, 1 purple) $\frac{3}{340}$
56. $P\left(1\right.$ purple, 1 orange, 1 yellow) $\frac{1}{119}$
57. PHOTOGRAPHY A photographer is taking a picture of a bride and groom together with 6 attendants. How many ways can he arrange the 8 people in a row if the bride and groom stand in the middle? (Lesson 12-2) 1440 ways

Solve each equation. Check your solutions. (Lesson 10-3)
58. $\log _{5} 5+\log _{5} x=\log _{5} 306$
59. $\log _{16} c-2 \log _{16} 3=\log _{16} 436$

Given a polynomial and one of its factors, find the remaining factors of the polynomial. Some factors may not be binomials. (Lesson 7-4)
60. $x^{2}-4 x+2$
61. $x, x-4$
60. $x^{3}-x^{2}-10 x+6 ; x+3$
61. $x^{3}-7 x^{2}+12 \mathrm{x} ; x-3$

Graph each inequality. (Lesson 6-7) 62-64. See margin.
62. $y \leq x^{2}+x-2$
63. $y<x^{2}-4$
64. $y>x^{2}-3 x$

Simplify. (Lesson 5-5)
65. $\sqrt{(153)^{2}} 153$
66. $\sqrt[3]{-729}-9$
67. $\sqrt[16]{b^{16}} \mid \boldsymbol{b}$
68. $\sqrt{25 a^{8} b^{6}}$

Solve each system of equations. (Lesson 3-2)
69. $z=4 y-2$
$z=-y+3(1,2)$
70. $j-k=4$
$2 j+k=35(13,9)$
71. $3 x+1=-y-1$ $2 y=-4 x \quad(-2,4)$

Getting Ready for BASIC SKILL Find each sum if $a=\frac{1}{2}, b=\frac{1}{6}, c=\frac{2}{3}$, and $d=\frac{3}{4}$. the Next Lesson
72. $a+b \frac{2}{3}$
75. $b+d \frac{11}{12}$
73. $b+c$
76. $c+a 1 \frac{1}{6}$
74. $a+d \frac{5}{4}$
77. $c+d \frac{5}{12}$

Lesson 12-4 Multiplying Probabilities 657

4 Assess

Open-Ended Assessment

Speaking Ask students working in small groups to write an original problem (using objects or situations at school) that involves two selections. Have them create two versions, one with and one without replacement. Ask each group to present their problems to the class and to lead a discussion to compare the two solutions.

Getting Ready for Lesson 12-5

BASIC SKILL Lesson 12-5 presents finding the probability of mutually exclusive events. Students will use their familiarity with adding fractions as they calculate these probabilities. Exercises 72-77 should be used to determine your students' familiarity with adding fractions.

Answers

62.

63.

64.

1 Focus

5-Minute Check

 Transparency 12-5 Use as a quiz or review of Lesson 12-4.Mathematical Background notes are available for this lesson on p. 630D.

How does probability apply to your personal habits?

Ask students:

- Which of these activities would have the greatest probability of being reported by a randomly selected person? brushing teeth
- Which of these activities would have the least probability of being reported by a randomly selected person? Preparing clothes and taking medication have the same least probability.

12-5 Adding Probabilities

What You'll Learn

- Find the probability of mutually exclusive events.
- Find the probability of inclusive events.

Vocabulary

simple event
compound event
mutually exclusive events inclusive events

How
does probability
How apply to your personal habits?

The graph shows the results of

a survey about bedtime rituals. Determining the probability that a randomly selected person reads a book or brushes his or her teeth before going to bed requires adding probabilities.

Getting ready for bed

MUTUALLY EXCLUSIVE EVENTS
When you roll a die, an event such as rolling a 1 is called a simple event because it consists of only one event. An event that consists of two or more simple events is called a compound event. For example, the event of rolling an odd number or a number greater than 5 is a compound event because it consists of the simple events rolling a 1 , rolling a 3 , rolling a 5 , or rolling a 6 .
When there are two events, it is important to understand how they are related before finding the probability of one or the other event occurring. Suppose you draw a card from a standard deck of cards. What is the probability of drawing a 2 or an ace? Since a card cannot be both a 2 and an ace, these are called mutually exclusive events. That is, the two events cannot occur at the same time. The probability of drawing a 2 or an ace is found by adding their individual probabilities.

$$
P(2 \text { or ace })=P(2)+P(\text { ace }) \quad \text { Add probabilities. }
$$

$=\frac{4}{52}+\frac{4}{52}$
There are 4 twos and 4 aces in a deck.
$=\frac{8}{52}$ or $\frac{2}{13}$
Simplify.
The probability of drawing a 2 or an ace is $\frac{2}{13}$.

Key Concept Probability of Mutually Exclusive Events

- Words If two events, A and B, are mutually exclusive, then the probability that A or B occurs is the sum of their probabilities.
- Symbols $P(A$ or $B)=P(A)+P(B)$

This formula can be extended to any number of mutually exclusive events.
658 Chapter 12 Probability and Statistics

Resource Manager

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 723-724
- Skills Practice, p. 725
- Practice, p. 726
- Reading to Learn Mathematics, p. 727
- Enrichment, p. 728
- Assessment, pp. 767, 769

Graphing Calculator and Spreadsheet Masters, p. 49

Transparencies

5-Minute Check Transparency 12-5
Answer Key Transparencies

- Technology

Interactive Chalkboard

Example 1 Two Mutually Exclusive Events

Keisha has a stack of 8 baseball cards, 5 basketball cards, and 6 soccer cards. If she selects a card at random from the stack, what is the probability that it is a baseball or a soccer card?
These are mutually exclusive events, since the card cannot be both a baseball card and a soccer card. Note that there is a total of 19 cards.
$P($ baseball or soccer $)=P($ baseball $)+P($ soccer $) \quad$ Mutually exclusive events

$$
=\frac{8}{19}+\frac{6}{19} \text { or } \frac{14}{19} \quad \text { Substitute and add. }
$$

The probability that Keisha selects a baseball or a soccer card is $\frac{14}{19}$.

Study Tip

Choosing a Committee $C(13,4)$ refers to choosing 4 subcommittee members from 13 committee members. Since order does not matter, the number of combinations is found.

Example 2 Three Mutually Exclusive Events

There are 7 girls and 6 boys on the junior class homecoming committee. A subcommittee of 4 people is being chosen at random to decide the theme for the class float. What is the probability that the subcommittee will have at least 2 girls?
At least 2 girls means that the subcommittee may have 2,3 , or 4 girls. It is not possible to select a group of 2 girls, a group of 3 girls, and a group of 4 girls all in the same 4-member subcommittee, so the events are mutually exclusive. Add the probabilities of each type of committee.

$$
\begin{aligned}
P(\text { at least } 2 \text { girls }) & =P(2 \text { girls })+P(3 \text { girls })+P(4 \text { girls }) \\
& 2 \text { girls, } 2 \text { boys } \\
& =\frac{C(7,2) \cdot C(6,2)}{C(13,4)}+\frac{C(7,3) \cdot C(6,1)}{C(13,4)}+\frac{C(7,4) \cdot C(6,0)}{C(13,4)} \\
& =\frac{315}{715}+\frac{210}{715}+\frac{35}{715} \text { or } \frac{112}{143} \text { simplify. }
\end{aligned}
$$

The probability of at least 2 girls on the subcommittee is $\frac{112}{143}$ or about 0.78 .

Study Tip

Common
Misconception
In mathematics, unlike everyday language, the expression A or B allows the possibility of both A and B occurring.

INCLUSIVE EVENTS What is the probability of drawing a queen or a diamond from a standard deck of cards? Since it is possible to draw a card that is both a queen and a diamond, these events are not mutually exclusive. These are called inclusive events.

P (queen)	\boldsymbol{P} (diamond)	\boldsymbol{P} (diamond, queen)
$\frac{4}{52}$	$\frac{13}{52}$	$\frac{1}{52}$
1 queen in each suit	diamonds	queen of diamonds

In the first two fractions above, the probability of drawing the queen of diamonds is counted twice, once for a queen and once for a diamond. To find the correct probability, you must subtract P (queen of diamonds) from the sum of the first two probabilities.
www.algebra2.com/extra_examples

2 Teach

 MUTUALLY EXCLUSIVE

 MUTUALLY EXCLUSIVE EVENTS

 EVENTS}

In-Class Examples

Power

Point ${ }^{\circledR}$
1 Sylvia has a stack of playing cards consisting of 10 hearts, 8 spades, and 7 clubs. If she selects a card at random from this stack, what is the probability that it is a heart or a club? $\frac{17}{25}$

2 The Film Club makes a list of 9 comedies and 5 adventure movies they want to see. They plan to select 4 titles at random to show this semester. What is the probability that at least two of the films they select are comedies? $\frac{906}{1001}$ or about 0.91

Online Lesson Plans

USA TODAY Education's Online site offers resources and interactive features connected to each day's newspaper. Experience TODAY, USA TODAY's daily lesson plan, is available on the site and delivered daily to subscribers. This plan provides instruction for integrating USA TODAY graphics and key editorial features into your mathematics classroom. Log on to wwww.education.usatoday.com.

INCLUSIVE EVENTS

In-Class Example
3 There are 2400 subscribers to an Internet service provider. Of these, 1200 own Brand A computers, 500 own Brand B, and 100 own both A and B. What is the probability that a subscriber selected at random owns either Brand A or Brand B? $\frac{2}{3}$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- add a representative problem for each of the probability situations in this lesson.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

INIERVENIION
 FIND THE ERROR

Discuss whether the two events are inclusive or exclusive. Some students may feel that rain Saturday reduces the chance of rain on Sunday. Some students may think the two events are independent. Encourage interested students to research the science of weather forecasting.
$P($ queen or diamond $)=P($ queen $)+P($ diamond $)-P($ queen of diamonds $)$

$$
=\frac{4}{52}+\frac{13}{52}-\frac{1}{52} \text { or } \frac{4}{13}
$$

The probability of drawing a queen or a diamond is $\frac{4}{13}$.

Key Concept

Probability of Inclusive Events

- Words If two events, A and B, are inclusive, then the probability that A or B occurs is the sum of their probabilities decreased by the probability of both occurring.
- Symbols $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Example 3 Inclusive Events

EDUCATION The enrollment at Southburg High School is 1400. Suppose 550 students take French, 700 take algebra, and 400 take both French and algebra.
What is the probability that a student selected at random takes French or algebra?
Since some students take both French and algebra, the events are inclusive.
$P($ French $)=\frac{550}{1400} \quad P($ algebra $)=\frac{700}{1400} \quad P($ French and algebra $)=\frac{400}{1400}$
$P($ French or algebra $)=P($ French $)+P($ algebra $)-P($ French and algebra $)$

$$
=\frac{550}{1400}+\frac{700}{1400}-\frac{400}{1400} \text { or } \frac{17}{28} \text { Substitute and simplify. }
$$

The probability that a student selected at random takes French or algebra is $\frac{17}{28}$.

Check for Understanding

Concept Check 1. OPEN ENDED Describe two mutually exclusive events and two inclusive 1. Sample answer: mutually exclusive events: tossing a coin and rolling a die; inclusive events: drawing a 7 and a diamond from a standard deck of cards
events.
2. Draw a Venn diagram to illustrate Example 3. See margin.
3. FIND THE ERROR Refer to the comic below.

The Born Loser ${ }^{\circledR}$

Why is the weather forecaster's prediction incorrect? The events are not mutually exclusive, so the chance of rain is less than 100%.

Guided Practice A die is rolled. Find each probability.
4. $P(1$ or 6$) \frac{1}{3}$
5. P (at least 5$) \frac{1}{3}$
$\frac{5}{6}$
6. P (less than 3$) \frac{1}{3}$
9. P (multiple of 2 or 3$) \frac{2}{3}$

660 Chapter 12 Probabilities and Statistics

D A I L Y

INIIERVENIION

Differentiated Instruction

Intrapersonal Have students reflect on the definitions, skills, and formulas they have learned in these first five lessons on probability. Ask them to write an entry in their notes that describes their reaction to this topic in general, and to indicate which kinds of problems they find the most interesting, and which they find the most challenging.

GUIDED PRACTICE KEY	
Exercises	Examples
$4-7,12$	1,2
$8-11$	3

Application

A card is drawn from a standard deck of cards. Determine whether the events are mutually exclusive or inclusive. Then find the probability.
$\begin{array}{ll}\text { 10. } P\left(6 \text { or king) mutually exclusive; } \frac{2}{13}\right. & \text { 11. } P \text { (queen or spade) inclusive; } \frac{4}{13}\end{array}$
12. SCHOOL There are 8 girls and 8 boys on the student senate. Three of the students are seniors. What is the probability that a person selected from the student senate is not a senior? 13 16

* indicates increased difficulty

Practice and Apply

Homework Help	
For	
Exercises	See Examples
$13-22$,	1,2
$33-42$	
$23-26$	$1-3$
$27-32$,	3
$43-46$	

Extra Practice

 See page 855.18. $\frac{105}{143} \quad$ 21. $\frac{38}{143}$

More About.

World Cultures ..
Totolospi is a Hopi game of chance. The players use cane dice, which have both a flat side and a round side, and a counting board inscribed in stone.

Lisa has 9 rings in her jewelry box. Five are gold and 4 are silver. If she randomly selects 3 rings to wear to a party, find each probability.
13. $P(2$ silver or 2 gold $) 1$
14. P (all gold or all silver) $\frac{1}{6}$
15. P (at least 2 gold) $\frac{25}{42}$
16. P (at least 1 silver) $\frac{37}{42}$

Seven girls and six boys walk into a video store at the same time. There are five salespeople available to help them. Find the probability that the salespeople will first help the given numbers of girls and boys.
17. $P\left(4\right.$ girls or 4 boys) $\frac{35}{143} 3$
18. P (3 girls or 3 boys)
19. P (all girls or all boys) $\frac{3}{143}$
20. P (at least 3 girls) $\frac{84}{\frac{82}{143}}$
21. P (at least 4 girls or at least 4 boys)

For Exercises 23-26, determine whether the events are mutually exclusive or inclusive. Then find the probability. 24. inclusive; $\frac{1}{2}$
23. There are 3 literature books, 4 algebra books, and 2 biology books on a shelf. If a book is randomly selected, what is the probability of selecting a literature book or an algebra book? mutually exclusive; $\frac{7}{9}$
24. A die is rolled. What is the probability of rolling a 5 or a number greater than 3 ?
25. In the Math Club, 7 of the 20 girls are seniors, and 4 of the 14 boys are seniors. What is the probability of randomly selecting a boy or a senior to represent the Math Club at a statewide math contest? inclusive; $\frac{21}{34}$
26. A card is drawn from a standard deck of cards. What is the probability of drawing an ace or a face card? (Hint: A face card is a jack, queen, or king.) mutually exclusive; $\frac{4}{13}$
27. One tile with each letter of the alphabet is placed in a bag, and one is drawn at random. What is the probability of selecting a vowel or a letter from the word equation? $\frac{4}{13}$
28. Each of the numbers from 1 to 30 is written on a card and placed in a bag. If one card is drawn at random, what is the probability that the number is a multiple of 2 or a multiple of 3 ? $\frac{2}{3}$

Two cards are drawn from a standard deck of cards. Find each probability.
29. P (both kings or both black) $\frac{55}{221}$
31. P (both face cards or both red) $\frac{188}{663}$
30. P (both kings or both face cards) $\frac{11}{221}$
32. P (both either red or a king) 63
32. P (both either red or a king) $\frac{63}{221}$
... WORLD CULTURES For Exercises 33-36, refer to the information at the left.
When tossing 3 cane dice, if three round sides land up, the player advances 2 lines. If three flat sides land up, the player advances 1 line. If a combination is thrown, the player loses a turn. Find each probability.
33. P (advancing 2 lines) $\frac{1}{8}$
34. P (advancing 1 line) $\frac{1}{8}$
35. P (advancing at least 1 line) $\frac{1}{4}$
36. P (losing a turn) $\frac{3}{4}$

Study Guide and Intervention,
p. 723 (shown) and p. 724

Reading to Learn ELL
Mathematics, p. 127
Pre-Activity How does probability apply to your personal habits? Read the introduction to Lesson $12-5$ at the top of page 658 in your textbook Why do the percentages shown on the bar graph add up to more than
100\%s? Sample answer: Many people do more than one of the listed bedtime rituals.

Reading the Lesson

1. Indicate whether the events in each pair are inclusive or mutually exclusive
a. Q: drawing a queen from a standard deck of cards
b. J : drawing a jack from a standard deck of cards . drawing a king from a standard deck of cards mutually exclusive
2. Marla took a quiz on this lesson that contained the following problem. Lach of the integers from 1 through 25 is written on a slip of paper and placed in an
envelope. If one slip is drawn at random, what is the probability that it is odd or a multiple of 5 ?
Here is Marla's work.
$P($ odd $)=\frac{13}{25}$
$P\left(\right.$ odd or multi $\quad P$ (multiple of 5) $=\frac{5}{25}$ or $\frac{1}{5}$
(
Why is Marla's work incorrect? Sample answer: Marla used the formula for
mutually exclusive events, but the events are a. mutually exclusive events, but the events sare inclusive. She should
muse the formula for inclusive events so that the ofd multiples of 5 will use the formula for inclusive events so that the odd multiples of 5 will
not be counted twice.
b. Show the corrected work
$P($ odd or multiple of 5$)=P($ odd $)+P($ multiple of 5$)-P($ odd multiple of 5$)$ $=\frac{13}{25}+\frac{5}{25}-\frac{3}{25}=\frac{15}{25}=\frac{3}{5}$

Helping You Remember

3. Some students have trouble remembering a lot of formulas, so they try to keep the hat will allow you to find probabilities for both mutually exclusive and inclusive event Explain your reasoning. Sample answer: Just remember the formula foo
inclusive events: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$. When the events are mutually exclusive, $P(A$ and $B)=0$, so the formula for orrect formula for mutually exclusive events.

Recycling
The United States recycles 28% of its waste.
Source: The U.S. Environmental Protection Agency

For Exercises 37-42, use the following information.
Each of the numbers 1 through 30 is written on a table tennis ball and placed in a wire cage. Each of the numbers 20 through 45 is written on a table tennis ball and placed in a different wire cage. One ball is chosen at random from each spinning cage. Find each probability.
37. $P\left(\right.$ each is a 25) $\frac{1}{780}$
38. P (neither is a 20$) \frac{145}{156}$
39. P (exactly one is a 30) $\frac{9}{130}$
40. P (exactly one is a 40) $\frac{1}{26}$

* 41. P (the numbers are equal) $\frac{11}{780}$

42. P (the sum is 30) $\frac{1}{78}$

- 43. RECYCLING In one community, 300 people were surveyed to see if they would participate in a curbside recycling program. Of those surveyed, 134 said they would recycle aluminum cans, and 108 said they would recycle glass. Of those, 62 said they would recycle both. What is the probability that a randomly selected member of the community would recycle aluminum or glass? 121

SCHOOL For Exercises 44-46, use the Venn diagram that shows the number of participants in extracurricular activities for a junior class of 324 students.
Determine each probability if a student is selected at random from the class.
44. P (drama or music) $\frac{53}{108}$
45. P (drama or athletics) $\frac{17}{27}$
46. P (athletics and drama, or music and athletics) $\frac{17}{162}$

47. CRITICAL THINKING Consider the following probability equation.

$$
P(A \text { and } B)=P(A)+P(B)-P(A \text { or } B)
$$

A textbook gives this equation for events A and B that are mutually exclusive or inclusive. Is this correct? Explain. See margin.
48. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 695A-695B.
How does probability apply to your personal habits?
Include the following in your answer:

- an explanation of whether the events listed in the graphic are mutually exclusive or inclusive, and
- an explanation of how to determine the probability that a randomly selected person reads a book or brushes his or her teeth before going to bed if in a survey of 2000 people, 600 said that they do both.

Standardized

 Test Practice (A) (B) (C) (D49. In a jar of red and white gumballs, the ratio of white gumballs to red gumballs is $5: 4$. If the jar contains a total of 180 gumballs, how many of them are red? C
(A) 45
(B) 64
(C) 80
(D) 100
50. $\{x\}=\frac{1}{2} x$ if x is composite. $\{x\}=2 x$ if x is prime. What is the value of $\{7\}+\{18\}$? A
(A) 23
(B) 46
(C) 50
(D) 64

662 Chapter 12 Probabilities and Statistics

Enrichment, p. 728

Probability and Tic-Tac-Toe

What would be the chances of winning at tic tac- toe if it were turned into a
game of pure chance? ? f find out, the nine cells of the tic-tac-toe baord are game of pure chance? To find out, the nine cells of the tic tac- toe board are
numbered from 1 to 9 and nine chips (also numbered from 1 to 9) are put into a bag. Player r draws a chip at random ande deters an X in
corresponding cell. Player B does the same and enters an O. To solve the problem, assume that both players draw all their chips without
looking and all X and O entries are made at the same time. There are four looking and all X and O entries are made at the same time. There are fo
possible outcomes: draw, A wins, B wins, and either A or B can win There are 16 arrangements that result in a draw. Reflections and rotations
must te counted as shown below.

There are 36 arrangements in which either player may win because botl ${ }^{\text {players have winning triples. }}$

662 Chapter 12 Probability and Statistics

Maintain Your Skills

Mixed Review
A die is rolled three tim
51. $P(1$, then 2 , then 3$) \frac{1}{216}$
52. $P($ no 4 s$) \frac{125}{216}$
53. P (three 1 s$) \frac{1}{216}$
54. P (three even numbers) $\frac{1}{8}$

Find the odds of an event occurring, given the probability of the event.
(Lesson 12-3)
55. $\frac{4}{5} 4: 1$
56. $\frac{1}{9}$ 1:8
57. $\frac{2}{7}$ 2:5
58. $\frac{5}{8} 5: 3$
Find the sum of each series. (Lessons 11-2 and 11-4)
59. $2+4+8+\cdots+128254$
60. $\sum_{n=1}^{3}(5 n-2) 24$

Find the exact solution(s) of each system of equations. (Lesson 8-7)
61. $y=-10$
62. $x^{2}=144$
$y^{2}=x^{2}+36(\pm 8,-10)$

$$
x^{2}+y^{2}=169(\pm 12, \pm 5)
$$

63. Use the graph of the polynomial function at the right to determine at least one binomial factor of the polynomial. Then find all factors of the polynomial. (Lesson 7-4) $(x+1)^{2}(x-1)\left(x^{2}+1\right)$

Find the maxima and minima of each function. Round to the nearest hundredth. (Lesson 6-2)
64. $f(x)=x^{3}+2 x^{2}-5$
65. $f(x)=x^{3}+3 x^{2}+2 x+1$

Graph each system of inequalities. Name the coordinates of the vertices of the feasible region. Find the maximum and minimum values of the given function for this region. (Lesson 3-4) 66-67. See margin for graphs.

$$
\text { 66. } \begin{array}{ll}
y \geq x-2(0,2),(2,0),(0,-2) ; & \text { 67. } y \geq 2 x-3(1,3),(1,-1),(3,3), \\
x \geq 0 \quad \max : f(2,0)=6 ; \min : & 1 \leq x \leq 3 \quad(3,5) ; \max : f(3,5)=23 ; \\
y \leq 2-x(0,-2)=-2 & y \leq x+2 \min : f(1,-1)=-3 \\
f(x, y)=3 x+y & f(x, y)=x+4 y
\end{array}
$$

SPEED SKATING For Exercises 68 and 69, use the following information. In the 1988 Winter Olympics, Bonnie Blair set a world record for women's speed skating by skating approximately 12.79 meters per second in the 500 -meter race. (Lesson 2-6)
68. Suppose she could maintain that speed. Write an equation that represents how far she could travel in t seconds. $d=12.79 t$
69. What type of equation is the one in Exercise 68? direct variation

PREREQUISITE SKILL Find the mean, median, mode, and range for each set of data. Round to the nearest hundredth, if necessary. 70-75. See margin. (To review mean, median, mode, and range, see pages 822 and 823.)
70. 298, 256, 399, 388, 276
71. $3,75,58,7,34$
72. $4.8,5.7,2.1,2.1,4.8,2.1$
73. $80,50,65,55,70,65,75,50$
74. $61,89,93,102,45,89$
75. $13.3,15.4,12.5,10.7$
47. Subtracting $P(A$ and $B)$ from each side and adding $P(A$ or $B)$ to each side results in the equation $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$. This is the equation for the probability of inclusive events. If A and B are mutually exclusive, then $P(A$ and $B)=0$, so the equation simplifies to $P(A$ or $B)=P(A)+P(B)$, which is the equation for the probability of mutually exclusive events. Therefore, the equation is correct in either case.
66.

4 Assess

Open-Ended Assessment

Modeling Ask students to use colored chips, index cards, and other objects to design and model two probability problems-one that involves mutually exclusive events and the other inclusive events. Have students explain their problems to a partner.

Assessment Options
 Quiz (Lessons 12-4 and 12-5)

is available on p. 767 of the Chapter 12 Resource Masters.
Mid-Chapter Test (Lessons 12-1 through 12-5) is available on p. 769 of the Chapter 12 Resource Masters.

Getting Ready for
 Lesson 12-6

PREREQUISITE SKILL Lesson 12-6 presents using measures of central tendency and variation for a set of data. Students will use their familiarity with mean, median, mode, and range as they calculate standard deviation. Exercises 70-75 should be used to determine your students' familiarity with finding mean, median, mode, and range for a set of values.

Answers

67.

70. 323.4, 298, no mode, 143
71.35.4, 34, no mode, 72
72. 3.6, 3.45, 2.1, 3.6
73. 63.75, 65,50 and 65,30
74.79.83, 89, 89, 57
75. 12.98, 12.9, no mode, 4.7

12-6 Statistical Measures

1 Focus

5-Minute Check

Transparency 12-6 Use as a quiz or review of Lesson 12-5.

Mathematical Background notes are available for this lesson on p. 630D.

What

statistics should a teacher tell the class

after a test?

Ask students:

- Why is it helpful to put a list in order when studying data? Sample answer: If the data are in order, it is much easier to find the lowest value, median, mode, and highest value.
- What observations can you make about this data without doing any calculations, or using only mental math? Sample answers may include: greatest and least values (94 to 19) and the range (75), as well as the fact that 19 and 34 seem to be outliers

What You'll Learn

- Use measures of central tendency to represent a set of data.
- Find measures of variation for a set of data.

Vocabulary

measure of central tendency
measure of variation
dispersion
variance
standard deviation

Study Tip

Look Back
To review outliers, see Lesson 2-5.

What statistics should a teacher tell the class after a test?
On Mr. Dent's most recent Algebra 2 test, his students earned the following scores.

When his students ask how they did on the test, which measure of central tendency should Mr. Dent use to describe the scores?

MEASURES OF CENTRAL TENDENCY Sometimes it is convenient to have one number that describes a set of data. This number is called a measure of central tendency, because it represents the center or middle of the data. The most commonly used measures of central tendency are the mean, median, and mode.
When deciding which measure of central tendency to use to represent a set of data, look closely at the data itself.

Concept Summary	
Use	Measures of Tendency
mean	the data are spread out, and you want an average of the values.
median	the data contain outliers.
mode	the data are tightly clustered around one or two values.

Example 1 Choose a Measure of Central Tendency

SWEEPSTAKES A sweepstakes offers a first prize of $\$ 10,000$, two second prizes of $\$ 100$, and one hundred third prizes of $\$ 10$.
a. Which measure of central tendency best represents the available prizes? Since 100 of the 103 prizes are $\$ 10$, the mode ($\$ 10$) best represents the available prizes. Notice that in this case the median is the same as the mode.
b. Which measure of central tendency would the organizers of the sweepstakes be most likely to use in their advertising?
The organizers would be most likely to use the mean (about $\$ 109$) to make people think they had a better chance of winning more money.

Resource Manager

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 729-730

Science and Mathematics Lab Manual, pp. 115-118

- Skills Practice, p. 731
- Practice, p. 732
- Reading to Learn Mathematics, p. 733
- Enrichment, p. 734

Transparencies

5-Minute Check Transparency 12-6
Answer Key Transparencies

- Technology

Interactive Chalkboard

Reading Math The symbol σ is the lower case Greek letter sigma. \bar{x} is read x bar.

MEASURES OF VARIATION Measures of variation or dispersion measure how spread out or scattered a set of data is. The simplest measure of variation to calculate is the range, the difference between the greatest and the least values in a set of data. Variance and standard deviation are measures of variation that indicate how much the data values differ from the mean.

To find the variance σ^{2} of a set of data, follow these steps.

1. Find the mean, \bar{x}.
2. Find the difference between each value in the set of data and the mean.
3. Square each difference.
4. Find the mean of the squares.

The standard deviation σ is the square root of the variance.

TEACHING TIP

In this text, assume that students are being asked to find the standard deviation of a population, for which the formula has been given.

Key Concept

If a set of data consists of the n values $x_{1}, x_{2}, \ldots, x_{n}$ and has mean \bar{x}, then the standard deviation σ is given by the following formula.

$$
\sigma=\sqrt{\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}}
$$

Example 2 Standard Deviation

STATES The table shows the populations in millions of 11 eastern states as of the 2000 Census. Find the variance and standard deviation of the data to the nearest tenth.

State	Population	State	Population	State	Population
NY	19.0	MD	5.3	RI	1.0
PA	12.3	CT	3.4	DE	0.8
NJ	8.4	ME	1.3	VT	0.6
MA	6.3	NH	1.2	-	-

Source: U.S. Census Bureau
Step 1 Find the mean. Add the data and divide by the number of items.

$$
\begin{aligned}
\bar{x} & =\frac{19.0+12.3+8.4+6.3+5.3+3.4+1.3+1.2+1.0+0.8+0.6}{11} \\
& \approx 5.4 \overline{18} \text { The mean is about } 5.4 \text { people. }
\end{aligned}
$$

Step 2 Find the variance.

$$
\begin{aligned}
\sigma^{2} & =\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n} \quad \text { Variance formula } \\
& \approx \frac{(19.0-5.4)^{2}+(12.3-5.4)^{2}+\cdots+(0.8-5.4)^{2}+(0.6-5.4)^{2}}{11} \\
& \approx \frac{344.4}{11} \quad \text { Simplify. } \\
& \approx 31.3 \overline{09} \quad \text { The variance is about } 31.3 \text { people. }
\end{aligned}
$$

Step 3 Find the standard deviation.

$$
\begin{array}{rlrl}
\sigma^{2} & \approx 31.3 & \text { Take the square root of each side. } \\
\sigma & \approx 5.594640292 & & \text { The standard deviation is about } 5.6 \text { people. }
\end{array}
$$

2 Teach

MEASURES OF CENTRAL TENDENCY

In-Class Example

Power
 Point ${ }^{\circledR}$

1 A new Internet company has 3 employees who are paid $\$ 300,000,10$ who are paid $\$ 100,000$, and 60 who are paid $\$ 50,000$.
a. Which measure of central tendency best represents the pay at this company? mode or median
b. Which measure of central tendency would recruiters for this company be most likely to use to attract job applicants? mean

MEASURES OF VARIATION

In-Class Example

Power
 Point ${ }^{\text {® }}$

2 RIVERS This table shows the length in thousands of miles of some of the longest rivers in the world. Find the standard deviation for these data. 1.05

River	Length (thousands of miles)
Nile	4.16
Amazon	4.08
Missouri	2.35
Rio Grande	1.90
Danube	1.78

Teaching Tip Explain to students that the standard deviation is a number representing the typical or representative variation for the data items in that set. It tells how far a data value will typically be from the mean of the entire data set.

Teaching Tip Tell students that, for a normal distribution, 68.3% of the data is always within one standard deviation of the mean; 95.4% is always within two standard deviations, and 99.7% is always within three standard deviations, because of the way standard deviation is defined.

Answers

2. Sample answer: The variance of the set $\{0,1\}$ is 0.25 and the standard deviation is 0.5 .
3. $\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$

Most of the members of a set of data are within 1 standard deviation of the mean. The populations of the states in Example 2 can be broken down as shown below.

Looking at the original data, you can see that most of the states' populations were between 2.4 million and 20.2 million. That is, the majority of members of the data set were within 1 standard deviation of the mean.
You can use a TI-83 Plus graphing calculator to find statistics for the data in Example 2.

Graphing Calculator Investigation One-Variable Statistics

The TI-83 Plus can compute a set of one-variable statistics from a list of data. These statistics include the mean, variance, and standard deviation. Enter the data into Li.

кeystrokes: STAT ENTER 19.0 ENTER 12.3 ENTER

Then use STAT 1 ENTER to show the statistics. The mean \bar{x} is about 5.4, the sum of the values $\sum x$ is 59.6 , the standard deviation σx is about 5.6 , and there are $n=11$ data items. If you scroll down, you will see the least value $(\min X=.6)$, the three quartiles ($1,3.4$, and 8.4), and the greatest value ($\max X=19$).

Think and Discuss

1. Find the variance of the data set. about 31.36
2. Enter the data set in list L1 but without the outlier 19.0. What are the new mean, median, and standard deviation? 4.06, 2.35, about 3.8
3. Did the mean or median change less when the outlier was deleted? median

Check for Understanding

Concept Check 1. OPEN ENDED Give a sample set of data with a variance and standard deviation of 0 . Sample answer: $\{10,10,10,10,10,10\}$

Exercises	Examples
$4-6$	2
7,8	1

Guided Practice
2. Find a counterexample for the following statement. See margin. The standard deviation of a set of data is always less than the variance.
3. Write the formula for standard deviation using sigma notation. (Hint: To review sigma notation, see Lesson 11-5.) See margin.

Find the variance and standard deviation of each set of data to the nearest tenth.
4. $\{48,36,40,29,45,51,38,47,39,37\} 40,6.3$
5. $\{321,322,323,324,325,326,327,328,329,330\} 8.2,2.9$
6. $\{43,56,78,81,47,42,34,22,78,98,38,46,54,67,58,92,55\} 424.3,20.6$

666 Chapter 12 Probability and Statistics

EDUCATION For Exercises 7 and 8, use the following information.
The table below shows the amounts of money spent on education per student in 1998 in two regions of the United States.
8. The mean is more representative for the southwest central states because the data for the Pacific states contains the most extreme value, \$10,650.

Pacific States		Southwest Central States	
State	Expenditures per Student (\$)	State	Expenditures per Student (\$)
Alaska	10,650	Texas	6291
California	5345	Arkansas	5222
Washington	6488	Louisiana	5194
Oregon	6719	Oklahoma	4634

Source: National Education Association
7. Find the mean for each region. $\$ 7300.50, \$ 5335.25$
8. For which region is the mean more representative of the data? Explain.

* indicates increased difficulty

Practice and Apply

Homework Help	
$\begin{aligned} & \text { For } \\ & \text { Exercises } \end{aligned}$	$\begin{aligned} & \text { See } \\ & \text { xamples } \end{aligned}$
17-26	1
9-16,	2
27-33	

Extra Practice
See page 855.
18. The mean and median both seem to represent the center of the data.

More About.

Basketball
Natalie Williams of the Utah Starzz led the Women's National Basketball Association in rebounding in 2000 with 336 rebounds in 29 games, an average of about 11.6 rebounds per game.
Source: WNBA

Find the variance and standard deviation of each set of data to the nearest tenth.
9. $\{400,300,325,275,425,375,350\} 2500,50$
10. $\{5,4,5,5,5,5,6,6,6,6,7,7,7,7,8,9\} 1.6,1.3$
11. $\{2.4,5.6,1.9,7.1,4.3,2.7,4.6,1.8,2.4\} 3.1,1.7$
12. $\{4.3,6.4,2.9,3.1,8.7,2.8,3.6,1.9,7.2\} 4.8,2.2$
13. $\{234,345,123,368,279,876,456,235,333,444\} 37,691.2,194.1$
14. $\{13,14,15,16,17,18,19,20,21,23,67,56,34,99,44,55\} 569.4,23.9$

15. Stem | $\mid l$ | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 4 | 4 | 5 | 6 | 7 | 7 | |
| 5 | 3 | 5 | 6 | 7 | 8 | 9 |
| 6 | 7 | 7 | 8 | 9 | 9 | 9 |

82.9, 9.1
82.9, 9.1 43.6, 6.6

- BASKETBALL For Exercises 17 and 18, use the following information.

The table below shows the rebounding totals for the 2000 Los Angeles Sparks.

| 306 | 179 | 205 | 194 | 105 | 55 | 122 | 32 | 23 | 16 | 23 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Source: WNBA

17. Find the mean, median, and mode of the data to the nearest tenth. 114.5, 105, 23 18. Which measure of central tendency best represents the data? Explain.

Online Research Data Update For the latest rebounding statistics for both women's and men's professional basketball, visit: www.algebra2.com/data_update

EDUCATION For Exercises 19 and 20, use the following information. The Millersburg school board is negotiating a pay raise with the teacher's union. Three of the administrators have salaries of $\$ 80,000$ each. However, a majority of the teachers have salaries of about $\$ 35,000$ per year.
19. You are a member of the school board and would like to show that the current salaries are reasonable. Would you quote the mean, median, or mode as the "average" salary to justify your claim? Explain. Mean; it is highest.
20. You are the head of the teacher's union and maintain that a pay raise is in order. Which of the mean, median, or mode would you quote to justify your claim? Explain your reasoning. See margin.
wwww.algebra2.com/self_check_quiz
Lesson 12-6 Statistical Measures 667

D A \| L Y

INIIERVENTION

Differentiated Instruction

Interpersonal Assign students to partners, one who is fairly new to the graphing calculator and the other who is confident in calculator skills. Have them work together to address difficulties using the calculator.

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...

 Organization by Objective- Measures of Central Tendency: 17-26
- Measures of Variation: 9-16, 27-33

Odd/Even Assignments

Exercises 9-16 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 9-13 odd, 17, 18, 21-23, 27-30, 34-41, 45-64
Average: 9-15 odd, 19-23,
31-41, 45-64 (optional: 42-44)
Advanced: 10-16 even, 19, 20, 24-26,31-58 (optional: 59-64)
All: Practice Quiz 2 (1-10)

Answer

20. Mode; it is lower and is what most employees make. It reflects the most representative worker.

Intervention
Scientific calculators, as well as graphing calculators, have special keys and functions that can be used to find mean, median, and standard deviation. Since the scientific calculator costs only a fraction of the graphing calculator, more students may have their own calculator of this type.

Answers

34. Different scales are used on the vertical axes.
35. Sample answer: The first graph might be used by a sales manager to show a salesperson that he or she does not deserve a big raise. It appears that sales are steady but not increasing fast enough to warrant a big raise.
36. Sample answer: The second graph might be shown by the company owner to a prospective buyer of the company. It looks like there is a dramatic rise in sales.
37. The statistic(s) that best represent a set of test scores depends on the distribution of the particular set of scores. Answers should include the following.

- mean, 73.9; median, 76.5; mode, 94
- The mode is not representative at all because it is the highest score. The median is more representative than the mean because it is influenced less than the mean by the two very low scores of 34 and 19.

44. The mean deviations would be greater for the greater standard deviation and lower for the groups of data that have the smaller standard deviation.
45. Mode; it is the least expensive price. 23. Mean or median; they are nearly equal and are more representative of the prices than the mode.

Shopping •................
While the Mall of America does not have the most gross leasable area, it is the largest fully enclosed retail and entertainment complex in the United
States.
Source: Mall of America
24. 2,290,403;

2,150,000; 2,000,000
31. 59.8, 7.7

ADVERTISING For Exercises 21-23, use the following information.
A camera store placed an ad in the newspaper showing five digital cameras for sale. The ad says, "Our digital cameras average $\$ 695$." The prices of the digital cameras are $\$ 1200, \$ 999, \$ 1499, \$ 895, \$ 695, \$ 1100, \$ 1300$, and $\$ 695$.
21. Find the mean, median, and mode of the prices. $\$ 1047.88, \$ 1049.50, \$ 695$
22. Which measure is the store using in its ad? Why did they choose this measure?
23. As a consumer, which measure would you want to see advertised? Explain.

SHOPPING MALLS For Exercises 24-26, use the following information.
The table lists the areas of some large shopping malls in the United States.

	Mall	Gross Leasable Area (ft$)$
1	Del Amo Fashion Center, Torrance, CA	$3,000,000$
2	South Coast Plaza/Crystal Court, Costa Mesa, CA	$2,918,236$
3	Mall of America, Bloomington, MN	$2,472,500$
4	Lakewood Center Mall, Lakewood, CA	$2,390,000$
5	Roosevelt Field Mall, Garden City, NY	$2,300,000$
6	Gurnee Mills, Gurnee, IL	$2,200,000$
7	The Galleria, Houston, TX	$2,100,000$
8	Randall Park Mall, North Randall, OH	$2,097,416$
9	Oakbrook Shopping Center, Oak Brook, IL	$2,006,688$
10	Sawgrass Mills, Sunrise, FL	$2,000,000$
10	The Woodlands Mall, The Woodlands, TX	$2,000,000$
10	Woodfield, Schaumburg, IL	$2,000,000$

Source: Blackburn Marketing Service

24. Find the mean, median, and mode of the gross leasable areas.
25. You are a realtor who is trying to lease mall space in different areas of the country to a large retailer. Which measure would you talk about if the customer felt that the malls were too large for his store? Explain. Mode; it is lowest.
26. Which measure would you talk about if the customer had a large inventory? Explain. Mean; it is highest.
FOOTBALL For Exercises 27-30, use the weights in pounds of the starting offensive linemen of the football teams from three high schools.
Jackson Washington King
$170,165,140,188,195 \quad 144,177,215,225,197 \quad 166,175,196,206,219$
27. Find the standard deviation of the weights for Jackson High. 19.3
28. Find the standard deviation of the weights for Washington High. 28.9
29. Find the standard deviation of the weights for King High 19.5
30. Which team had the most variation in weights? How do you think this variation will impact their play? Washington; see students' work.

SCHOOL For Exercises 31-33, use the frequency table at the right that shows the scores on a multiple-choice test.
31. Find the variance and standard deviation of the scores.
\star 32. What percent of the scores are within one standard deviation of the mean? 64%
\star 33. What percent of the scores are within two standard deviations of the mean? 100\%

Score	Frequency
90	3
85	2
80	3
75	7
70	6
65	4

668 Chapter 12 Probability and Statistics

For Exercises 34-36, consider the two graphs below. 34-36. See margin.
38. The first histogram is lower in the middle and higher on the ends, so it represents data that are more spread out. Since set B has the greater standard deviation, set B corresponds to the first histogram and set A corresponds to the second.

Standardized
Test Practice (B) C D

34. Explain why the graphs made from the same data look different.
35. Describe a situation where the first graph might be used
36. Describe a situation where the second graph might be used.

CRITICAL THINKING For Exercises 37 and 38, consider the two sets of data.

$$
A=\{1,2,2,2,2,3,3,3,3,4\}, B=\{1,1,2,2,2,3,3,3,4,4\}
$$

37. Find the mean, median, variance, and standard deviation of each set of data to the nearest tenth. A: $2.5,2.5,0.7,0.8 ; B: 2.5,2.5,1.1,1.0$
38. Explain how you can tell which histogram below goes with each data set without counting the frequencies in the sets.

39. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
What statistics should a teacher tell the class after a test?
Include the following in your answer:

- the mean, median, and mode of the given data set, and
- which measure of central tendency you think best represents the test scores and why.

40. What is the mean of the numbers represented by $x+1,3 x-2$, and $2 x-5$? \mathbf{A}
(A) $2 x-2$
(B) $\frac{6 x-7}{3}$
(C) $\frac{x+1}{3}$
(D) $x+4$
41. Manuel got scores of 92,85 , and 84 on three successive tests. What score must he get on a fourth test in order to have an average of 90 ? D
(A) 96
(B) 97
(C) 98
(D) 99

Extending the Lesson

Study Tip

Reading Math Mean deviation is also sometimes called mean absolute deviation.

Mean deviation is another method of dispersion. It is the mean of the deviations of the data from the mean of the data. If a set of data consists of n values $x_{1}, x_{2}, \ldots, x_{n}$ and has mean \bar{x}, then the mean deviation is given by the following formula.

$$
\mathrm{MD}=\frac{\left|x_{1}-\bar{x}\right|+\left|x_{2}-\bar{x}\right|+\cdots+\left|x_{n}-\bar{x}\right|}{n} \text { or } \frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-\bar{x}\right|
$$

Find the mean deviation of each set of data to the nearest tenth.
42. $\{95,91,88,86\} 3$
43. $\{10.4,11.4,16.2,14.9,13.5\} 1.9$
44. Suppose two sets of data have the same mean and different standard deviations. Describe their mean deviations. See margin.

Lesson 12-6 Statistical Measures

Enrichment, p. 734

Probabilities in Genetics
Genes are the units which transmit hereditary traits. The possible forms
which a gene may take, dominant and recessive, are called alleles. A.
which a gene may take, dominant and recessive, are called alleles. A
particular trait is determined by two alleles, one from the female parent one from the male parent. If an organism has the trait which is dominant, it
may have either two dominant alleles or one dominant and one recessive may have either two dominant aleeles or one dominant and one recessive
allele. If the organism has the trait which is recessive, it must have two
recessive alleles.
-
Example Consider a plant in which tall stems, T, are dominant to
short stems, t. What is the probability of obtaining a long-stemmed short stems, t. What is the probability of obtaining a long-stemmed
pant if twwo ologs-stemmed plants both with the genetic formula $T t$
are crossed? plant if two long-stemmed plants both with the genetic formula $T t$
are crossed?

Study Guide and Intervention, p. 729 (shown) and p. 730

Measures of Central Tendency

Measurs of $\begin{gathered}\text { contal } \\ \text { Condency }\end{gathered}$	Use	When		
	mean	the data are spread out and you want an average of values		
	median	the data contain oulliers		
	mode	the data are tighty clustered around one or two values		
Example Find the mean, median, and mode of the following set of data: (42, 39, 35, 40, 38, 35, 45). To find the mean, add the values and divide by the number of values. mean $=\frac{42+39+35+40+38+35+45}{7} \approx 39.14$. To find the median, arrange the values in ascending or descending order and choose the middle value. (If there is an even number of values, find the mean of the two middle values.) In this case, the median is 39 . To find the mode, take the most common value. In this case, the mode is 35 .				
Exarcises				
Find the mean, median, and mode of each set of data. Round to the nearest hundredth, if necessary.				
1. $2238,261,245,249,255,262,241,245 \mid$ 249.5; 247; 245				
2. $99,13,8,10,11,9,12,16,10,9 \mid 10.7 ; 10 ; 9$				
3. $\{120,108,145,129,102,132,134,118,108,142 \mid$ 123.8; 124.5; 108				
4. $168,54,73,58,63,72,65,70,611) 64.89 ; 65 ;$ no mode				
5. $334,49,42,38,40,45,34,28,43,30 \mid 38.3 ; 39 ; 34$				
6. The table at the right shows the populations of the six New England capitals. Which would be the re of central tendency to represent the data? Explain why and find that value There is no mode. The population of Boston is an outlier and would raise the mean too high. The median, 79,500 , would be the best choice.			clity	Population (rounded to the nearest 1000
			Augusta, ME	19,000
			Boston, MA	589,000
			Concor	37,000
			Hartiord, CT	000
			Montpeler, VT	8.000

Skills Practice, p. 731 and

 Practice, p. 732 (shown)Find the variance and standard deviation of each set of data to the nearest tenth.

1. $\begin{aligned} & \mid 47,61,93,22,82,22,37) \\ & 673.1,25.9\end{aligned} \quad$ 2. $(10,10,54,39,96,91,91,18 \mid$
$12026,655,1$

11, 2, 3, 4, , , , , 5, 5. 5. 5. 5) 4.110., 72.5
3. $(1,2,2,2,3,3,3,4,4,4,4,5,5,5,5,5)$
$1.6,1.2$$\quad \begin{gathered}\text { 4. }[1100,725,850,335,700,800,950)\end{gathered}$
5. $(33.4,7.1,8.5,5.1,4.7,6.3,9.9,8.4,3.6 \mid \quad$. $\mid 2.8,0.5,1.9$

5. (3.4, ..1, 8.5, 5.1, 4.7, 6.3, 9.9, 8.4, 3.6)	$\begin{array}{l}\text { 6. } \\ 4.7,2.2 \\ 0.8,8,0.5\end{array}$

7. HEALTH CARE Eight physicians with 15 patients on a hospital floor see these patients
an average of 18 minutes a day. The 22 nurses on on the sampe floor see the patients an
average of f hours a day. As a hospital administrator, would you cuote the mean,
average of 3 hours a day. As a hospital administrator, would you quote the mean,
median, or mode as an indicator of the amount of daily medical attention the patients
median, or mode eas an indicator of the amount of daily medical attention the patients on
this flor reeeve? सxplain Etither the median or the moded they are equal and
higher than mean, which iovered by the smaller amount of time
the physicians spend with the patients. For Exercises 8-10, use

Reading to Learn
Mathematics, p. 733
ELL
Pre-Activity What statistics should a teacher tell the class after a test? Read the introduction to Lesson 12.6 at the top of page 644 in your textbook. There is more than one way to give an "average" score for this test. Three
measures of central tendency for these scores are $94,76.5$ and 73.9 Can you ell which of these is the mean, the median, and the mode without doing any Sample answer: Yes. The mode must be one of the scores, so must be an integer. The median must be either one of the
scores or halfway between two of the scores, so it must be a integer or a decimal ending with .5. Therefore, 94 is the mode
76.5 is the median, and 73.9 is the mean.

Reading the Lesson

1. Match each measure wi.
tendency and variation.

dian vi	b. mode i	c. range iv
d. variance iii	e. mean ii	f. standard deviation \mathbf{v}
i. Find the most commonly occurring values or values in a set of data.		
ii. Add the data and divide by the number of items.		
iii. Find the mean of the squares of the differences between each value in the set of data and the mean.		
iv. Find the difference between the largest and smallest values in the set of data.		
v. Take the positive square root of the variance.		
vi. If there is an even number	of items in	ake the middle one. If there divide by 2 .

Helping You Remember

2. It is usually easier to remember a complicated procedure if you break it down into steps.
Write the procedure for finding the standard deviation for a set of data in a series of

Wrief numbered steps
Sample answer:

1. Find the mean.
2. Find the mean
3. Find the differ
4. Square each difference.
5. Find the mean of the squares.
6. Take the positive square root.

4 Assess

Open-Ended Assessment

Writing Ask students to write a brief explanation of what standard deviation is and how it can be used. Have them include at least one example.

Assessment Options

Practice Quiz 2 The quiz provides students with a brief review of the concepts and skills in Lessons 12-4 through 12-6. Lesson numbers are given to the right of exercises or instruction lines so students can review concepts not yet mastered.

Getting Ready for
 Lesson 12-7

BASIC SKILL Lesson 12-7 presents data that are normally distributed. Students will use percents to calculate ranges of data within a normal distribution. Exercises 59-64 should be used to determine your students' familiarity with finding percents.

Maintain Your Skills
Mixed Review Determine whether the events are mutually exclusive or inclusive. Then find the probability. (Lesson 12-5)
45. A card is drawn from a standard deck of cards. What is the probability that it is a 5 or a spade? inclusive; $\frac{4}{13}$
46. A jar of change contains 5 quarters, 8 dimes, 10 nickels, and 19 pennies. If a coin is pulled from the jar at random, what is the probability that it is a nickel or a dime? mutually exclusive; $\frac{3}{7}$

Two cards are drawn from a standard deck of cards. Find each probability.
(Lesson 12-4)
47. P (ace, then king) if replacement occurs $\frac{1}{169} 4$
48. P (ace, then king) if no replacement occurs $\frac{4}{663}$
49. P (heart, then club) if no replacement occurs 13
50. P (heart, then club) if replacement occurs $\frac{1}{16} \frac{13}{204}$
51. Find the coordinates of the vertices and foci and the slopes of the asymptotes for the hyperbola given by $\frac{y^{2}}{81}-\frac{x^{2}}{25}=1$. (Lesson 8-5) $(0, \pm 9) ;(0, \pm \sqrt{106}) ; \pm \frac{9}{5}$

If $f(x)=x-7, g(x)=4 x^{2}$, and $h(x)=2 x+1$, find each value. (Lesson 7-7)
52. $f[g(-1)]-3$
53. $h[f(15)] 17$
54. $f \circ h(2)-2$
55. BUSINESS The Energy Booster Company keeps their stock of Health Aid liquid in a rectangular tank whose sides measure $x-1$ centimeters, $x+3$ centimeters, and $x-2$ centimeters. Suppose they would like to bottle their Health Aid in $x-3$ containers of the same size. How much liquid in cubic centimeters will remain unbottled? (Lesson 7-2) $12 \mathrm{~cm}^{3}$

Use Cramer's Rule to solve each system of equations. (Lesson 4-6)
56. $2 x+6 y=28(-4,6)$
57. $7 c-3 d=-8(1,5)$
58. $m-2 n=-7(3,5)$
$-x-4 y=-20$
$4 c+d=9$
$-3 m+n=-4$

Getting Ready for the Next Lesson

BASIC SKILL Find each percent.
59. 68% of $200136 \quad 60.68 \%$ of $500340 \quad$ 61. 95% of 400380
62. 95% of 500475
63. 99% of 400396
64. 99% of 500495

Practice Quiz 2

Lessons 12-4 through 12-6

A bag contains 5 red marbles, 3 green marbles, and 2 blue marbles. Two marbles are drawn at random from the bag. Find each probability. (Lesson 12-4)

1. P (red, then green) if replacement occurs $\frac{3}{20}$
2. P (red, then green) if no replacement occurs $\frac{1}{6}$
3. $P(2$ red $)$ if no replacement occurs $\frac{2}{9}$
4. $P(2$ red $)$ if replacement occurs $\frac{1}{4}$

A twelve-sided die has sides numbered 1 through 12. The die is rolled once. Find
each probability. (Lesson 12-5)
each probability \quad (4 or 5$) \frac{1}{6}$
6. P (even or a multiple of 3) $\frac{2}{3}$
7. P (odd or a multiple of 4$) \frac{3}{4}$

Find the variance and standard deviation of each set of data to the nearest
tenth. (Lesson 12-6)
8. $\{5,8,2,9,4\} 6.6,2.6 \quad$ 9. $\{16,22,18,31,25,22\} 23.6,4.9 \quad 10 .\{425,400,395,415,420\}$ 134.0, 11.6

[^1]
What You'll Learn

- Determine whether a set of data appears to be normally distributed or skewed.
- Solve problems involving normally distributed data.

How are the heights of professional athletes distributed?

The frequency table below lists the heights of the 2001 Baltimore Ravens. The table shows the heights of the players, but it does not show how these heights compare to the height of an average player. To make that comparison, you can determine how the heights are distributed.

Height (in.)	67	69	70	71	72	73	74	75	76	77	80
Frequency	1	1	4	4	10	6	6	8	7	5	1

Source: www.ravenszone.net

NORMAL AND SKEWED DISTRIBUTIONS The probability distributions you have studied thus far are discrete probability distributions because they have only a finite number of possible values. A discrete probability distribution can be represented by a histogram. For a continuous probability distribution, the outcome can be any value in an interval of real numbers. Continuous probability distributions are represented by curves instead of histograms.

The curve at the right represents a continuous probability distribution. Notice that the curve is symmetric. Such a curve is often called a bell curve. Many distributions with symmetric curves or histograms are normal distributions.

A curve or histogram that is not symmetric represents a skewed distribution. For example, the distribution for a curve that is high at the left and has a tail to the right is said to be positively skewed. Similarly, the distribution for a curve that is high at the right and has a tail to the left is said to be negatively skewed.

1 Focus

Vocabulary

discrete probability distribution
continuous probability distribution
normal distribution skewed distribution

Study Tip

Skewed Distributions In a positively skewed distribution, the long tail is in the positive direction. These are sometimes said to be skewed to the right. In a negatively skewed distribution, the long tail is in the negative directon
These are sometimes said to be skewed to the left.

NORMAL AND SKEWED DISTRIBUTIONS

In-Class Example

1 Determine whether the data $\{31,37,35,36,34,36,32,36$, 33, 32, 34, 34, 35, 34\} appear to be positively skewed, negatively skewed, or normally distributed. normally distributed

USE NORMAL DISTRIBUTIONS

In-Class Example

2 Students counted the number of candies in 100 small packages. They found that the number of candies per package was normally distributed, with a mean of 23 candies per package and a standard deviation of 1 piece of candy.
a. About how many packages had between 24 and 22 candies? about 68 packages
b. What is the probability that a package selected at random had more than 25 candies? about 2.5\%

Example 1 Classify a Data Distribution

Determine whether the data $\{14,15,12,11,13,13,14,15,14,12,13,14,15\}$ appear to be positively skewed, negatively skewed, or normally distributed.
Make a frequency table for the data.
Then use the table to make a histogram.

Value	11	12	13	14	15
Frequency	1	1	3	4	3

Since the histogram is high at the right and has a tail to the left, the data are negatively skewed.

USE NORMAL DISTRIBUTIONS Normal distributions occur quite frequently in real life. Standardized test scores, the lengths of newborn babies, the useful life and size of manufactured items, and production levels can all be represented by normal distributions. In all of these cases, the number of data values must be large for the distribution to be approximately normal.

Key Concept

Normal Distribution
Normal distributions have these properties.

About 68% of the values are within one standard deviation of the mean.
About 95% of the values are within two standard deviations of the mean.
About 99% of the values are within three standard deviations of the mean.

Example 2 Normal Distribution

PHYSIOLOGY The reaction times for a hand-eye coordination test administered to 1800 teenagers are normally distributed with a mean of 0.35 second and a standard deviation of 0.05 second.
a. About how many teens had reaction times between 0.25 and 0.45 second?

Draw a normal curve. Label the mean and the mean plus or minus multiples of the standard deviation.
The values 0.25 and 0.45 are 2 standard deviations below and above the mean, respectively. Therefore, about 95% of the data are between 0.25 and 0.45 .

$1800 \times 95 \%=1710 \quad$ Multiply 1800 by 0.95 .
About 1710 of the teenagers had reaction times between 0.25 and 0.45 second.

D A \| L Y

INIIERVENIION

Differentiated Instruction

Kinesthetic Ask students to measure carefully the distance around the wrists of 15 classmates to the nearest tenth of a centimeter and find the mean and standard deviation for their data. Then have them determine if this data is normally distributed, or positively or negatively skewed.
b. What is the probability that a teenager selected at random had a reaction time greater than 0.4 second?

The value 0.4 is one standard deviation above the mean. You know that about $100 \%-68 \%$ or 32% of the data are more than one standard deviation away from the mean. By the symmetry of the normal curve, half of 32%, or 16%, of the data are more than one standard deviation above the mean.

The probability that a teenager selected at random had a reaction time greater than 0.4 second is about 16% or 0.16 .

Check for Understanding

Concept Check

1. OPEN ENDED Sketch a positively skewed graph. Describe a situation in which you would expect data to be distributed this way. See margin.
2. Compare and contrast the means and standard deviations of the graphs.

See margin.

$\bar{x}=50$

$\bar{x}=50$

$\bar{x}=50$
3. Explain how to find what percent of a set of normally distributed data is more than 3 standard deviations above the mean. See margin.

Guided Practice
GUIDED PRACTICE KEY

Exercises	Examples
4	1
$5-11$	2

4. The table at the right shows female mathematics SAT scores in 2000. Determine whether the data appear to be positively skewed, negatively skewed, or normally distributed. normally distributed

Score	Percent of Females
$200-299$	3
$300-399$	14
$400-499$	33
$500-599$	31
$600-699$	15
$700-800$	4

Source: www.collegeboard.org
For Exercises 5-7, use the following information.
Mrs. Sung gave a test in her trigonometry class. The scores were normally distributed with a mean of 85 and a standard deviation of 3 .
5. What percent would you expect to score between 82 and 88 ? 68%
6. What percent would you expect to score between 88 and 91? 13.5%
7. What is the probability that a student chosen at random scored between 79 and 91? 95\%

Application QUALITY CONTROL For Exercises 8-11, use the following information.
The useful life of a radial tire is normally distributed with a mean of 30,000 miles and a standard deviation of 5000 miles. The company makes 10,000 tires a month.
8. About how many tires will last between 25,000 and 35,000 miles? 6800
9. About how many tires will last more than 40,000 miles? 250
10. About how many tires will last less than 25,000 miles? 1600
11. What is the probability that if you buy a radial tire at random, it will last between 20,000 and 35,000 miles? 81.5\%
www.algebra2.com/extra_examples
Lesson 12-7 The Normal Distribution 673

Answers

the use of cassettes since CDs were introduced
2. The mean of the three graphs is the same, but the standard deviations are different. The first graph has the least standard deviation, the standard deviation of the middle graph is slightly greater, and the standard deviation of the last graph is greatest.

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- draw graphs of normally distributed, positively skewed, and negatively skewed sets of data.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises... Organization by Objective
 - Normal and Skewed Distributions: 12-14
 - Use Normal Distributions: 15-26

Odd/Even Assignments

Exercises 12, 13, and 15-26 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13, 15-21, 27-44
Average: 13, 22-44
Advanced: 12, 14, 22-41
(optional: 42-44)

1. Sample answer:
the use of cassettes since CDs were introduced
2. Sample answer:

Lene Normal Distribution 673
3. Since 99% of the data is within 3 standard deviations of the mean, 1% of the data is more than 3 standard deviations from the mean. By symmetry, half of this, or 0.5%, is more than 3 standard deviations above the mean.

Study Guide and Intervention, p. 735 (shown) and p. 736

For Exercises 3 and 4, use the frequency table that
shows the number of hours worked
100 high school seniors.
3. Make a histogram of the data.
4. Do the data appear to be positively
skewedd negatively skewed, or nornally distributed? Explain.
Positively skewed; the histogram is high at the left
and has a tail to the right.

TESTING For Exercises 5-10, use the following information. The scores on a test administered to prospective employees are nor
mean of 100 and a standard deviation of 15 .
5. About what percent of the scores are between 70 and $130 ? ~ 95 \%$
6. About what percent of the scores are between 85 and $130 ? 81.5 \%$
7. About what percent of the scores are over 115 ? 16%
8. About what percent of the scores are lower than 85 or higher than 115 ? 32%
9. If 80 people take the test, how many would you expect to score higher than 130 ? 2
10. If 75 people take the test, how many would you expect to score lower than 85 ? 12
11. TEMPERATURE The daily July surface temperature of a lake at a resort has a mean of

Reading to Learn

 ELL
Mathematics, p. 739

Pre-Activity How are the heights of professional athletes distributed? There were 53 players on the team and the mean height was approximately There were 53 players on the team and the mean height was approximately
73.6 About what fraction of the players heights are between 72 and 75 ,
inclusive? Sample answer: about $\frac{2}{3}$ inclusive? Sample answer: about $\frac{2}{3}$
Reading the Lesson

1. Indicate whether each of the following statements is true or false.
a. In a continuous probability distribution, there is a finite number of possible
outcomes. false
b. Every normal distribution can be represented by a bell curve. true
c. A distribution that is represented by a curve that is high at the left an
the right is negatively skewed. false
d. A normal distribution is an example of a skewed distribution. false

2. Ms. Rose gave the First-period class:

Scorere	0	1	2	3	4	5	6	7	8	9	10
Frequency	1	0	1	0	3	4	5	7	4	3	2

Fitth-period class:

Score	0	1	2	3	4	5	6	7	8	9	10
Froquency	0	0	0	0	3	4	9	7	6	1	0

In each class, 30 students took the quiz, The mean score for each class was 6.4 . Which
set of scores has the rreater standard deviation? (Answer this question without doing any calculations.) Explain your answer.
First period class; sample answer: The scores are more spread out from
the mean than for the fifth period class.

Helping You Remember

3. Many students have trouble remembering how to determine if a curve represents listribution that
Sample answer: Follow the taill If the tail is on the right (positive
direction), the distribution is positively skewed If the direction), the distribution is positively skewed If the tail is on the left

Practice and Apply

Homework Help

For Exercises	See Examples
$12-14$	1
$15-26$	2

Extra Practice
See page 856
13. normally
distributed

Determine whether the data in each table appear to be positively skewed, negatively skewed, or normally distributed.
12.

U.S. Population	
Age	Percent
$0-19$	28.7
$20-39$	29.3
$40-59$	25.5
$60-79$	13.3
$80-99$	3.2
$100+$	0.0

Source: U.S. Census Bureau
positively skewed
13. Record Low Temperatures
in the 50 States
Temperature Number

(${ }^{\circ}$ F)	of States
-80 to -65	4
-64 to -49	12
-48 to -33	19
-32 to -17	12
-16 to -1	2
0 to 15	1

Source: The World Almanac
14. SCHOOL The frequency table at the right shows the grade-point averages (GPAs) of the juniors at Stanhope High School. Do the data appear to be positively skewed, negatively skewed, or normally distributed? Explain. Negatively skewed; the histogram is high at the right and has a tail to the left.

FOOD For Exercises 15-17, use the following information.
The shelf life of a particular dairy product is normally distributed with a mean of 12 days and a standard deviation of 3.0 days.

GPA	Frequency
$0.0-0.4$	4
$0.5-0.9$	4
$1.0-1.4$	2
$1.5-1.9$	32
$2.0-2.4$	96
$2.5-2.9$	91
$3.0-3.4$	110
$3.5-4.0$	75

15. About what percent of the products last between 9 and 15 days? 68%
16. About what percent of the products last between 12 and 15 days? 34%
17. About what percent of the products last less than 3 days? 0.5%
18. About what percent of the products last more than 15 days? $\mathbf{1 6 \%}$

VENDING For Exercises 19-21, use the following information.
The vending machine in the school cafeteria usually dispenses about 6 ounces of soft drink. Lately, it is not working properly, and the variability of how much of the soft drink it dispenses has been getting greater. The amounts are normally distributed with a standard deviation of 0.2 ounce.
19. What percent of the time will you get more than 6 ounces of soft drink? 50%
20. What percent of the time will you get less than 6 ounces of soft drink? 50%
21. What percent of the time will you get between 5.6 and 6.4 ounces of soft drink? 95\%

MANUFACTURING For Exercises 22-24, use the following information.

 A company manufactures 1000 CDs per hour that are supposed to be 120 millimeters in diameter. These CDs are made for drives 122 millimeters wide. The sizes of CDs made by this company are normally distributed with a standard deviation of 1 millimeter. 22.50\%22. What percent of the CDs would you expect to be greater than 120 millimeters?
23. In one hour, how many CDs would you expect to be between 119 and 122 millimeters? 815
24. About how many CDs per hour will be too large to fit in the drives? 25

674 Chapter 12 Probability and Statistics

Enrichment, p. 740

Street Networks: Finding All Possible Routes

Answer

27. The mean would increase by 25 ; the standard deviation would not change; and the graph would be translated 25 units to the right.

Health.
A systolic blood pressure below 130 is normal and between 130 and 139 is
"high normal."
Source: National Institutes of Health

Standardized Test Practice (A) (B) C (D)

HEALTH For Exercises 25 and 26, use the following information.
A recent study showed that the systolic blood pressure of high school students ages $14-17$ is normally distributed with a mean of 120 and a standard deviation of 12 . Suppose a high school has 800 students.
25. About what percent of the students have blood pressures below 108? 16\%
26. About how many students have blood pressures between 108 and 144? 652
27. CRITICAL THINKING The graphing calculator screen shows the graph of a normal distribution for a large set of test scores whose mean is 500 and whose standard deviation is 100. If every test score in the data set were increased by 25 points, describe how the mean, standard deviation, and graph of the data would change. See margin.

[200, 800] scl: 100 by [0, 0.005] scl: 0.001
28. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How are the heights of professional athletes distributed?
Include the following items in your answer:

- a histogram of the given data, and
- an explanation of whether you think the data are normally distributed.

29. If $x+y=5$ and $x y=6$, what is the value of $x^{2}+y^{2}$? \mathbf{A}
(A) 13
(B) 17
(C) 25
(D) 37
30. Which of the following is not the square of a rational number? D
(A) 0.04
(B) 0.16
(C) $\frac{4}{9}$
(D) $\frac{2}{3}$

Maintain Your Skills

Mixed Review
Find the variance and standard deviation of each set of data to the nearest tenth. (Lesson 12-6)
31. $\{7,16,9,4,12,3,9,4\} 17.5,4.2$ 32. $\{12,14,28,19,11,7,10\} 42.5,6.5$

A card is drawn from a standard deck of cards. Find each probability. (Lesson 12-5) 33. P (jack or queen) $\frac{2}{13} \quad$ 34. P (ace or heart) $\frac{4}{13} \quad$ 35. $P\left(2\right.$ or face card) $\frac{4}{13}$ Find all of the rational zeros for each function. (Lesson 7-6) 39. $\frac{1}{4}, 1$
36. $f(x)=x^{3}+4 x^{2}-5 x-5,0,1$
37. $p(x)=x^{3}-3 x^{2}-10 x+24-3,2,4$
38. $h(x)=x^{4}-2 x^{2}+11,-1$
39. $f(x)=4 x^{4}-13 x^{3}-13 x^{2}+28 x-6$

METEOROLOGY For excercises 40 and 41, use the following information.
Weather forecasters can determine the approximate time that a thunderstorm will last if they know the diameter d of the storm in miles. The time t in hours can be found by using the formula $216 t^{2}=d^{3}$. (Lesson 6-2)
40. Graph $y=216 t^{2}-5^{3}$ and use it to estimate how long a thunderstorm will last if its diameter is 5 miles. See margin for graph; about 45 min .
41. Find how long a thunderstorm will last if its diameter is 5 miles and compare this time with your estimate in Exercise 40.0 .76 h

Getting Ready for the Next Lesson

PREREQUISITE SKILL Find the indicated term of each expression. 42. $21 a^{5} b^{2}$ (For review of binomial expansions, see Lesson 5-2.) 43.56 $c^{5} d^{3} 44.126 x^{5} y^{4}$
42. third term of $(a+b)^{7} \quad$ 43. fourth term of $(c+d)^{8} \quad$ 44. fifth term of $(x+y)^{9}$
www.algebra2.com/self_check_quiz
Lesson 12-7 The Normal Distribution 675

Answer

28. If a large enough group of athletes is studied, some of the characteristics may be normally distributed; others may have skewed distributions. Answers should include the following.

- See graph at the right.
- Since the histogram has two peaks, the data may not be normally distributed. This may be due to players who play certain positions tending to be of similar large sizes while players who play the other positions tend to be of similar smaller sizes.

Lesson 12-7 The Normal Distribution 675

1 Focus

5-Minute Check

Transparency 12-8 Use as a quiz or review of Lesson 12-7.

Mathematical Background notes are available for this lesson on p. 630D.

Building on Prior Knowledge

In Chapter 11, students learned to use the Binomial Theorem. In this lesson, students will use the Binomial Theorem to find probabilities.

How can you determine whether guessing is

worth it?
Ask students:

- How many choices are there for each question? 4
- If you guess at random, without being able to eliminate any of the choices, what is the probability of selecting the correct answer on one question? 1 out of 4 or 25%

12-8 Binomial Experiments

What You'll Learn

- Use binomial expansions to find probabilities.
- Find probabilities for binomial experiments.

Vocabulary

binomial experiment

Study Tip

Look Back
To review the Binomial
Theorem, see Lesson 11-7.

How can you determine whether guessing is worth it?

What is the probability of getting exactly 4 questions correct on a 5 -question multiple-choice quiz if you guess at every question?

BINOMIAL EXPANSIONS You can use the Binomial Theorem to find probabilities in certain situations where there are two possible outcomes. The 5 possible ways of getting 4 questions right r and 1 question wrong w are shown at the right. This chart shows the combination of 5 things (answer
 choices) taken 4 at a time (right answers) or $C(5,4)$.
The terms of the binomial expansion of $(r+w)^{5}$ can be used to find the probabilities of each combination of right and wrong.

$$
(r+w)^{5}=r^{5}+5 r^{4} w+10 r^{3} w^{2}+10 r^{2} w^{3}+5 r w^{4}+w^{5}
$$

Coefficient	Term	Meaning
$C(5,5)=1$	r^{5}	1 way to get all 5 questions right
$C(5,4)=5$	$5 r^{4} w$	5 ways to get 4 questions right and 1 question wrong
$C(5,3)=10$	$10 r^{3} w^{2}$	10 ways to get 3 questions right and 2 questions wrong
$C(5,2)=10$	$10 r^{2} w^{3}$	10 ways to get 2 questions right and 3 questions wrong
$C(5,1)=5$	$5 r w^{4}$	5 ways to get 1 question right and 4 questions wrong
$C(5,0)=1$	w^{5}	1 way to get all 5 questions wrong

The probability of getting a question right that you guessed on is $\frac{1}{4}$. So, the probability of getting the question wrong is $\frac{3}{4}$. To find the probability of getting 4 questions right and 1 question wrong, substitute $\frac{1}{4}$ for r and $\frac{3}{4}$ for w in the term $5 r^{4} w$.
$P(4$ right, 1 wrong $)=5 r^{4} w$

$$
\begin{array}{ll}
=5\left(\frac{1}{4}\right)^{4}\left(\frac{3}{4}\right) & r=\frac{1}{4}, w=\frac{3}{4} \\
=\frac{15}{1024} & \text { Multiply. }
\end{array}
$$

The probability of getting exactly 4 questions correct is $\frac{15}{1024}$ or about 1.5%.
676 Chapter 12 Probability and Statistics

Resource Manager

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 741-742
- Skills Practice, p. 743
- Practice, p. 744
- Reading to Learn Mathematics, p. 745
- Enrichment, p. 746

School-to-Career Masters, p. 24 Teaching Algebra With Manipulatives Masters, p. 294

Transparencies

5-Minute Check Transparency 12-8
Answer Key Transparencies

- Technology

Interactive Chalkboard

Example 1 Binomial Theorem

If a family has 4 children, what is the probability that they have 3 boys and 1 girl?
There are two possible outcomes for the gender of each of their children: boy or girl. The probability of a boy b is $\frac{1}{2}$, and the probability of a girl g is $\frac{1}{2}$.
$(b+g)^{4}=b^{4}+4 b^{3} g+6 b^{2} g^{2}+4 b g^{3}+g^{4}$
The term $4 b^{3} g$ represents 3 boys and 1 girl.
$P(3$ boys, 1 girl $)=4 b^{3} g$

$$
\begin{array}{ll}
=4\left(\frac{1}{2}\right)^{3}\left(\frac{1}{2}\right) & b=\frac{1}{2^{\prime}}, g=\frac{1}{2} \\
=\frac{1}{4} & \text { Multiply. }
\end{array}
$$

The probability of 3 boys and 1 girl is $\frac{1}{4}$ or 25%.

BINOMIAL EXPERIMENTS Problems like Example 1 that can be solved using binomial expansion are called binomial experiments.

Key Concept

Binomial Experiments
A binomial experiment exists if and only if all of these conditions occur.

- There are exactly two possible outcomes for each trial.
- There is a fixed number of trials.
- The trials are independent.
- The probabilities for each trial are the same.

A binomial experiment is sometimes called a Bernoulli experiment.
Suppose that in the application at the beginning of the lesson, the first 3 questions are answered correctly. Then the last 2 are answered incorrectly. The probability of this occurring is $\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} \cdot \frac{3}{4} \cdot \frac{3}{4}$ or $\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2}$. In general, there are $C(5,3)$ ways to arrange 3 correct answers among the 5 questions, so the probability of exactly 3 correct answers is given by $C(5,3)\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2}$.

Example 2 Binomial Experiment

SPORTS Suppose that when hockey star Jaromir Jagr takes a shot, he has a $\frac{1}{7}$ probability of scoring a goal. He takes 6 shots in a game one night.
a. What is the probability that he will score exactly 2 goals?

The probability that he scores a goal on a given shot is $\frac{1}{7}$. The probability that
he does not score on a given shot is $\frac{6}{7}$. There are $C(6,2)$ ways to choose the 2 shots that score.
$P(2$ goals $)=C(6,2)\left(\frac{1}{7}\right)^{2}\left(\frac{6}{7}\right)^{4}$ If he scores on 2 shots, he fails to score on 4 shots.

$$
\begin{array}{ll}
=\frac{6 \cdot 5}{2}\left(\frac{1}{7}\right)^{2}\left(\frac{6}{7}\right)^{4} & C(6,2)=\frac{6!}{4!2!} \\
=\frac{19,440}{117,649} & \text { Simplify. }
\end{array}
$$

The probability that Jagr will score exactly 2 goals is $\frac{19,440}{117,649}$ or about 0.17 .

D A I L Y

 INIIERVENIION
Differentiated Instruction

Kinesthetic Have students in small groups do a binomial experiment by tossing a ball into the wastebasket about 20 times to establish the probability of scoring a goal. Then have them find the probability that they will score exactly 4 goals in 8 tries.

2 Teach

BINOMIAL EXPANSIONS

In-Class Example

Teaching Tip This example assumes that the chance for having a boy is 1 out of 2 . Actually, from a biological standpoint, this is not quite accurate. In the U.S., about 1050 males are born for each 1000 females.

1 If a family has 4 children, what is the probability that they have 2 girls and 2 boys? 37.5\%

BINOMIAL EXPERIMENTS

In-Class Example

2 A report said that approximately 1 out of 6 cars sold in a certain year was green. Suppose a salesperson sells 7 cars per week.
a. What is the probability that this salesperson will sell exactly 3 green cars in a week? about 0.078
b. What is the probability that this salesperson will sell at least 3 green cars in a week? about 0.096

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 12.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..

Organization by Objective

- Binomial Expansions: 12-37
- Binomial Experiments: 12-37

Odd/Even Assignments
Exercises 12-33 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercises 42-43 require a graphing calculator.

Assignment Guide

Basic: 13-31 odd, 35, 38-41, 44-56

Average: 13-35 odd, 36-41, 44-56 (optional: 42, 43)
Advanced: 12-34 even, 36-50 (optional: 51-56)
b. What is the probability that he will score at least 2 goals?

Instead of adding the probabilities of getting exactly $2,3,4,5$, and 6 goals, it is easier to subtract the probabilities of getting exactly 0 or 1 goal from 1 .

$$
\begin{aligned}
P(\text { at least } 2 \text { goals }) & =1-P(0 \text { goals })-P(1 \text { goal }) \\
& =1-C(6,0)\left(\frac{1}{7}\right)^{0}\left(\frac{6}{7}\right)^{6}-C(6,1)\left(\frac{1}{7}\right)^{1}\left(\frac{6}{7}\right)^{5} \\
& =1-\frac{46,656}{117,649}-\frac{46,656}{117,649} \quad \text { Simplify. } \\
& =\frac{24,337}{117,649} \quad \text { Subtract. }
\end{aligned}
$$

The probability that Jagr will score at least 2 goals is $\frac{24,337}{117,649}$ or about 0.21 .

Check for Understanding

Concept Check

1. Sample answer: In a 5 -card hand, what is the probability that at least 2 cards are hearts?
2. RRRWW, RRWRW, RRWWR, RWRRW, RWRWR, RWWRR, WRRRW, WRRWR, WRWRR, WWRRR

Guided Practice
GUIDED PRACTICE KEY Exercises Examples

1. OPEN ENDED Describe a situation for which the P (2 or more) can be found by using a binomial expansion.
2. Refer to the application at the beginning of the lesson. List the possible sequences of 3 right answers and 2 wrong answers
3. Explain why each experiment is not binomial. $\begin{aligned} & \text { 3a. Each trial has } \\ & \text { possible outcomes }\end{aligned}$
a. rolling a die and recording whether a $1,2,3,4,5$, or 6 comes up
b. tossing a coin repeatedly until it comes up heads The number of trials
is not fixed.
c. removing marbles from a bag and recording whether each one is black or white, if no replacement occurs The trials are not independent.
Find each probability if a coin is tossed 3 times.
4. P (exactly 2 heads) $\frac{3}{8}$
5. $P(0$ heads $) \frac{1}{8}$
6. P (at least 1 head) $\frac{7}{8}$

Four cards are drawn from a standard deck of cards. Each card is replaced before the next one is drawn. Find each probability.
7. $P(4$ jacks $) \frac{1}{28,561}$
8. P (exactly 3 jacks) $\frac{48}{28,561} 9$. P (at most 1 jack) $\frac{27,648}{28,561}$

Application SPORTS For Exercises 10 and 11, use the following information.
Jessica Mendoza of Stanford University was the 2000 NCAA women's softball batting leader with an average of .475 . This means that the probability of her getting a hit in a given at-bat was 0.475 .
10. Find the probability of her getting 4 hits in 4 at-bats. about 0.05
11. Find the probability of her getting exactly 2 hits in 4 at-bats. about 0.37

* indicates increased difficulty

Practice and Apply

See page 856.

Homework Help	Find each probability if a coin is tossed 4 times.	
For	See Exemples	12. $P\left(4\right.$ tails $\frac{1}{16}$

Find each probability if a coin is tossed 4 times.
12. $P(4$ tails $) \frac{1}{16}$
13. $P(0$ tails $) \frac{1}{16}$
16. P (at least 3 tails) $\frac{5}{16}$
17. P (at most 2 tails) $\frac{11}{16}$

Find each probability if a die is rolled 5 times.
18. P (exactly one 5) $\frac{3125}{7776}$
7776625
19. $P($ exactly three $5 s)$
21. P (at least three 5 s) $\frac{23^{\frac{125}{3888}}}{648}$

678 Chapter 12 Probability and Statistics

As an apartment manager, Jackie Thomas is responsible for showing prospective renters different models of apartments. When showing a model, the probability that she selects the correct key from her set is $\frac{1}{4}$. If she shows 5 models in a day,
find each probability.
22. P (never the correct key)
24. P (correct exactly 4 times)
$\frac{243}{1024}_{15}$
26. P (no more than 2 times correct) $\frac{459}{512}$
23. P (always the correct key)
$\begin{aligned} & \text { 25. } P \text { (correct exactly } 2 \text { times) } \\ & \frac{135}{512} \\ & \text { 27. } P \text { (at least } 3 \text { times correct) }\end{aligned} \frac{\frac{5}{512}}{51024}$

Prisana guesses at all 10 true/false questions on her history test. Find each
probability.
28. P (exactly 6 correct) $\frac{105}{512}$
30. P (at most half correct) $\frac{319}{512}$
29. P (exactly 4 correct) $\frac{105}{512}$
30. P (at most half correct) $\frac{319}{512}$
31. P (at least half correct) $\frac{319}{512}$

If a thumbtack is dropped, the probability of it landing point-up is 0.4 . If $\mathbf{1 2}$ tacks are dropped, find each probability.
\star 32. P (at least 9 points up) about $0.02 \star$ 33. P (at most 4 points up) about 0.44

More About.

Internet .
The word Internet was virtually unknown until the mid-1980s. By 1997, 19 million Americans were using the Internet. That number tripled in 1998 and passed 100 million in 1999. Source: UCLA
34. CARS According to a recent survey, about 1 in 3 new cars is leased rather than bought. What is the probability that 3 of 7 randomly-selected new cars are leased? 560 $\frac{5187}{}$
35. INTERNET In 2001, it was estimated that 32.5% of U.S. adults use the Internet. What is the probability that exactly 2 out of 5 randomly-selected U.S. adults use the Internet? about 0.32

WORLD CULTURES For Exercises 36 and 37, use the following information. The Cayuga Indians played a game of chance called Dish, in which they used 6 flattened peach stones blackened on one side. They placed the peach stones in a wooden bowl and tossed them. The winner was the first person to get a prearranged number of points. The table below shows the points that were given for each toss. Assume that each face (black or neutral) of each stone has an equal chance of showing up.
36. Copy and complete the table by finding the probability of each outcome.
37. Find the probability that a player gets at least 1 point for a toss. $\frac{1}{4}$
38. CRITICAL THINKING Write an expression for the probability of exactly m successes in n trials of a binomial experiment where the probability of success in a given trial is $p . C(n, m) p^{m}(1-p)^{n-m}$
39. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 695A-695B.
How can you determine whether guessing is worth it?
Include the following in your answer:

- an explanation of how to find the probability of getting any number of questions right on a 5 -question multiple-choice quiz, and
- the probability of each score.
wwww.algebra2.com/self_check_quiz
Lesson 12-8 Binomial Experiments 679

Study Guide and Intervention, p. 741 (shown) and p. 742


```
    Skills Practice, P. 743 and
    Practice, P. 744 (shown)
Find each probability if a coin is tossed 6 times.
\(\begin{array}{ll}\text { 1. } P \text { exactly } 3 \text { tails) } \frac{5}{16} & \text { 2. } P \text { (exactly } 5 \text { tails) } \frac{3}{32}\end{array}\)
3. \(P(0\) tails \() \frac{1}{64} \quad\) 4. \(P\) (at least 4 heads) \(\frac{11}{32}\)
5. \(P\) (at least 4 tails) \(\frac{11}{32} \quad\) 6. \(P\) (at most 2 tails \(\frac{11}{32}\)
The probability of Chris making a free throw is \(\frac{2}{3}\). If she shoots 5 times, find each
probability
probability
7. (all missed) \(\frac{1}{243} \quad\) 8. \(P\) (all made) \(\frac{32}{243}\)
9. \(P\) (exactly 2 made \() \frac{40}{243} \quad\) 10. \(P\) (exactly 1 missed \() \frac{80}{243}\)
11. \(P\) (at least 3 made) \(\frac{64}{81} \quad\) 12. \(P\) (at most 2 made) \(\frac{17}{81}\)
When Tarin and Sam play a certain board game, the probability that Tarin will win
a game is \(\frac{3}{4}\). If they play 5 games, find each probability.
13. \(P\) (Sam wins only once) \(\frac{405}{1024} \quad\) 14. \(P\) (Tarin wins exactly twice) \(\frac{45}{512}\)
15. \(P\) (Sam wins exactly 3 games) \(\frac{45}{512} \quad\) 16. \(P\) (Sam wins at least 1 game) \(\frac{781}{1024}\)
17. \(P\) (Tarin wins at least 3 games) \(\frac{459}{512} \quad\) 18. \(P\) (Tarin wins at most 2 games) \(\frac{53}{512}\)
```

 19. SAFETY In Ausust 2001, the American Automobile Association reported that \(73 \%\) of
 Americans use seat belts. In arandon selection of 10 Americans in 20001, what is the
probability that exactly half of them use seat belts? soureesu about 7.5%

20. In a randomly selected group of 10 heart transplant recipients, what is the probability
that at least 8 of them are ages $50-64 ? \frac{7}{128}$
21. In a randomly selected group of 5 heart transplant recipients, what is the probability
that 2 of them are ages $35-49$? $\frac{128}{625}$
Reading to Learn
Mathematics, P. 745

Pre-Activity How can you determine whether guessing is worth it? Read the introduction to Lesson $12-8$ at the top of page 676 in your textbook Suppose you are taking a 50 -question multiple-choice test in which there
are 5 answer choices for each question. You are told that no points will be deducted for wrong answers. Should you guess the answers to the question
you do not know? Explain your reasoning. Sample answer: Yes; the probability of guessing the right answer to a question is $\frac{1}{5}$, so you have a chance to get some points by guessing, and you
have nothing to lose.
Reading the Lesson

1. Indicate whether each of the following is a binomial experiment or not a binomial
experiment. If the experiment is not a binomial experiment, explain why.
a. A fair coin is tossed 10 times and "heads" or "tails" is recorded each time. binomial
b. A pair of dice is thrown 5 times and the sum of the numbers that come up is recorde eoutcomes for each trial.
c. There are 5 red marbles and 6 blue marbles in a bag. One marble is drawn from the aya and its color recorred. The marble is not put back in the bag. A second marble it
drawn and its color recorded. Not a binomial experiment; the trials are not independent (r , the probabilities for the two trials are not the same). d. There are 5 red marbles and 6 blue marbles in a bag. One marble is drawn from the bag and its color recorded. The marble is put back in the
drawn and its color recorded. binomial experiment
2. Len randomly guesses the answers to all 6 multitle-choice questions on his chemistry
test. Each question has 5 choices. Which of the following expressions gives the test. Each question has 5 chioces. Which of the following expressions on gives the A. $P\left(6,4\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{2}+P(6,5)\left(\frac{1}{5}\right)^{5}\left(\frac{4}{5}\right)^{1}+P(6,6)\left(\frac{1}{5}{ }^{6}\left(\frac{4}{5}\right)^{0}\right.\right.$
B. $C(6,4)\left(\frac{1}{5}\right)^{4}\left(\frac{4}{5}\right)^{2}+C(6,5)\left(\frac{1}{5}\right)^{5}\left(\frac{4}{5}\right)^{1}+C(6,6)\left(\frac{1}{5}\right)^{6}\left(\frac{4}{5}\right)^{0}$
C. $C(6,4)\left(\frac{1}{5}\right)^{2}\left(\frac{4}{5}\right)^{4}+C(6,5)\left(\frac{1}{5}\right)^{1}\left(\frac{4}{5}\right)^{5}+C(6,6)\left(\frac{1}{5}\right)^{0}\left(\frac{4}{5}\right)^{6}$

Helping You Remember

3. Some students have trouble remembering how to calculate binomial probabilities. What is
an easy way to remember which numbers to put into an expression like $C(6,4)\left(\frac{1}{2}\left(\frac{4}{4}\right)^{4}\right.$? an easy way to remember which numbers to put into an expression like $C(6,4)^{\left.\left(\frac{1}{5}\right)^{2}\right)}\left(\frac{2}{5}\right)^{4}$?
Sample answer: The binomial coefficient is $C(n, r)$, where n is the number of trials and r is the number of successes. The probability of success
raised to the r th power and the probability of failure is raised to the $\underset{(n-r) \text { th power. }}{\substack{\text { raised to the } r \\(t)}}$

Lesson 12-8 Binomial Experiments

4 Assess

Open-Ended Assessment

Speaking Ask students to use their own families, for example, 2 boys and a girl, and find the probabilities for that particular group of siblings. Then have students explain the steps they used.

Getting Ready for

Lesson 12-9
PREREQUISITE SKILL Lesson 12-9 presents finding sources of bias and sampling error. Students will use their familiarity with evaluating radical expressions as they find the margin of error. Exercises $51-54$ should be used to determine your students' familiarity with finding the value of a radical expression.

Answers

48.

49.

50.

Standardized
Test Practice
(A) (B) C (D)
42. See students' work.

BINOMIAL DISTRIBUTION You can use a TI-83 Plus to investigate the graph of a binomial distribution.
Step 1 Enter the number of trials in L1. Start with 10 trials.

Step 2 Calculate the probability of success for each trial in L2.
KEYSTROKEs: $\boldsymbol{\Delta}$ 2nd [DISTR] $010 \square, 5 \square$ 2nd [LI] \square ENTER
Step 3 Graph the histogram.
KEYSTROKES: 2nd [STATPLOT]
Use the arrow and ENTER keys to choose ON, the histogram, L1 as the Xlist, and L2 as the frequency. Use the window $[0,10]$ scl:1 by $[0,0.5]$ scl: 0.1 .
40. GRID IN In the figure, if $D E=2$, what is the sum of the area of $\triangle A B E$ and the area of $\triangle B C D$? 2
41. What is the net result if a discount of 5% is applied to a bill of $\$ 340.60$? B
(A) $\$ 306.54$
(B) $\$ 323.57$
(C) $\$ 335.60$
(D) $\$ 357.63$

42. Replace the 10 in the keystrokes for steps 1 and 2 to graph the binomial distribution for several values of n less than or equal to 47 . You may have to adjust your viewing window to see all of the histogram. Make sure Xscl is 1.
43. What type of distribution does the binomial distribution start to resemble as n increases? normal distribution

Maintain Your Skills

Mixed Review For Exercises 44-46, use the following information.
A set of 400 test scores is normally distributed with a mean of 75 and a standard deviation of 8 . (Lesson 12-7)
44. What percent of the test scores lie between 67 and 83 ? 68%
45. How many of the test scores are greater than 91 ? 10
46. What is the probability that a randomly-selected score is less than 67 ? 16%
47. A salesperson had sales of $\$ 11,000, \$ 15,000, \$ 11,000, \$ 16,000, \$ 12,000$, and $\$ 12,000$ in the last six months. Which measure of central tendency would he be likely to use to represent these data when he talks with his supervisor? Explain. (Lesson 12-6) Mean; it is highest.

Graph each inequality. (Lesson 2-7) 48-50. See margin.
48. $x \geq-3$
49. $x+y \leq 4$
50. $y>|5 x|$

Getting Ready for
PREREQUISITE SKILL Evaluate $2 \sqrt{\frac{p(1-p)}{n}}$ for the given values of p and n. Round to the nearest thousandth, if necessary. (For review of radical expressions, see Lesson 5-6.)
51. $p=0.5, n=1000.1$
52. $p=0.5, n=4000.05$
53. $p=0.25, n=5000.039$
54. $p=0.75, n=10000.027$
55. $p=0.3, n=5000.041$
56. $p=0.6, n=10000.031$

680 Chapter 12 Probability and Statistics

Answers (p. 681)

5. The class results should be better since it is a much larger set of data.
6. Sample answer: Put 20 marbles- 5 red, 3 , yellow, 3 blue, 3 green, 3 orange, and 3 black-into a bag. The red will represent Amazing Amy, and the other colors will represent each of the other prizes.

Simulations

A simulation uses a probability experiment to mimic a real-life situation. You can use a simulation to solve the following problem.

A brand of cereal is offering one of six different prizes in every box. If the prizes are equally and randomly distributed within the cereal boxes, how many boxes, on average, would you have to buy in order to get a complete set of the six prizes?

Collect the Data

Work in pairs or small groups to complete steps 1 through 4.

Step 1 Use the six numbers on a die to represent the six different prizes.

Step 2 Roll the die and record which prize was in the first box of cereal. Use a tally sheet like the one shown.

Step 3 Continue to roll the die and record the prize number until you have a complete set of prizes. Stop as soon as you have a complete set. This is the end of one trial in your simulation. Record the number of boxes required for this trial.

Step 4 Repeat steps 1, 2, and 3 until your group has carried out 25 trials. Use a new tally sheet for each trial.

Analyze the Data 1-2. See pp. 695A-695B.

1. Create two different statistical graphs of the data collected for 25 trials.
2. Determine the mean, median, maximum, minimum, and standard deviation of the total number of boxes needed in the 25 trials.
3. Combine the small-group results and determine the mean, median, maximum, minimum, and standard deviation of the number of boxes required for all the trials conducted by the class. See students' work.

Make a Conjecture

4. If you carry out 25 additional trials, will your results be the same as in the first 25 trials? Explain. Probably not; the outcomes of the trials are random since you are rolling a die.
5. Should the small-group results or the class results give a better idea of the average number of boxes required to get a complete set of superheroes? Explain. See margin.
6. If there were 8 superheroes instead of 6 , would you need to buy more boxes of cereal or fewer boxes of cereal on average? more
7. What if one of the 6 prizes was more common than the other 5 ? For instance, suppose that one prize, Amazing Amy, appears in 25% of all the boxes and the other 5 prizes are equally and randomly distributed among the remaining 75% of the boxes? Design and carry out a new simulation to predict the average number of boxes you would need to buy to get a complete set. Include some measures of central tendency and dispersion with your data. See margin.

Simulation Tally Sheet	
Prize Number	Boxes Purchased
1	
2	
3	
4	
5	
6	
Total Needed	

A Follow-Up of Lesson 12-8

Getting Started

Objective Simulate a real-life situation, collect data, and do a statistical analysis.

Materials

one die for each group

Teach

- Ask students why rolling a die can simulate this problem. because it has 6 random outcomes
- Ask students before they collect their data if they would expect every group in the class to have the same results. Probably not, since you are finding experimental and not theoretical probabilities.
- Have students complete the simulation to collect data and then complete Exercises 1-7.

Assess

- In Exercises 1-3, students should be able to collect and organize data in a usable form and find various statistical measures.
- In Exercises 4-7, students should conclude that the greater the number of trials, the closer the experimental probabilities will be to the theoretical probabilities. They should also recognize that changes in the parameters of the experiment affect the outcomes.

Resource Manager

Teaching Algebra with Manipulatives

- p. 22 (master for die patterns)
- p. 295 (student recording sheet)

Glencoe Mathematics Classroom Manipulative Kit

- dice

Study Notebook

You may wish to have students summarize this activity and what they learned from it.

12-9 Sampling and Error

What You'll Learn

1 Focus

5-Minute Check

Transparency 12-9 Use as a quiz or review of Lesson 12-8.

Mathematical Background notes are available for this lesson on p. 630D.

How
 are opinion polls used in political campaigns?

Ask students:

- Do the results of this poll indicate beyond doubt that Bush will be the victor? No, the 7\% undecided could be the deciding margin in the actual election.
- What is the difference between the Other category and the Undecided category? Those in the Other category are probably going to vote for a candidate other than Bush or Gore, while those in the Undecided category might be added to the total for one of those two.

Vocabulary

unbiased sample
margin of sampling error

- Determine whether a sample is unbiased.
- Find margins of sampling error.

How are opinion polls used in political campaigns?

About a month before the 2000 presidential election, Mason-Dixon Polling \& Research surveyed the preferences of Florida voters. The results shown were published in the Orlando Sentinel.

BIAS When polling organizations want to find how the public feels about an issue, they do not have the time or money to ask everyone. Instead, they obtain their results by polling a small portion of the population. To be sure that the results are representative of the population, they need to make sure that this portion is a random or unbiased sample of the population. A sample of size n is random when every possible sample of size n has an equal chance of being selected.

Example 1 Biased and Unbiased Samples

State whether each method would produce a random sample. Explain.
a. asking every tenth person coming out of a health club how many times a week they exercise to determine how often people in the city exercise
This would not result in a random sample because the people surveyed would probably exercise more often than the average person.
b. surveying people going into an Italian restaurant to find out people's favorite type of food
This would probably not result in a random sample because the people surveyed would probably be more likely than others to prefer Italian food.

MARGIN OF ERROR As the size of a sample increases, it more accurately reflects the population. If you sampled only three people and two prefer Brand A, you could say, "Two out of three people chose Brand A over any other brand," but you may not be giving a true picture of how the total population would respond. The margin of sampling error (ME) gives a limit on the difference between how a sample responds and how the total population would respond.

Key Concept

Margin of Sampling Error
If the percent of people in a sample responding in a certain way is p and the size of the sample is n, then 95% of the time, the percent of the population responding in that same way will be between $p-M E$ and $p+M E$, where

$$
M E=2 \sqrt{\frac{p(1-p)}{n}}
$$

Resource Manager

Workbook and Reproducible Masters

Chapter 12 Resource Masters

- Study Guide and Intervention, pp. 747-748

Science and Mathematics Lab Manual, pp. 57-62

- Skills Practice, p. 749
- Practice, p. 750
- Reading to Learn Mathematics, p. 751
- Enrichment, p. 752
- Assessment, p. 768

Transparencies

5-Minute Check Transparency 12-9
Answer Key Transparencies

- Technology

Interactive Chalkboard

Example 2 Find a Margin of Error

In a survey of 1000 randomly selected adults, 37% answered "yes" to a particular question. What is the margin of error?

$$
\begin{aligned}
M E & =2 \sqrt{\frac{p(1-p)}{n}} & & \text { Formula for margin of samp } \\
& =2 \sqrt{\frac{0.37(1-0.37)}{1000}} & & p=37 \% \text { or } 0.37, n=1000 \\
& \approx 0.030535 & & \text { Use a calculator. }
\end{aligned}
$$

The margin of error is about 3%. This means that there is a 95% chance that the percent of people in the whole population who would answer "yes" is between $37-3$ or 34% and $37+3$ or 40%.

Published survey results often include the margin of error for the data. You can use this information to determinine the sample size.

More About

Health
The percent of smokers in the United State population declined from 38.7% in 1985 to 25.8% in 1999. New therapies, like the nicotine patch, are helping more people to quit.
Source: U.S. Department of Heath and Human Services

Example 3 Analyze a Margin of Error

- HEALTH In a recent Gallup Poll, 25% of the people surveyed said they had smoked cigarettes in the past week. The margin of error was 3%.
a. What does the 3% indicate about the results?

The 3\% means that the probability is 95% that the percent of people in the population who had smoked cigarettes in the past week was between $25-3$ or 22% and $25+3$ or 28%.
b. How many people were surveyed?

$$
\begin{aligned}
M E & =2 \sqrt{\frac{p(1-p)}{n}} & & \text { Formula for margin of sampling error } \\
0.03 & =2 \sqrt{\frac{0.25(1-0.25)}{n}} & & M E=0.03, \mathrm{p}=0.25 \\
0.015 & =\sqrt{\frac{0.25(0.75)}{n}} & & \text { Divide each side by } 2 . \\
0.000225 & =\frac{0.25(0.75)}{n} & & \text { Square each side. } \\
n & =\frac{0.25(0.75)}{0.000225} & & \text { Multiply by } \mathrm{n} \text { and divide by } 0.000225 . \\
n & \approx 833.33 & & \text { Use a calculator. }
\end{aligned}
$$

About 833 people were surveyed.

Check for Understanding

Concept Check 1. Describe how sampling techniques can influence the results of a survey.
1-3. See pp.
695A-695B.
2. OPEN ENDED Give an example of a good sample and a bad sample. Explain your reasoning.
3. Explain what happens to the margin of sampling error when the size of the sample n increases. Why does this happen?
wwww.algebra2.com/extra_examples

D A I L Y INIERVENTION

Differentiated Instruction

ELL

Verbal/Linguistic Have students in small groups design a survey question and practice asking it in such a way that there is bias built into the tone of voice and facial expression of the questioner. Then have them try out the question on other groups to see if they get a high percentage of the answer that the bias is designed to elicit.

2 Teach

BIAS

In-Class Example

Power
 Point ${ }^{\circledR}$

1 State whether each method would produce a random sample. Explain.
a. surveying people going into an action movie to find out the most popular kind of movie No ; they will most likely think action movies are the most popular kind of movie.
b. calling every 10th person on the list of subscribers to a newspaper to ask about the quality of the delivery service Yes; no obvious bias exists in calling every 10th subscriber.

MARGIN OF ERROR

In-Class Examples

Power
 Point ${ }^{\circledR}$

2 In a survey of 100 randomly selected adults, 37% answered "yes" to a particular question. What is the margin of error? 0.09656 or about 10%

3 HEALTH In an earlier survey, 30% of the people surveyed said they had smoked cigarettes in the past week. The margin of error was 2%.
a. What does the 2% indicate about the results? There is a 95% chance that the percent of people in the population who had smoked cigarettes in the past week was between 28% and 32%.
b. How many people were surveyed? 2100

Study Notebook

Have students-

- complete the definitions/examples
for the remaining terms on their
Vocabulary Builder worksheets for
Chapter 12.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...
 Organization by Objective

- Bias: 11-14
- Margin of Error: 15-28

Odd/Even Assignments
Exercises 11-24 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 11-25 odd, 28-38
Average: 11-27 odd, 28-38
Advanced: 12-26 even, 28-38

4 Assess

Open-Ended Assessment

Speaking Ask students to explain why a larger sample will result in a lower margin of error, if the percent stays the same.

Assessment Options

Quiz (Lessons 12-8 and 12-9)
is available on p. 768 of the Chapter 12 Resource Masters.

Guided Practice
GUIDED PRACTICE KEY

Exercises	Examples
4,5	1
$6-8$	2
9,10	3

Determine whether each situation would produce a random sample. Write yes or no and explain your answer.
4. the government sending a tax survey to everyone whose social security number ends in a particular digit Yes; last digits of social security numbers are random.
5. surveying students in the honors chemistry classes to determine the average time students in your school study each week No ; these students probably study more than average.
For Exercises 6-8, find the margin of sampling error to the nearest percent.
6. $p=72 \%, n=100$ about 9%
7. $p=31 \%, n=500$ about 4%
8. In a survey of 520 randomly-selected high school students, 68% of those surveyed stated that they were involved in extracurricular activities at their school. about 4\%

Application MEDIA For Exercises 9 and 10, use the following information.
According to a survey in American Demographics, 77% of Americans age 12 or older said they listen to the radio every day. Suppose the survey had a margin of error of 5%.
9. What does the 5% indicate about the results? See margin.
10. How many people were surveyed? about 283

Practice and Apply

Homework Help

For Exercises	See Examples
$11-14$	1
$15-26$	2
27,28	3

Extra Practice

See page 856.

15. about 8\%
16. about 4\%
17. about 4\%
18. about 2\%

Determine whether each situation would produce a random sample. Write yes or no and explain your answer. 11-14. See margin for explanations.
11. pointing with your pencil at a class list with your eyes closed as a way to find a sample of students in your class no
12. putting the names of all seniors in a hat, then drawing names from the hat to select a sample of seniors yes
13. calling every twentieth person listed in the telephone book to determine which political candidate is favored yes
14. finding the heights of all the boys in a freshman physical education class to determine the average height of all the boys in your school no

For Exercises 15-24, find the margin of sampling error to the nearest percent.
15. $p=81 \%, n=100$
16. $p=16 \%, n=400$
17. $p=54 \%, n=500$
18. $p=48 \%, n=1000$
19. $p=33 \%, n=1000$
20. $p=67 \%, n=1500$ about 3\% about 2\%
21. A poll asked people to name the most serious problem facing the country. Forty-six percent of the 800 randomly selected people said crime. about 4%
22. Although skim milk has as much calcium as whole milk, only 33% of 2406 adults surveyed in Shape magazine said skim milk is a good calcium source.
23. Three hundred sixty-seven of 425 high school students said pizza was their favorite food in the school cafeteria. about 3\%
24. Nine hundred thirty-four of 2150 subscribers to a particular newspaper said their favorite sport was football. about 2%
25. ECONOMICS In a poll conducted by ABC News, 83% of the 1020 people surveyed said they supported raising the minimum wage. What was the margin of error? about 2%

684 Chapter 12 Probability and Statistics

Answers

9. The probability is 0.95 that the percent of Americans ages 12 and older who listen to the radio every day is between 72% and 82%.
10. You would tend to point toward the middle of the page.
11. All seniors would have the same chance of being selected.
12. A wide variety of people would be called since almost everyone has a phone.
13. Freshmen are more likely than older students to be still growing, so a sample of freshmen would not give representative heights for the whole school.

Physican
Physicians diagnose illnesses and prescribe and administer treatment.

Online Research For information about a career as a physician, visit: www.algebra2 com/careers

Standardized

Test Practice
(A) $B \subset C$
26. PHYSICIANS In a recent Harris Poll, 61% of the 1010 people surveyed said they considered being a physician to be a very prestigious occupation. What was the margin of error? about 3%
27. SHOPPING According to a Gallup Poll, 33% of shoppers planned to spend $\$ 1000$ or more during a recent holiday season. The margin of error was 3%. How many people were surveyed? about 983
28. CRITICAL THINKING One hundred people were asked a yes-or-no question in an opinion poll. How many said "yes" if the margin of error was 9.6% ? 36 or 64
29. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See pp. 695A-695B.
How are opinion polls used in political campaigns?
Include the following in your answer:

- a description of how a candidate could use statistics from opinion polls to determine where to make campaign stops,
- the margin of error for Bush if 807 people were surveyed, and
- an explanation of how to use the margin of error to determine the range of percent of Florida voters who favored Bush.

30. In rectangle $A B C D$, what is $x+y$ in terms of z ? A
(A) $90+z$
(B) $190-z$
(C) $180+z$
(D) $270-z$
31. If $x y^{-2}+y^{-1}=y^{-2}$, then the value of x cannot equal which of the following? C
(A) -1
(B) 0
(C) 1
(D) 2

Maintain Your Skills

Mixed Review A student guesses at all 5 questions on a true-false quiz. Find each probability.
(Lesson 12-8)
32. P (all 5 correct) $\frac{1}{32}$
33. P (exactly 4 correct)
$\frac{5}{32}$
34. P (at least 3 correct) $\frac{1}{2}$

A set of 250 data values is normally distributed with a mean of 50 and a standard deviation of 5.5 . (Lesson 12-7)
35. What percent of the data lies between 39 and 61? 95\%
36. How many data values are less than 55.5 ? 210
37. 97.5\%
37. What is the probability that a data value selected at random is greater than 39 ?
38. Given $x^{3}-3 x^{2}-4 x+12$ and one of its factors $x+2$, find the remaining factors of the polynomial. (Lesson 7-4) $x-2, x-3$

(Web)uest) internet Project

'Minesweeper': Secret to Age-Old Puzzle?

It is time to complete your project. Use the information and data you have gathered about the history of mathematics to prepare a presentation or web page. Be sure to include transparencies and a sample mathematics problem or idea in the presentation.
www.algebra2.com/webquest
www.algebra2.com/extra_examples
Lesson 12-9 Sampling and Error 685

Study Guide and Intervention,

p. 747 (shown) and p. 748

Bias A sample of size n is random (or unbiased) when every possible sample of size n has an equal chance of being selected. If a sample is biased, then information obtained from it may not be relinble

Exampla
Example To find out how people in the U.S. feel about mass transit, people at a commuter train station are asked their opinion. Does this situation represent a
random sample? No, the sample includes only people who actually use a m
does not include people who ride bikes, drive cars, or walk

Determine whether each sit
$n o$ and explain your answer.

1. asking people in Phoenix, Arizona, about rainfall to determine the average rainfall for
the United States No; it rains less in Phoenix than most places in the U.S.
2. obtaining the names of tree types in North America by surveying all of the U.S. Nationa
Forests Yes; there are National Forests in about every state in the U.S.
3. surveying every tenth person who enters the mall to find out about music preferences in
that part of the country Yess; mall customers should be fairly representative
in terms of music tastes,
4. interviewing country club members to determine the average number of televisions per household in the community No; country club members would tend to be
more affluent and thus not a representative sample of the community
5. surveying all students whose ID numbers end in 4 about their grades and career counseling needs Yes; ID numbers are probably assigned alphabetically or by
some other method not connected to students grades or counseling needs.
6. surveying parents at a day care facility about their preferences for brands of baby food for a marketing campaign Yes; choice of a
not influence baby food preferences.
7. asking people in a library about the number of magazines to which they subscribe in
order to describe the rey ing habits of a town No; library visitors tend to read
more than most citizens.

Skils Practice, P. 749 and

Practice, P. 750 (shown)
Determine whether each situation would produce a random sample. Write yes or 1. calling every twentieth registered voter to determine whether people own or rent their 1. caling every wentieth registered voter to determine whether peopple ovn or
homesin your community No, registered voters may be more iliely
homeowners, causing the survey to underrepresent renters.
2. predicting local election results by polling people in every twentieth residence in all th
different neighborhoods of your community Yes; since all neighborhoods are 2. predicting local election results by polling people in every twentieth residence in alt the
different neifhborhods of four community Yes; since all neightorrooos are
represented proportionally the views of the community should as a represested proportionally, the view
whole should be well represented.
3. to find out why not many students are using the library a schools librarian gives a
questionnaire to every tenth student entering the library No; she is polling only questionnaire to every tenth student entering the library No; she is polling only
the students who are coming to the library, and will obtain no input from these who aren't using the library.
4. testing overall performance of tires on interstate highways only No; for overall
performance, tires should be tested on many kinds of surfaces, and performance, tires should be test
under many types of conditions.
5. selecting every 50th hamburger from a fast-food restaurant chain and determining its 5. slecting every 50 th hamburger from a fast-food restaurant chain and determining its
fat content to assess the fat content of hamburgers served in fast-fod restaurant chains
throughout the country No: the selected hamburgers are a random sample of throughout the country No, the selected hamburgers are a random sample o
the hamburgers served in one chain, and may represent the fat content for that chain, but will not necessarily represent the fat content of hamburgers served in other fast-food restaurant chains.
6. assigning all shift workers in a manufacturing plant a unique identification number, and
then placing the numbers in a hat and drawing 30 at random to determine the annual average salary of the workers Yes; because the numbers are randommy chose from among all shift workers, all workers have the same chance of being
selected.
$\begin{array}{lll}\text { 7. } p=266 \%, n=100 & \text { 8. } p=55 \%, n=100 & \text { 9. } p=75 \%, n=500 \\ \text { about } 9 \% & \text { about } 10 \% & \text { about 4\% }\end{array}$
$\begin{array}{ccc}\text { about } 9 \% & \text { about } 10 \% & \text { about } 4 \% \\ \begin{array}{c}\text { 10. } .\end{array}=14 \%, n=500 \\ \text { about } 3 \% & \text { 11. } p=596 \%, n=1000 & \text { 12. } p=21 \%, n=1000 \\ \text { about } 1 \%\end{array}$
$\begin{array}{ccc}\text { 10. } p=14 \%, n=500 \\ \text { about } 3 \% & \begin{array}{c}\text { 11. } p=96 \%, n=1000 \\ \text { about }\end{array} & \begin{array}{c}\text { 12. } p=21 \%, n=1000 \\ \text { about } 3 \% \\ =34 \%, n=1000\end{array} \\ \begin{array}{c}\text { 14. } p=49 \%, n=1500 \\ \text { about } 3 \%\end{array} & \begin{array}{c}\text { 15. } p=65 \%, n=1500\end{array}\end{array}$
$\begin{array}{ccc}\text { 13. } p=34 \%, n=1000 & \begin{array}{c}\text { 14. } p=49 \%, n=1500 \\ \text { about } 3 \%\end{array} & \begin{array}{c}\text { 15. } p=65 \%, n=1500 \\ \text { about } 3 \%\end{array} \\ \text { abo }\end{array}$
16. COMPUTING According to a poll of 500 teenagers, 43% said that they use a personal
computer at home. What is the margin of sampling error? about 4%
17. TRUST A A survey of 605 people, ages 13 . 33 , shows that 68% trust their parents more than
their best friends to tell them the truth. What is the margin of sampling error? about 4%
18. PRODUCTIVITY A study by the University of 1 Ilinois in 1995 showed an increase in
productivity by 10% of the employes who wore headsets
and 1 litened to music of their

Reading to Learn

Mathematics, p. 151

ELL

Pre-Activity How are opinion polls used in political campaigns? Read the introduction to Lesson $12-9$ at the top of page 682 in your textbook Do you think the results of the survey about the presidential preferences
demonstrates that Bush was actually ahead in Florida a month before the lection? If there is not enough information in fiven to determin month before the election? If there is not enough information given to determine this, list at
least two questions you would ask about the survey that would help you least two questions you would ask about the survey that would help you
determine the significance of the surve. Sample answer: There is not
enough information to tell. 1. How many people were surveyed? enough information to tell. 1 . Hew many people were surveyed?
2. How was the sample for the survey selected? 3 . What is the
margin of error for this survey? margin of error for this survey?

Reading the Lesson

1. Determine whether ea
explain your answer.
asking all the customers at five restaurants on the same evening how many times a
month they eat dinner eats dinner in a restaurants No; people surveyed at a restaurant might be ely to eat dinner in restaurants more often than other people.
puting the names of all seniors at your high school in a hat and then drawing 20 nan for a survey to find out where seniors would like to hold their prom Yes; every
senior would have an equal chance of being chosen for the survey.
2. A survey determined that 58% of registered voters in the United States support increased
federal spending for education The margin of error for this survey is 4 . iederal spending for education. The margin of error for this survey is 4%. Explain in yo
own words what this tells you about the actual percentage of registered voters who suppo increased spending for education. Sample answer: There is a 95% chance that the actual percentage of voters supporting increased federal spending
for education is between 54% and 62%.

Helping You Remember

3. The formula for margin of sampling error may be tricky to remember. A good way to start variables, and what do they represent? What is an easy way to remember which variable goes in the denominator in the formula? Sample answer: p is the probability
a certain response and n is the sample size. The larger the sample size, the smaller the margin of error, sompmust go in the denominator since
dividing by a larger number ives a smaller number. The square root of
smal dividing by a larger number gives a smaller number. The square roil
smaller number is a smaller number, and twice the square root of a
smaller number is a smaller numbr

A Follow-Up of Lesson 12-9

Geting Started

Objective State hypotheses for conjectures and design an experiment to test a hypothesis.

Materials

ruler
stopwatch

Teach

- Ask students why the tested hypothesis is called the null hypothesis. Because it is often stated in the form "there is no (or null) difference."
- Make sure students know how to use the stopwatches before beginning the experiment.
- Have students complete the simulation to collect data and then complete Exercises 1-4.

Assess

In Exercises 1-3, students should

- state the null hypothesis saying that there is no difference.
- state the alternative hypothesis saying that there is a difference.
In Exercise 4, students should
- design an experiment that they could carry out.
- restate the hypothesis so that it is in the form of a null hypothesis.

Testing Hypotheses

A hypothesis is a statement to be tested. Testing a hypothesis to determine whether it is supported by the data involves five steps.
Step 1 State the hypothesis. The statement should include a null hypothesis, which is the hypothesis to be tested, and an alternative hypothesis.
Step 2 Design the experiment.
Step 3 Conduct the experiment and collect the data.
Step 4 Evaluate the data. Decide whether to reject the null hypothesis.
Step 5 Summarize the results.
Test the following hypothesis.

People react to sound and touch at the same rate.
You can measure reaction time by having someone drop a ruler and then having someone else catch it between their fingers. The distance the ruler falls will depend on their reaction time. Half of the class will investigate the time it takes to react when someone is told the ruler has dropped. The other half will measure the time it takes to react when the catcher is alerted by touch.

Step 1 The null hypothesis H_{0} and alternative hypothesis H_{1} are as follows. These statements often use $=, \neq,<,>, \geq$, and \leq.

- H_{0} : reaction time to sound $=$ reaction time to touch
- H_{1} : reaction time to sound \neq reaction time to touch

Step 2 You will need to decide the height from which the ruler is dropped, the position of the person catching the ruler, the number of practice runs, and whether to use one try or the average of several tries.

Step 3 Conduct the experiment in each group and record the results.
Step 4 Organize the results so that they can be compared.
Step 5 Based on the results of your experiment, do you think the hypothesis is true? Explain.

Analyze
State the null and alternative hypotheses for each conjecture. 1-3. See pp. 695A-695B.

1. A teacher feels that playing classical music during a math test will cause the test scores to change (either up or down). In the past, the average test score was 73.
2. An engineer thinks that the mean number of defects can be decreased by using robots on an assembly line. Currently, there are 18 defects for every 1000 items.
3. A researcher is concerned that a new medicine will cause pulse rates to rise dangerously. The mean pulse rate for the population is 82 beats per minute.
4. MAKE A CONJECTURE Design an experiment to test the following hypothesis. Pulse rates increase 20% after moderate exercise. See students' work.

Resource Manager

Teaching Algebra with

 Manipulatives- p. 24 (master for rulers)
- p. 296 (student recording sheet)

Glencoe Mathematics Classroom Manipulative Kit

- rulers
- stopwatches

Vocabulary and Concept Check

area diagram (p. 651)
binomial experiment (p. 677)
combination (p. 640)
compound event (p. 658)
continuous probability distribution (p. 671)
dependent events (p. 633)
discrete probability distributions (p. 671)
event (p. 632)
failure (p. 644)
Fundamental Counting Principle (p. 633)
inclusive events (p. 659)
independent events (p. 632)
linear permutation (p. 638)
margin of sampling error (p. 682)
measure of central tendency (p. 664)
measure of variation (p. 665)
mutually exclusive events (p. 658)
normal distribution (p. 671)
odds (p. 645)
outcome (p. 632)
permutation (p. 638)
probability (p. 644)
probability distribution (p. 646)
random (p. 646)
random variable (p. 645)
relative-frequency histogram
(p. 646)
sample space (p. 632)
simple event (p. 658)
skewed distribution (p. 671)
standard deviation (p. 665)
success (p. 644)
unbiased sample (p. 682)
variance (p. 665)

Choose the letter of the term that best matches each statement or phrase.

1. the ratio of the number of ways an event can succeed to the number of possible outcomes \mathbf{C}
2. an arrangement of objects in which order does not matter \mathbf{b}
3. two or more events in which the outcome of one event affects the outcome of another event a
4. a sample in which every member of the population has an equal chance to be selected g
5. an arrangement of objects in which order matters d
6. two events in which the outcome can never be the same e
7. the ratio of the number of ways an event can succeed to the number of ways it can fail f
a. dependent events
b. combination
c. probability
d. permutation
e. mutually exclusive events
f. odds
g. unbiased sample

Lesson-by-Lesson Review

12-1 The Counting Principle

See pages
632-637.

Concept Summary

- Fundamental Counting Principle: If event M can occur in m ways and is followed by event N that can occur in n ways, then the event M followed by the event N can occur in $m \cdot n$ ways.
- Independent Events: The outcome of one event does not affect the outcome of another.
- Dependent Events: The outcome of one event does affect the outcome of another.

Example How many different license plates are possible with two letters followed by three digits?
There are 26 possibilities for each letter. There are 10 possibilities, the digits $0-9$, for each number. Thus, the number of possible license plates is as follows.
$26 \cdot 26 \cdot 10 \cdot 10 \cdot 10=26^{2} \cdot 10^{3}$ or 676,000
www.algebra2.com/vocabulary_review
Chapter 12 Study Guide and Review 687

FOLDABLES

Study Organizer
For more information about Foldables, see Teaching Mathematics with Foldables.

Remind students to review the Foldable and make sure that the lists of terms, concepts, and examples are complete. Have student volunteers share some of the printed examples of statistics that they found. Ask them to check over their notes and examples about probability and statistics to see if they wish to add any further information about the uses and misuses of statistics in the world around them. Encourage students to refer to their Foldables while completing the Study Guide and Review and to use them in preparing for the Chapter Test.

Exercises Solve each problem. See Examples 2 and 3 on page 633.
8. The letters a, c, e, g, i, and k are used to form 6-letter passwords for a movie theater security system. How many passwords can be formed if the letters can be used more than once in any given password? 46,656 passwords
9. How many 4-digit personal identification codes can be formed if each numeral can only be used once? 5040 codes

12-2
 See pages 638-643.
 Permutations and Combinations
 Concept Summary

- In a permutation, the order of objects is important.
- In a combination, the order of objects is not important.

Example

A basket contains 3 apples, 6 oranges, 7 pears, and 9 peaches. How many ways can 1 apple, 2 oranges, 6 pears, and 2 peaches be selected?
This involves the product of four combinations, one for each type of fruit.

$$
\begin{aligned}
C(3,1) \cdot C(6,2) \cdot C(7,6) \cdot C(9,2) & =\frac{3!}{(3-1)!1!} \cdot \frac{6!}{(6-2)!2!} \cdot \frac{7!}{(7-6)!6!} \cdot \frac{9!}{(9-2)!2!} \\
& =3 \cdot 15 \cdot 7 \cdot 36 \text { or } 11,340
\end{aligned}
$$

There are 11,340 different ways to choose the fruit from the basket.
Exercises Solve each problem. See Example 4 on page 640.
10. A committee of 3 is selected from Jillian, Miles, Mark, and Nikia. How many committees contain 2 boys and 1 girl? 2
11. Five cards are drawn from a standard deck of cards. How many different hands consist of four queens and one king? 4
12. A box of pencils contains 4 red, 2 white, and 3 blue pencils. How many different ways can 2 red, 1 white, and 1 blue pencil be selected? 36

12-3 Probability

See pages
Concept Summary

- $P($ success $)=\frac{s}{s+f^{\prime}} ; P($ failure $)=\frac{f}{s+f}$
- odds of success $=s: f$; odds of failure $=f: s$

Example A bag of golf tees contains 23 red, 19 blue, 16 yellow, 21 green, 11 orange, 19 white, and 17 black tees. What is the probability that if you choose a tee from the bag at random, you will choose a green tee?
There are 21 ways to choose a green tee and $23+19+16+11+19+17$ or 105 ways not to choose a green tee. So, s is 21 and f is 105 .
$P($ green tee $)=\frac{s}{s+f}$
$=\frac{21}{21+105}$ or $\frac{1}{6}$ The probability is 1 out of 6 or about 16.7%.

Exercises Find the odds of an event occurring, given the probability of the event. See Example 3 on pages 645 and 646.
13. $\frac{1}{4} 1: 3$
14. $\frac{5}{8} 5: 3$
15. $\frac{7}{12} 7: 5$
16. $\frac{3}{7} 3: 4$
17. $\frac{2}{5} 2: 3$
18. The table shows the distribution of the number of heads occurring when four coins are tossed. Find $P(H=3) \cdot \frac{1}{4}$

$H=$ Heads	0	1	2	3	4
Probability	$\frac{1}{16}$	$\frac{1}{4}$	$\frac{3}{8}$	$\frac{1}{4}$	$\frac{1}{16}$

Multiplying Probabilities

Concept Summary

- Probability of two independent events: $P(A$ and $B)=P(A) \cdot P(B)$
- Probability of two dependent events: $P(A$ and $B)=P(A) \cdot P(B$ following $A)$

Example

There are 3 dimes, 2 quarters, and 5 nickels in Langston's pocket. If he reaches in and selects three coins at random without replacing any of them, what is the probability that he will choose a dime d, then a quarter q, then a nickel n ?
Because the outcomes of the first and second choices affect the later choices, these are dependent events.
$P(d$, then q, then $n)=\frac{3}{10} \cdot \frac{2}{9} \cdot \frac{5}{8}$ or $\frac{1}{24}$ The probability is $\frac{1}{24}$ or about 4.2%.
Exercises Determine whether the events are independent or dependent. Then find the probability. See Examples 1-4 on pages 652 and 654 . 19. independent; $\frac{1}{36}$
19. Two dice are rolled. What is the probability that each die shows a 4 ?
20.
20. Two cards are drawn from a standard deck of cards without replacement. Find the probability of drawing a heart and a club, in that order.
21. Luz has 2 red, 2 white, and 3 blue marbles in a cup. If she draws two marbles at random and does not replace the first one, find the probability of a white marble and then a blue marble. dependent; $\frac{1}{7}$

12-5 Adding Probabilities

Concept Summary

- Probability of mutually exclusive events: $P(A$ or $B)=P(A)+P(B)$
- Probability of inclusive events: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Trish has four $\$ 1$ bills and six $\$ 5$ bills. She takes three bills from her wallet at random. What is the probability that Trish will select at least two $\$ 1$ bills?
$P($ at least two $\$ 1$ bills $)=P($ two $\$ 1$, one $\$ 5)+P($ three $\$ 1$, no $\$ 5)$

$$
\begin{aligned}
& =\frac{C(4,2) \cdot C(6,1)}{C(10,3)}+\frac{C(4,3) \cdot C(6,0)}{C(10,3)} \\
& =\frac{4!\cdot 6!}{(4-2)!2!(6-1)!1!}+\frac{4!\cdot 6!}{(4-3)!3!(6-0)!0!} \\
& =\frac{36}{120}+\frac{4}{120} \text { or } \frac{1}{3} \quad \text { The probability is } \frac{1}{3} \text { or about } 0.333
\end{aligned}
$$

Exercises Determine whether the events are mutually exclusive or inclusive. Then find the probability. See Examples 1-3 on pages 659 and 660.
22. There are 5 English, 2 math, and 3 chemistry books on a shelf. If a book is randomly selected, what is the probability of selecting a math book or a chemistry book? mutually exclusive; $\frac{1}{2}$ 23. mutually exclusive; $\frac{2}{3}$
23. A die is rolled. What is the probability of rolling a 6 or a number less than 4 ?
24. A die is rolled. What is the probability of rolling a 6 or a number greater than 4 ?
25. A card is drawn from a standard deck of cards. What is the probability of drawing a king or a red card? inclusive; $\frac{7}{13} \quad 24$. inclusive; $\frac{1}{3}$

12-6 Statistical Measures

See pages
664-670.

Concept Summary

- To represent a set of data, use the mean if the data are spread out and you want an average of the values, the median when the data contain outliers, or the mode when the data are tightly clustered around one or two values.
- Standard deviation for n values:
$\sigma=\sqrt{\frac{\left(x^{1}-\bar{x}\right)^{2}+\left(x^{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n}}, \bar{x}$ is the mean

Example Find the variance and standard deviation for

$\{100,156,158,159,162,165,170,190\}$.
Step 1 Find the mean.

$$
\begin{aligned}
\bar{x} & =\frac{100+156+158+159+162+165+170+190}{8} & \begin{array}{l}
\text { Add the data and divide } \\
\text { by the number of items. }
\end{array} \\
& =\frac{1260}{8} &
\end{aligned}
$$

Step 2 Find the variance.

$$
\begin{aligned}
\sigma^{2} & =\frac{\left(x_{1}-\bar{x}\right)^{2}+\left(x_{2}-\bar{x}\right)^{2}+\cdots+\left(x_{n}-\bar{x}\right)^{2}}{n} \\
& =\frac{(100-157.5)^{2}+(156-157.5)^{2}+\cdots+(170-157.5)^{2}+(190-157.5)^{2}}{8} \\
& =\frac{4600}{8} \quad \text { Simplify. } \\
& =575 \quad \text { Use a calculator. }
\end{aligned}
$$

Step 3 Find the standard deviation.

$$
\begin{aligned}
\sigma^{2} & =575 \\
\sigma & \approx 23.98 \\
& \text { Use a calculator. }
\end{aligned}
$$

Exercises Find the variance and standard deviation of each set of data to the nearest tenth. See Examples 1 and 2 on pages 664 and 665 .
26. $\{56,56,57,58,58,58,59,61\} 2.4,1.5$
27. $\{302,310,331,298,348,305,314,284,321,337\} 341.0,18.5$
28. $\{3.4,4.2,8.6,5.1,3.6,2.8,7.1,4.4,5.2,5.6\} 2.8,1.7$

12-7 The Normal Distribution

See pages : Concept Summary

Normal distributions have these properties.

- The graph is maximized and the data are symmetric at the mean.
- The mean, median, and mode are about equal.
- About 68% of the values are within one standard deviation of the mean.
- About 95% of the values are within two standard deviations of the mean.
- About 99% of the values are within three standard deviations of the mean.

Example Mr. Byrum gave an exam to his 30 Algebra 2 students at the end of the first semester. The scores were normally distributed with a mean score of 78 and a standard deviation of 6.
a. What percent of the class would you expect to have scored between 72 and 84 ?
Since 72 and 84 are 1 standard deviation to
 the left and right of the mean, respectively, $34 \%+34 \%$ or 68% of the students scored within this range.
b. What percent of the class would you expect to have scored between 90 and 96 ? 90 to 96 on the test includes 2% of the students.
c. Approximately how many students scored between 84 and 90 ? 84 to 90 on the test includes 13.5% of the students. $\quad 0.135 \times 30=4$ students
d. Approximately how many students scored between 72 and 84 ?
$34 \%+34 \%$ or 68% of the students scored between 72 and 84 .
$0.68 \times 30=20$ students

Exercises For Exercises 29-32, use the following information.
The utility bills in a city of 5000 households are normally distributed with a mean of $\$ 180$ and a standard deviation of $\$ 16$. See Example 2 on pages 672 and 673.
29. About how many utility bills were between $\$ 164$ and $\$ 196$? 3400
30. About how many bills were more than $\$ 212$? 125
31. About how many bills were less than $\$ 164$? 800
32. What is the probability that a household selected at random will have a utility bill between $\$ 164$ and $\$ 180$? 34%

12-8 Binomial Experiments

Concept Summary

A binomial experiment exists if and only if all of these conditions occur.

- There are exactly two possible outcomes for each trial.
- There is a fixed number of trials.
- The trials are independent.
- The possibilities for each trial are the same.
- Extra Practice, see pages 854-856 - Mixed Problem Solving, see page 837.

Example To practice for a jigsaw puzzle competition, Laura and Julian completed four jigsaw puzzles. The probability that Laura places the last piece is $\frac{3}{5}$, and the probability that Julian places the last piece is $\frac{2}{5}$. What is the probability that Laura will place the last piece of at least two puzzles?
$P=L^{4}+4 L^{3} J+6 L^{2} J^{2}$
$P($ last piece in 4$)+P($ last piece in 3$)+P($ last piece in 2$)$
$=\left(\frac{3}{5}\right)^{4}+4\left(\frac{3}{5}\right)^{3}\left(\frac{2}{5}\right)+6\left(\frac{3}{5}\right)^{2}\left(\frac{2}{5}\right)^{2} \quad L=\frac{3}{5}, J=\frac{2}{5}$
$=\frac{81}{625}+\frac{216}{625}+\frac{216}{625}$ or 0.8208 The probability is 82.08%.

Exercises See Example 2 on pages 677 and 678.
33. Find the probability of getting 7 heads in 8 tosses of a coin. $\frac{1}{32}$
34. Find the probability that a family with seven children has exactly five boys. $\frac{21}{12}$

Find each probability if a die is rolled twelve times.
35. P (twelve 3 s)

. 1
 2,176,782,336

36. P (exactly one 3)
37. $P($ six $3 s) \frac{14,437,500}{2,176,782,336}$
48;828,125
181,398,528

12-9 Sampling and Error

See pages
682-685.
Concept Summary

- Margin of sampling error: $M E=2 \sqrt{\frac{p(1-p)}{n}}$ if the percent of people in a sample responding in a certain way is p and the size of the sample is n

Example

In a survey taken at a local high school, 75% of the student body stated that they thought school lunches should be free. This survey had a margin of error of 2%. How many people were surveyed?

$$
\begin{aligned}
M E & =2 \sqrt{\frac{p(1-p)}{n}} & & \text { Formula for margin of sampling error } \\
0.02 & =2 \sqrt{\frac{0.75(1-0.75)}{n}} & & M E=0.02, p=0.75 \\
0.01 & =\sqrt{\frac{0.75(1-0.75)}{n}} & & \text { Divide each side by } 2 . \\
0.0001 & =\frac{0.75(0.25)}{n} & & \text { Square each side of the equation. } \\
n & =\frac{0.75(0.25)}{0.0001} & & \text { Multiply each side by } \mathrm{n} \text { and divide each side by } 0.0001 . \\
n & =1875 & & \text { There were about } 1875 \text { people in the survey. }
\end{aligned}
$$

Exercises

38. In a poll asking people to name their most valued freedom, 51% of the randomly selected people said it was the freedom of speech. Find the margin of sampling error if 625 people were randomly selected. See Example 2 on page 683. about 4\%
39. According to a recent survey of mothers with children who play sports, 63% of them would prefer that their children not play football. Suppose the margin of error is 4.5%. How many mothers were surveyed? See Example 3 on page 683.

Vocabulary and Concepts

Match the following terms and descriptions.

1. data are symmetric about the mean \mathbf{c}
2. variance and standard deviation \mathbf{b}
3. mode, median, mean a
a. measures of central tendency
b. measures of variation
c. normal distribution

Skills and Applications

Evaluate each expression.
4. $P(7,3) 210$
5. $C(7,3) 35$
6. $P(13,5) 154,440$

Solve each problem. 10. 31,824

7. How many ways can 9 bowling balls be arranged on the upper rack of a bowling ball rack? 362,880 ways
8. How many ways can the letters of the word probability be arranged? 9,979,200 ways
9. In a row of 10 parking spaces in a parking lot, how many ways can 4 cars park? 5040 ways
10. A number is drawn at random from a hat that contains all the numbers from 1 to 100 . What is the probability that the number is less than sixteen? $\frac{3}{20}$
11. A shipment of ten television sets contains 3 defective sets. How many ways can a hospital purchase 4 of these sets and receive at least 2 of the defective sets? 70 ways
12. Ten people are going on a camping trip in 3 cars that hold 5,2 , and 4 passengers, respectively. How many ways is it possible to transport the 10 people to their campsite? 6930 ways
13. How many different outfits can be made if you choose 1 each from 11 skirts, 9 blouses, 3 belts, and 7 pairs of shoes? 2079 outfits
14. How many different soccer teams consisting of 11 players can be formed from 18 players?
15. Eleven points are equally spaced on a circle. How many ways can 5 of these points be chosen as the vertices of a pentagon? 462 pentagons
16. Two cards are drawn in succession from a standard deck of cards without replacement. What is the probability that both cards are greater than 2 and less than $9 ? \frac{46}{221}$
17. While shooting arrows, William Tell can hit an apple 9 out of 10 times. What is the probability that he will hit it exactly 4 out of 7 times? 45,927
2,000,000
18. From a box containing 5 white golf balls and 3 red golf balls, 3 golf balls are drawn in succession, each being replaced in the box before the next draw is made. What is the probability that all 3 golf balls are the same color? $\frac{19}{64}$

For Exercises 19-21, use the following information.
In a ten-question multiple-choice test with four choices for each question,
a student who was not prepared guesses on each item. Find each probability.
19. six questions correct $\frac{8505}{524,288}$
21. fewer than eight questions correct $\frac{262,035}{262,144}$
20. at least eight questions correct $\frac{109}{262,144}$
22. STANDARDIZED TEST PRACTICE Lila throws a die and writes down the number showing. If she throws the number cube again, what is the probability that the second throw will have the same number showing as the first throw? D
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{1}{6}$
wwww.algebra2.com/chapter_test

Portfolio Suggestion

Introduction The Fundamental Counting Principle, permutations and combinations, probability, and statistics may have been new topics for many students. These topics are used in many ways in almost all fields of employment.
Ask Students Which was your favorite word problem from this chapter? Put the problem in your portfolio and write a note that explains why it is your favorite. Add a brief conjecture about how you might be able to use the topics of this chapter in a future career that you might like to have.

Assessment Options
Vocabulary Test A vocabulary test/review for Chapter 12 can be found on p. 766 of the Chapter 12 Resource Masters.

Chapter Tests There are six Chapter 12 Tests and an OpenEnded Assessment task available in the Chapter 12 Resource Masters.

Chapter 12 Tests			
Form	Type	Level	Pages
1	MC	basic	$753-754$
2A	MC	average	$755-756$
2B	MC	average	$757-758$
2C	FR	average	$759-760$
2D	FR	average	$761-762$
3	FR	advanced	$763-764$
MC $=$ multiple-choice questions			
FR $=$ free-response questions			

Open-Ended Assessment

Performance tasks for Chapter 12 can be found on p. 765 of the Chapter 12 Resource Masters. A sample scoring rubric for these tasks appears on p. A34.
Unit 4 Test A unit test/review can be found on pp. 773-774 of the Chapter 12 Resource Masters.

TestCheck and Worksheet Builder

This networkable software has three modules for assessment.

- Worksheet Builder to make worksheets and tests.
- Student Module to take tests on-screen.
- Management System to keep student records. Test Practice

These two pages contain practice questions in the various formats that can be found on the most frequently given standardized tests.

A practice answer sheet for these two pages can be found on p. A1 of the Chapter 12 Resource Masters.

elect the best answer from the cho
$\begin{array}{ll}16 \text { (1) (1) (1) } & 18 \text { (1) (1) (1) } \\ 20 \\ \text { (1) (1) (C) }\end{array}$
17 (1) (1) (C) 19 © (1) (C) 21 (4) (1) (C)

Teaching Tip In Question 8, students may want to write a list of the odd numbers in the set that are divisible by 3 .

Additional Practice

See pp. 771-772 in the Chapter 12 Resource Masters for additional standardized test practice.

Part 1 Multiple Choice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. In a jar of red and green gumdrops, the ratio of red gumdrops to green gumdrops is 7 to 3 . If the jar contains a total of 150 gumdrops, how many gumdrops are green? C
(A) 21
(B) 30
(C) 45
(D) 105
2. $\langle x\}=\frac{1}{2} x$ if x is composite and
 $=2 x$ if x is prime. What is the value of $\langle 16\rangle+\langle 11\rangle$? B
(A) 10
(B) 30
(C) 54
(D) 60
3. In rhombus $A B C D$, which of the following are true? D

I. $\angle s$ and $\angle x$ are congruent.
II. $\angle t$ and $\angle v$ are congruent.
III. $\angle z$ and $\angle t$ are congruent.
(A) I only
(B) II only
(C) I and II only
(D) I, II, and III
4. What is the area of an isosceles right triangle with hypotenuse $3 \sqrt{2}$ units? B
(A) $1.5 \sqrt{2}$ units 2
(B) 4.5 units 2
(C) 9 units 2
(D) $6+3 \sqrt{2}$ units 2
5. What is the solution set for $t(t+7)=18$? \mathbf{D}
(A) $\{-2,9\}$
(B) $\{-3,6\}$
(C) $\{0,18\}$
(D) $\{-9,2\}$
6. The equation $3 x-8=5 x^{2}-y$ represents which of the following conic sections? B
(A) hyperbola
(B) parabola
(C) circle
(D) ellipse
7. If the equations $x^{2}+y^{2}=16$ and $y=x^{2}+4$ are graphed on the same coordinate plane, how many points of intersection exist? B
(A) none
(B) one
(C) two
(D) three
8. A number is chosen at random from the set $\{1,2,3, \ldots 20\}$. What is the probability that the number is odd and divisible by 3? A
(A) $\frac{3}{20}$
(B) $\frac{3}{10}$
(C) $\frac{7}{20}$
(D) $\frac{13}{20}$
9. What is the least positive integer that is divisible by $3,4,5$, and 6 ? A
(A) 60
(B) 180
(C) 240
(D) 360
10. If $4 y-5 x+6 x y-50=0$ and $x+7=13$, then what is $y+5$? C
(A) 2
(B) 6
(C) 7
(D) 11

TestCheck and
 Worksheet Builder

Special banks of standardized test questions similar to those on the SAT, ACT, TIMSS 8, NAEP 8, and Algebra 1 End-of-Course tests can be found on this CD-ROM.

Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.
11. In a high school, 250 students take math and 50 students take art. If there are 280 students enrolled in the school and they all take at least one of these courses, how many students take both math and art? 20
12. If $20<y<30$ and x and y are both integers, what is the greatest possible value for x ? 79

13. Four numbers are selected at random. Their average (arithmetic mean) is 45 . The fourth number selected is 34 . What is the sum of the other three numbers? 146
14. If one half of an even positive integer and three fourths of the next greater even integer have a sum of 24 , what is the mean of the two integers? 19
15. Shane has six tiles, each of which has one of the letters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}$, or F on it. If one of the letters must be A and the last letter must be F, how many different arrangements of three letters (such as ADF) can Shane create with these titles? 8

The
 Princeton
 Review

Test-Taking Tip
Question 14 When answering short-response questions, read carefully and make sure that you know exactly what the question is asking you to find. For example, if you only find the value of y in Question 14, you have not solved the problem. You need to find the value of $y+5$.

Part 3 Quantitative Comparison

Compare the quantity in Column A and the quantity in Column B. Then determine whether:
(A) the quantity in Column A is greater,
(B) the quantity in Column B is greater,
(C) the two quantities are equal, or
(D) the relationship cannot be determined from the information given.

$|$| Column A | |
| :---: | :---: |
| $x<0$ B | |
| $x-2$ | $2-x$ |

17.

$A B C D$ is a rectangle. C

18.

$x>y, w<z$

w, x, y, and z are positive integers. D

19. For $t \neq 0,\langle t\rangle=\frac{t^{2}-1}{t}$. \mathbf{A}

$\{2\}$	$\boxed{-2}\}$

20.

For $t \neq 0,\langle t\rangle=\frac{t^{2}-1}{t} . \mathbf{C}$

21.

$$
y=-3 \text { A }
$$

Chapters 12 Standardized Test Practice

Page 637, Lesson 12-1
34. Step 1: When $n=1$, the left side of the given equation is 4 . The right side is $\frac{1[3(1)+5]}{2}$ or 4 , so the equation is true for $n=1$.
Step 2: Assume $4+7+10+\ldots+(3 k+1)=$ $\frac{k(3 k+5)}{2}$ for some positive integer k.
Step 3: $4+7+10+\ldots+(3 k+1)+[3(k+1)+1]$

$$
\begin{aligned}
& =\frac{k(3 k+5)}{2}+[3(k+1)+1] \\
& =\frac{k(3 k+5)+2[3(k+1)+1]}{2} \\
& =\frac{3 k^{2}+5 k+6 k+6+2}{2} \\
& =\frac{3 k^{2}+11 k+8}{2} \\
& =\frac{(k+1)(3 k+8)}{2} \\
& =\frac{(k+1)[3(k+1)+5]}{2}
\end{aligned}
$$

The last expression is the right side of the equation to be proved, where $n=k+1$. Thus, the equation is true for $n=k+1$.
Therefore, $4+7+10+\ldots+(3 n+1)=\frac{n(3 n+5)}{2}$ for all positive integers n.

Page 642, Lesson 12-2
37. $C(n-1, r)+C(n-1, r-1)$
$=\frac{(n-1)!}{(n-1-r)!r!}+\frac{(n-1)!}{[n-1-(r-1)]!(r-1)!}$
$=\frac{(n-1)!}{(n-r-1)!r!}+\frac{(n-1)!}{(n-r)!(r-1)!}$
$=\frac{(n-1)!}{(n-r-1)!r!} \cdot \frac{n-r}{n-r}+\frac{(n-1)!}{(n-r)!(r-1)!} \cdot \frac{r}{r}$
$=\frac{(n-1)!(n-r)}{(n-r)!r!}+\frac{(n-1)!r}{(n-r)!r!}$
$=\frac{(n-1)!(n-r+r)}{(n-r)!r!}$
$=\frac{(n-1)!n}{(n-r)!!!}$
$=\frac{n!}{(n-r)!r!}$
$=C(n, r)$
38. Permutations and combinations can be used to find the number of different lineups. Answers should include the following.

- There are 9! different 9-person lineups available: 9 choices for the first player, 8 choices for the second player, 7 for the third player, and so on. So, there are 362,880 different lineups.
- There are $C(16,9)$ ways to choose 9 players from 16 : $C(16,9)=\frac{16!}{7!9!}$ or 11,440 .

Page 651, Algebra Activity

1. The area of rectangle A is $\frac{1}{2}$; it represents the probability of drawing a silver clip and a blue clip. The area of rectangle B is $\frac{1}{6}$; it represents the probability of drawing a silver clip and a red clip. The area of rectangle C is $\frac{1}{4}$; it represents the probability of drawing a gold clip and a blue clip. The area of rectangle D is $\frac{1}{12}$; it represents the probability of drawing a gold clip and a red clip.
2.

The area of rectangle A represents the probability of spinning green and blue. The area of rectangle B represents the probability of spinning green and red. The area of rectangle C represents the probability of spinning yellow and blue. The area of rectangle D represents the probability of spinning yellow and red. The area of rectangle E represents the probability of spinning purple and blue. The area of rectangle F represents the probability of spinning purple and red.

Page 656, Lesson 12-4
36.

First Spin
Second Spin

37.

First Spin

	blue	yellow	red
	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$
blue	BB	BY	BR
$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
Second yellow	YB	YY	YR
Spin $\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
red	RB	RY	RR
$\frac{1}{3}$	$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$

51. Probability can be used to analyze the chances of a player making 0,1 , or 2 free throws when he or she goes to the foul line to shoot 2 free throws. Answers should include the following.

- One of the decimals in the table could be used as the value of p, the probability that a player makes a given free throw. The probability that a player misses both free throws is $(1-p)(1-p)$ or $(1-p)^{2}$. The probability that a player makes both free throws is $p \cdot p$ or p^{2}. Since the sum of the probabilities of all the possible outcomes is 1 , the probability that a player makes exactly 1 of the 2 free throws is $1-(1-p)^{2}-p^{2}$ or $2 p(1-p)$.
- The result of the first free throw could affect the player's confidence on the second free throw. For example, if the player makes the first free throw, the probability of he or she making the second free throw might increase. Or, if the player misses the first free throw, the probability that he or she makes the second free throw might decrease.

Page 662, Lesson 12-5

48. Probability can be used to estimate the percents of people who do the same things before going to bed.
Answers should include the following.

- The events are inclusive because some people brush their teeth and set their alarm. Also, you know that the events are inclusive because the sum of the percents is not 100%.
- According to the information in the text and the table, $P($ read book $)=\frac{38}{100}$ and $P($ brush teeth $)=\frac{81}{100}$. Since the events are inclusive,
$P($ read book and brush teeth $)=$ P (read book) $+P$ (brush teeth) $P($ read book and brush teeth $)=$

$$
\frac{38}{100}+\frac{81}{100}-\frac{600}{2000}=\frac{89}{100}
$$

Page 679, Lesson 12-8

39. Getting a right answer and a wrong answer are the outcomes of a binomial experiment. The probability is far greater that guessing will result in a low grade than in a high grade. Answers should include the following.

- Use $(r+w)^{5}=r^{5}+5 r^{4} w+10 r^{3} w^{2}+10 r^{2} w^{3}+$ $5 r w^{4}+w^{5}$ and the chart on page 676 to determine the probabilities of each combination of right and wrong.
- $P(5$ right $): r^{5}=\left(\frac{1}{4}\right)^{5}=\frac{1}{1024}$ or about 0.098%;
$P\left(4\right.$ right, 1 wrong): $\frac{15}{1024}$ or about 1.5%;
$P\left(3\right.$ right, 2 wrong): $10 r^{3} w^{2}=10\left(\frac{1}{4}\right)^{3}\left(\frac{3}{4}\right)^{2}=\frac{45}{512}$ or about 8.8\%;
$P\left(3\right.$ wrong, 2 right): $10 r^{2} w^{3}=10\left(\frac{1}{4}\right)^{2}\left(\frac{3}{4}\right)^{3}=\frac{135}{512}$ or about 26.4\%;
$P\left(4\right.$ wrong, 1 right): $5 r w^{4}=5\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)^{4}=\frac{405}{1024}$ or about 39.6\%;
$P\left(5\right.$ wrong): $w^{5}=\left(\frac{3}{4}\right)^{5}=\frac{243}{1024}$ or about 23.7%.

Page 681, Follow-Up of Lesson 12-8 Algebra Activity

1. Sample answer:

2. Sample answer: mean $=13.56$; median $=12$; maximum $=41$; minimum $=7$; standard deviation ≈ 7.3.

Pages 683-685, Lesson 12-9

1. Sample answer: If a sample is not random, the results of a survey may not be valid.
2. Sample answer for good sample: doing a random telephone poll to rate the mayor's performance; sample answer for bad sample: conducting a survey on how much the average person reads at a bookstore
3. The margin of sampling error decreases when the size of the sample n increases. As n increases, $\frac{p(1-p)}{n}$ decreases.
4. A political candidate can use the statistics from an opinion poll to analyze his or her standing and to help plan the rest of the campaign. Answers should include the following.

- The candidate could decide to skip areas where he or she is way ahead or way behind, and concentrate on areas where the polls indicate the race is close.
- about 3.5\%
- The margin of error indicates that with a probability of 0.95 the percent of the Florida population that favored Bush was between 43.5% and 50.5%. The margin of error for Gore was also about 3.5%, so with probability 0.95 the percent that favored Gore was between 40.5% and 47.5%. Therefore, it was possible that the percent of the Florida population that favored Bush was less than the percent that favored Gore.

Page 686, Follow-Up of Lesson 12-9 Algebra Activity

1. H_{0} : playing classical music during a math test, average test score $\neq 73$
H_{1} : playing classical music during a math test, average test score $=73$
2. H_{0} : using robots on an assembly line, mean number of defects per 1000 items < 18
H_{1} : using robots on an assembly line, mean number of defects per 1000 items ≥ 18
3. H_{0} : taking medication, mean pulse rate for the population >82 beats per minute
H_{1} : taking medication, mean pulse rate for the population ≤ 82 beats per minute

[^0]: 650 Chapter 12 Probability and Statistics

[^1]: 670 Chapter 12 Probability and Statistics

