Trigonometric Graphs and Identities

Chapter Overview and Pacing

LESSON OBJECTIVES	PACING (days)			
	Regular		Block	
	Basic/ Average	Advanced	Basic/ Average	Advanced
14-1 Graphing Trigonometric Functions ($p p .762-768$) - Graph trigonometric functions. - Find the amplitude and period of variation of the sine, cosine, and tangent functions.	optional	2	optional	1
14-2 Translations of Trigonometric Graphs (pp. 769-776) - Graph horizontal translations of trigonometric graphs and find phase shifts. - Graph vertical translations of trigonometric graphs.	optional	2	optional	1
14-3 Trigonometric Identities ($p p .777-781$) - Use identities to find trigonometric values. - Use trigonometric identities to simplify expressions.	optional	2	optional	1
14-4 Verifying Trigonometric Identities (pp. 782-785) - Verify trigonometric identities by transforming one side of an equation into the form of the other side. - Verify trigonometric identities by transforming each side of the equation into the same form.	optional	2	optional	1
14-5 Sum and Difference of Angles Formulas (pp. 786-790) - Find values of sine and cosine involving sum and difference formulas. - Verify identities by using sum and difference formulas.	optional	1	optional	0.5
$\begin{aligned} & \text { 14-6 Double-Angle and Half-Angle Formulas (pp. 791-797) } \\ & \text { - Find values of sine and cosine involving double-angle formulas. } \\ & \text { - Find values of sine and cosine involving half-angle formulas. } \end{aligned}$	optional	1	optional	0.5
14-7 Solving Trigonometric Equations (pp. 798-804) Preview: Solving Trigonometric Equations - Solve trigonometric equations. - Use trigonometric equations to solve real-world problems.	optional	$\begin{gathered} 2 \\ \text { (with 14-7 } \\ \text { Preview) } \end{gathered}$	optional	
Study Guide and Practice Test (pp. 805-809) Standardized Test Practice (pp. 810-811)	optional	1	optional	0.5
Chapter Assessment	optional	1	optional	1
TOTAL	0	14	0	7.5

Pacing suggestions for the entire year can be found on pages T20-T21.

Chapter Resource Manager

All-In-One Planner and Resource Center

*Key to Abbreviations: GCS = Graphing Calculator and Speadsheet Masters,
$\begin{aligned} \text { SC } & =\text { School-to-Career Masters, } \\ \text { SM } & =\text { Science and Mathematics Lab Manual }\end{aligned}$

Continuity of Instruction

Prior Knowledge

In the previous chapter students investigated the six trigonometric functions and worked with angles measured in degrees or radians, as rays in standard position, and as points on
the unit circle. Also, they explored periodicity and inverse trigonometric functions.

This Chapter

Students use the trigonometric functions to explore amplitude and period, and they investigate phase shifts and vertical shifts in the graphs of trigonometric functions. They learn how to verify and use trigonometric identities, including sum and difference formulas, double-angle formulas, and half-angle formulas. Finally they solve trigonometric equations using the ideas of factoring, the zero product property, trigonometric inverses, and periodic behavior.

Future Connections

Students will continue to study amplitude, period, and frequency for trigonometric and other periodic functions. In later math courses they will use trigonometric formulas and identities, and frequently when they study graphs they will analyze vertical and horizontal translations of graphs and how those changes are related to changes in the algebraic description of the graph.

14-1 Graphing Trigonometric Functions

This chapter continues the extensive investigation of trigonometric functions from the previous chapter. This lesson focuses on graphs of the trigonometric functions. Each of the sine, cosine, and tangent functions repeats a pattern of values, or is periodic. For the sine and cosine functions, the period is 2π radians or 360°, while for the tangent function the period is π radians or 180°. For periodic functions the distance between a horizontal center line and the maximum or minimum value is called the amplitude of the graph. For $y=\sin x$ and $y=\cos x$, the horizontal center line is the x-axis and the maximum and minimum values are ± 1, so the amplitude is 1 .

The lesson also describes these properties algebraically. For the sine function $y=a \sin b \theta$ and the cosine function $y=a \cos b \theta$, the period is $2 \pi \div|b|$ and the amplitude is $|a|$. For $y=a \tan b \theta$, the tangent function, the period is $\pi \div|b|$. The tangent function has no finite maximum or minimum, so amplitude is not defined for the tangent function.

14-2 Translations of Trigonometric Graphs

In this lesson students explore the graphs of $y=\sin \theta$ and $y=\cos \theta$. More specifically, they use the functions $y=a \sin b(\theta-h)+k$ and $y=a \cos b(\theta-h)+k$ and see how changing each of the values a, b, h, and k affects the graph. Also, they explore how to sketch a graph for a given set of values of the four variables.

One change in the graph of a periodic function is to move the horizontal center line of the graph. When $k=0$ the horizontal center line is the x-axis and the vertical shift is zero. A positive value of k represents a vertical shift upward while a negative value of k represents a downward vertical shift. The amplitude is determined by the value of $|a|$, so the maximum values of the function are $|a|$ units above k and the minimum values of the function are $|a|$ units below k. A third change is the period of the function. The expression for the length of one period has the variable b in the denominator, so as the value of $|b|$ increases the period of the function decreases. The fourth variable, h, is associated with the phase shift of the function. If h is positive, the entire graph is shifted to the right; if h is negative, the entire graph is shifted to the left. Students also use the equation $y=a \tan b(\theta-h)+k$ and explore phase shifts, periods, and vertical shifts for the tangent function.

14-3 Trigonometric Identities

This lesson and the next three deal with trigonometric identities. Students learn the definition of an identity, and they work with arguments that are half of a given angle, twice a given angle, or the sum or difference of two given angles. In this lesson students work with the definitions of the six trigonometric functions in terms of x, y, and r. By dividing each side of $x^{2}+y^{2}=r^{2}$ by r^{2}, y^{2}, or x^{2}, the results are three identities called the Pythagorean Identities. For other identities, called the Reciprocal Identities, students note that the definitions for sine and cosecant, for cosine and secant, and for tangent and cotangent are reciprocals. Also, they see that the ratios $\sin \theta \div \cos \theta$ and $\cos \theta \div \sin \theta$ can be simplified to $\tan \theta$ and $\cot \theta$, respectively, resulting in two identities called the Quotient Identities. Students explore how to use identities to simplify trigonometric expressions, and they use identities to evaluate a complicated trigonometric expression for a given argument.

14-4) Verifying Trigonometric Identities

In this lesson students continue exploring how to identify and use trigonometric identities. For each equation, the goal is to transform each side, replacing expressions with equivalent expressions, until the two sides are identical. There are several approaches for writing equivalent expressions. First, students can make substitutions using the Pythagorean Identities. Second, they can use the Distributive Property to factor an expression or to collect like terms. Third, they can transform a term by multiplying the term by an expression equivalent to 1 . And fourth, they can rewrite all the trigonometric functions in terms of $\sin \theta$ or $\cos \theta$ by using the Quotient and Reciprocal Identities. Students also relate trigonometric identities to graphs, using a graphing calculator to show that the expressions on each side of a trigonometric identity have the same graph.

14-5 Sum and Difference of Angles Formulas

Students derive and then use formulas for rewriting the two-variable functions $\sin (\alpha \pm \beta)$ and $\cos (\alpha \pm \beta)$ in terms of the one-variable functions $\sin \alpha, \sin \beta, \cos \alpha$, and $\cos \beta$. The derivation of the difference formula for the cosine function begins with the two ordered pairs on the unit circle that correspond to two angles α and β. The distance d between
the two points can be found using the distance formula, or it can be found as the distance between the point $(1,0)$ and the coordinates of the point on the unit circle associated with angle $(\alpha-\beta)$. After equating the two expressions for d, algebraic manipulation gives an expression for the two-variable function $\cos (\alpha-\beta)$ in terms of one-variable functions. Students use the formulas to find exact values for particular trigonometric expressions. They also use the formulas in problems such as verifying that the equation $\sin \left(180^{\circ}+\theta\right)=-\sin \theta$ is an identity.

14-6 Double-Angle and Half-Angle Formulas

Students begin with the formulas for $\sin (\alpha+\beta)$ and $\cos (\alpha+\beta)$ and replace both α and β with θ. The results, called the Double-Angle Formulas, are equations in which each of $\sin 2 \theta$ and $\cos 2 \theta$ is expressed in terms of $\sin \theta$ and $\cos \theta$. Then students use an algebraic technique and let α represent 2θ (so $\frac{\alpha}{2}$ represents θ), and derive formulas for $\sin \frac{\alpha}{2}$ and $\cos \frac{\alpha}{2}$ in terms of $\sin \alpha$ and $\cos \alpha$. The two formulas are called the Half-Angle Formulas. Students use the Half-Angle and Double-Angle Formulas, along with other formulas, to find exact values for particular trigonometric expressions. They also substitute the formulas in equations to verify trigonometric identities.

14-7 Solving Trigonometric Equations

In this last lesson of the two-chapter investigation of trigonometric functions, students solve trigonometric equations and review some of the important general ideas of algebra. The first step in solving a trigonometric equation is to use factoring, the zero product property, and identities to rewrite a complicated equation as a string of simpler trigonometric equations. The second step is to use trigonometric inverses to isolate the variable; that is, to solve an equation such as $\cos \theta=0.5$ for θ. The third step is to use ideas of periodicity to include all the occurrences of that value. Students solve trigonometric equations for arguments measured in degrees or in radians, and they use trigonometric equations and their solutions to solve statements of real-world problems.

	Type	Student Edition	Teacher Resources	Technology/Internet
	Ongoing	```Prerequisite Skills, pp. 761, 768, 776, 781, 785, 790, 797 Practice Quiz 1, p. 781 Practice Quiz 2, p. 797```	5-Minute Check Transparencies Quizzes, CRM pp. 893-894 Mid-Chapter Test, CRM p. 895 Study Guide and Intervention, CRM pp. 837-838, $\begin{aligned} & 843-844,849-850,855-856,861-862,867-868, \\ & 873-874 \end{aligned}$	Alge2PASS: Tutorial Plus www.algebra2.com/self_check_quiz www.algebra2.com/extra_examples
	Mixed Review	$\begin{aligned} & \text { pp. 768, 776, 781, 785, 790, } \\ & 797,804 \end{aligned}$	Cumulative Review, CRM p. 896	
	Error Analysis	Find the Error, p. 766 Common Misconceptions, p. 782	Find the Error, TWE p. 766 Tips for New Teachers, TWE p. 793	
	Standardized Test Practice	$\begin{aligned} & \text { pp. 768, 776, 781, 783, 784, } \\ & 785,790,796,804,809, \\ & 810-811 \end{aligned}$	TWE p. 783 Standardized Test Practice, CRM pp. 897-898	Standardized Test Practice CD-ROM www.algebra2.com/ standardized_test
	Open-Ended Assessment	$\begin{aligned} & \text { Writing in Math, pp. 768, 776, } \\ & 781,785,790,796,804 \\ & \text { Open Ended, pp. 766, 774, 779, } \\ & 784,788,794,802 \end{aligned}$	Modeling: TWE pp. 768, 790 Speaking: TWE pp. 781, 784, 803 Writing: TWE pp. 776, 797 Open-Ended Assessment, CRM p. 891	
	Chapter Assessment	Study Guide, pp. 805-808 Practice Test, p. 809	Multiple-Choice Tests (Forms 1, 2A, 2B), CRM pp. 879-884 Free-Response Tests (Forms 2C, 2D, 3), CRM pp. 885-890 Vocabulary Test/Review, CRM p. 892	TestCheck and Worksheet Builder (see below) MindJogger Videoquizzes www.algebra2.com/ vocabulary_review www.algebra2.com/chapter_test

Key to Abbreviations: TWE $=$ Teacher Wraparound Edition; CRM $=$ Chapter Resource Masters

Additional Intervention Resources

The Princeton Review's Cracking the SAT \& PSAT The Princeton Review's Cracking the ACT

ALEKS

TestCheck and Worksheet Builder

This networkable software has three modules for intervention and assessment flexibility:

- Worksheet Builder to make worksheet and tests
- Student Module to take tests on screen (optional)
- Management System to keep student records (optional)

Special banks are included for SAT, ACT, TIMSS, NAEP, and End-of-Course tests.

Intervention Technology

Alge2PASS: Tutorial Plus CD-ROM offers a complete, self-paced algebra curriculum.

Algebra 2 Lesson	Alge2PASS Lesson
$14-2$	$27 \quad$ Graphing Trigonometric Functions
$14-4$	$28 \quad$ Trigonometric Identities

ALEKS is an online mathematics learning system that adapts assessment and tutoring to the student's needs. Subscribe at www.k12aleks.com.

Intervention at Home

Log on for student study help.

- For each lesson in the Student Edition, there are Extra Examples and Self-Check Quizzes. www.algebra2.com/extra_examples www.algebra2.com/self_check_quiz
- For chapter review, there is vocabulary review, test practice, and standardized test practice.
www.algebra2.com/vocabulary_review
www.algebra2.com/chapter_test
www.algebra2.com/standardized_test

For more information on Intervention and

 Assessment, see pp. T8-T11.
Reading and Writing in Mathematics

Glencoe Algebra 2 provides numerous opportunities to incorporate reading and writing into the mathematics classroom.

Student Edition

- Foldables Study Organizer, p. 761
- Concept Check questions require students to verbalize and write about what they have learned in the lesson. (pp. 766, 774, 779, 784, 788, 794, 802, 805)
- Writing in Math questions in every lesson, pp. 768, 776, 781, 785, 790, 796, 804
- Reading Study Tip, pp. 786, 788
- WebQuest, pp. 775, 804

Teacher Wraparound Edition

- Foldables Study Organizer, pp. 761, 805
- Study Notebook suggestions, pp. 766, 774, 779, 783, 788, 794, 802
- Modeling activities, pp. 768, 790
- Speaking activities, pp. 781, 784, 803
- Writing activities, pp. 776, 797
- ELL Resources, pp. 760, 767, 775, 780, 785, 789, 796, 803, 805

Additional Resources

- Vocabulary Builder worksheets require students to define and give examples for key vocabulary terms as they progress through the chapter. (Chapter 14 Resource Masters, pp. vii-viii)
- Reading to Learn Mathematics master for each lesson (Chapter 14 Resource Masters, pp. 841, 847, 853, 859, 865, 871, 877)
- Vocabulary PuzzleMaker software creates crossword, jumble, and word search puzzles using vocabulary lists that you can customize.
- Teaching Mathematics with Foldables provides suggestions for promoting cognition and language.
- Reading and Writing in the Mathematics Classroom
- WebQuest and Project Resources

For more information on Reading and Writing in Mathematics, see pp. T6-T7.

What You'll Learn

Have students read over the list of objectives and make a list of any words with which they are not familiar.

Why It's Important

Point out to students that this is only one of many reasons why each objective is important. Others are provided in the introduction to each lesson.

Lesson	NCTM Standards	Local Objectives
$14-1$	$1,2,6,7,8,9$, 10	
$14-2$	$1,2,3,4,6,8$, 9,10	
$14-3$	$1,2,6,8,9,10$	
$14-4$	2,8	
$14-5$	$1,2,6,7,8,9$, 10	
$14-6$	$1,2,7,8,9,10$	
$14-7$ Preview	2,10	
$14-7$	$1,2,6,7,8,9$, 10	

Key to NCTM Standards:

1=Number \& Operations, 2=Algebra,
3=Geometry, 4=Measurement,
5=Data Analysis \& Probability, 6=Problem
Solving, 7=Reasoning \& Proof,
8=Communication, 9=Connections,
10=Representation

Trigonometric Graphs and Identities

What You'll Learn

- Lessons 14-1 and 14-2 Graph trigonometric functions and determine period, amplitude, phase shifts, and vertical shifts.
- Lessons 14-3 and 14-4 Use and verify trigonometric identities.
- Lessons 14-5 and 14-6 Use sum and difference formulas and double- and half-angle formulas.
- Lesson 14-7 Solve trigonometric equations.

Why It's Important

Some equations contain one or more trigonometric functions. It is important to know how to simplify trigonometric expressions to solve these equations. Trigonometric functions can be used to model many real-world applications, such as music. You will learn how a trigonometric function can be used to describe music in Lesson 14-6.

60 Chapter 14 Trigonometric Graphs and Iclentities

Vocabulary Builder

The Key Vocabulary list introduces students to some of the main vocabulary terms included in this chapter. For a more thorough vocabulary list with pronunciations of new words, give students the Vocabulary Builder worksheets found on pages vii and viii of the Chapter 14 Resource Masters. Encourage them to complete the definition of each term as they progress through the chapter. You may suggest that they add these sheets to their study notebooks for future reference when studying for the Chapter 14 test.

Getting Started

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 14 .

For Lessons 14-1 and 14-2

Trigonometric Values
Find the exact value of each trigonometric function. (For review, see Lesson 13-3.)

1. $\sin 135^{\circ} \sqrt{2}$
2. $\tan 315^{\circ}-1$
3. $\cos 90^{\circ} 0$
4. $\tan 45^{\circ} 1$
5. $\sin \frac{5 \pi}{4}-\frac{\sqrt{2}}{2}$
6. $\cos \frac{7 \pi}{6}-\frac{\sqrt{3}}{2}$
7. $\sin \frac{11 \pi}{6}-\frac{1}{2}$
8. $\tan \frac{3 \pi}{2}$ not defined

For Lessons 14-3, 14-5, and 14-6
Circular Functions
Find the exact value of each trigonometric function. (For review, see Lesson 13-6.)
9. $\cos \left(-150^{\circ}\right)-\frac{\sqrt{3}}{2}$
10. $\sin 510^{\circ} \frac{1}{2}$
11. $\cot \frac{9 \pi}{4} 1$
12. $\sec \frac{13 \pi}{6} \frac{2 \sqrt{3}}{3}$
13. $\tan \left(-\frac{3 \pi}{2}\right)$
14. $\csc \left(-720^{\circ}\right)$
15. $\cos \frac{7 \pi}{3}-\frac{1}{2}$
16. $\tan \frac{8 \pi}{3}-\sqrt{3}$
not defined
not defined

For Lesson 14-4
Factor Polynomials
Factor completely. If the polynomial is not factorable, write prime. (For review, see Lesson 5-4.)
17. $-15 x^{2}-5 x-5 x(3 x+1)$
18. $2 x^{4}-4 x^{2} 2 x^{2}\left(x^{2}-2\right)$
19. $x^{3}+4$ prime
20. $\begin{aligned} & x^{2}-6 x+8 \\ & (x-4)(x-2)\end{aligned}$
21. $\begin{aligned} & 2 x^{2}-3 x-2 \\ & (2 x+1)(x-2)\end{aligned}$
22. $3 x^{3}-2 x^{2}-x$ $x(3 x+1)(x-1)$

For Lesson 14-7
Solve Quadratic Equations
Solve each equation by factoring. (For review, see Lesson 6-3.)
23. $x^{2}-5 x-24=08,-3$
24. $x^{2}-2 x-48=08,-6$
25. $x^{2}+3 x-40=0-8,5$
26. $x^{2}-12 x=0 \quad 0,12$
27. $-2 x^{2}-11 x-12=0$
28. $x^{2}-16=0-4,4$ $-4,-\frac{3}{2}$

Make this Foldable to help you organize information about trigonometric graphs and identities. Begin with eight sheets of grid paper.

FOLDABLES

 Study Organizer
Step 1 Staple

Reading and Writing As you read and study the chapter, use each page to write notes and to graph examples for each lesson.

Getting Started

This section provides a review of the basic concepts needed before beginning Chapter 14. Page references are included for additional student help.

Prerequisite Skills in the Getting Ready for the Next Lesson section at the end of each exercise set review a skill needed in the next lesson.

For Lesson	Prerequisite Skill
$14-2$	Graphs of Quadratic Functions (p. 768)
$14-3$	Reference Angles (p. 776)
$14-4$	Properties of Equality (p. 781)
$14-5$	Simplifying Radical Expressions (p. 785)
$14-6$	Solving Equations Using the Square Root Property (p. 790)
$14-7$	Solving Equations Using the Zero Product Property (p. 797)

FOLDABLES

Study Organizer

For more information about Foldables, see Teaching Mathematics with Foldables.

Writing Instructions and Sequencing Data After students make their Foldable, have them label each tab to correspond to a lesson in this chapter. Students use their Foldable to take notes, define terms, record concepts, and write examples. After each lesson, ask students to write a set of instructions on how to do something presented in the lesson. For example, a student might write instructions for graphing trigonometric functions. Have students follow their own instructions to check them for accuracy. Use their notes and textbook to make needed revisions.

1 Focus

5-Minute Check

Transparency 14-1 Use as a quiz or review of Chapter 13.

Mathematical Background notes are available for this lesson on p. 760C.

Building on Prior Knowledge

In Chapter 13, students learned the sine, cosine, and tangent of $30^{\circ}, 45^{\circ}$, and 60° angles. In this lesson, students will learn the sine, cosine, and tangent of angles with other measures and use all of these values to create graphs of the six trigonometric functions.

Why
can you predict the behavior of tides?
Ask students:

- Why would you need to know the times for the high and low tides? Sample answer: roads might be flooded at high tide
- How is the period of a tide defined? Sample answer: the length of time between two high tides (or two low tides)
- What is a tidal range? Sample answer: the difference in water level between low tide and high tide

What You'll Learn

- Graph trigonometric functions.
- Find the amplitude and period of variation of the sine, cosine, and tangent functions.

Vocabulary amplitude

Study Tip
LOOK BaCK To review period and periodic functions, see Lesson 13-6.

Why can you predict the behavior of tides?

The rise and fall of tides can have great impact on the communities and ecosystems that depend upon them. One type of tide is a semidiurnal tide. This means that bodies of water, like the Atlantic Ocean, have two high tides and two low tides a day. Because tides are periodic, they behave the same way each day.

GRAPH TRIGONOMETRIC FUNCTIONS The diagram below illustrates the water level as a function of time for a body of water with semidiurnal tides.

In each cycle of high and low tides, the pattern repeats itself. Recall that a function whose graph repeats a basic pattern is called a periodic function.
To find the period, start from any point on the graph and proceed to the right until the pattern begins to repeat. The simplest approach is to begin at the origin. Notice that after about 12 hours the graph begins to repeat. Thus, the period of the function is about 12 hours.
To graph the periodic functions $y=\sin \theta, y=\cos \theta$, or $y=\tan \theta$, use values of θ expressed either in degrees or radians. Ordered pairs for points on these graphs are of the form $(\theta, \sin \theta),(\theta, \cos \theta)$, and $(\theta, \tan \theta)$, respectively.

θ	0°	30°	45°	60°	90°	120°	135°	150°	180°	210°	225°	240°	270°	300°	315°	330°	360°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0
nearest tenth	0	0.5	0.7	0.9	1	0.9	0.7	0.5	0	-0.5	-0.7	-0.9	-1	-0.9	-0.7	-0.5	0
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	$-\frac{\sqrt{3}}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{1}{2}$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
nearest tenth	1	0.9	0.7	0.5	0	-0.5	-0.7	-0.9	-1	-0.9	-0.7	-0.5	0	0.5	0.7	0.9	1
tan θ	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nd	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	nd	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0
nearest tenth	0	0.6	1	1.7	nd	-1.7	-1	-0.6	0	0.6	1	1.7	nd	-1.7	-1	-0.6	0
$\boldsymbol{\theta}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2 \pi}{3}$	$\frac{3 \pi}{4}$	$\frac{5 \pi}{6}$	π	$\frac{7 \pi}{6}$	$\frac{5 \pi}{4}$	$\frac{4 \pi}{3}$	$\frac{3 \pi}{2}$	$\frac{5 \pi}{3}$	$\frac{7 \pi}{4}$	$\frac{11 \pi}{6}$	2π

762 Chapter 14 Trigonometric Graphs and Identities

Resource Manager

Workbook and Reproducible Masters

Chapter 14 Resource Masters

- Study Guide and Intervention, pp. 837-838
- Skills Practice, p. 839
- Practice, p. 840
- Reading to Learn Mathematics, p. 841
- Enrichment, p. 842

Transparencies

5-Minute Check Transparency 14-1
Real-World Transparency 14
Answer Key Transparencies

Technology

Interactive Chalkboard

After plotting several points, complete the graphs of $y=\sin \theta$ and $y=\cos \theta$ by connecting the points with a smooth, continuous curve. Recall from Chapter 13 that each of these functions has a period of 360° or 2π radians. That is, the graph of each function repeats itself every 360° or 2π radians.

Notice that both the sine and cosine have a maximum value of 1 and a minimum value of -1 . The amplitude of the graph of a periodic function is the absolute value of half the difference between its maximum value and its minimum value. So,
for both the sine and cosine functions, the amplitude of their graphs is $\left|\frac{1-(-1)}{2}\right|$ or 1 .
The graph of the tangent function can also be drawn by plotting points. By examining the values for $\tan \theta$ in the table, you can see that the tangent function is not defined for $90^{\circ}, 270^{\circ}, \ldots, 90^{\circ}+k \cdot 180^{\circ}$, where k is an integer. The graph is separated by vertical asymptotes whose x-intercepts are the values for which $y=\tan \theta$ is not defined.

The period of the tangent function is 180° or π radians. Since the tangent function has no maximum or minimum value, it has no amplitude.

The graphs of the secant, cosecant, and cotangent functions are shown below. Compare them to the graphs of the cosine, sine, and tangent functions, which are shown in red.

Notice that the period of the secant and cosecant functions is 360° or 2π radians The period of the cotangent is 180° or π radians. Since none of these functions have a maximum or minimum value, they have no amplitude.

INIERVENTION

Differentiated Instruction

Visual/Spatial Have groups of students make posters showing sketches of the graphs of the six trigonometric functions. Encourage students to color-code the key features of all the graphs, such as period, amplitude, asymptotes, and so on.

GRAPH TRIGONOMETRIC FUNCTIONS

Teaching Tip Have students brainstorm to make a list of real-world phenomena that fluctuate in a regular periodic pattern. (Examples: temperatures, the number of people in a mall over the course of a week)

Teaching Tip You might wish to have students draw their own graphs of the sine, cosine, and tangent functions using the data from the table on p. 762. Their graphs can be compared to those shown on p. 763. This immediate feedback can be beneficial in helping students acquire the skills for graphing trigonometric functions, which are more complicated than most of the graphing students have done to this point.

Teaching Tip Review how the sine and cosine functions are related in a right triangle.

VARIATIONS OF TRIGONOMETRIC FUNCTIONS

Concept Check

After discussing the Key Concept box about amplitudes and periods, ask: What is an equation involving the sine function with a period of 90° and an amplitude of $\frac{1}{2}$? One of the following:
$y=\frac{1}{2} \sin 4 \theta, y=\frac{1}{2} \sin (-4 \theta)$, $y=-\frac{1}{2} \sin 4 \theta$, or $y=-\frac{1}{2} \sin (-4 \theta)$

VARIATIONS OF TRIGONOMETRIC FUNCTIONS Just as with other functions, a trigonometric function can be used to form a family of graphs by changing the period and amplitude.

Period and Amplitude

Graphing Calculator Investigation

On a TI-83 Plus graphing calculator, set the MODE to degrees.

Think and Discuss

1. Graph $y=\sin x$ and $y=\sin 2 x$. What is the maximum value of each function? 1
2. How many times does each function reach a maximum value? 2, 4
3. Graph $y=\sin \left(\frac{x}{2}\right)$. What is the maximum value of this function?

[0, 720] scl: 45 by [-2.5, 2.5] scl: 0.5 How many times does this function reach its maximum value? $1 ; 1$
4. Use the equations $y=\sin b x$ and $y=\cos b x$. Repeat Exercises $1-3$ for maximum values and the other values of b. What conjecture can you make about the effect of b on the maximum values and the periods of these functions? The greater the value of b, the smaller the period. b has no effect on the maximum value.
5. Graph $y=\sin x$ and $y=2 \sin x$. What is the maximum value of each function? What is the period of each function? 1, 2; 360°
6. Graph $y=\frac{1}{2} \sin x$. What is the maximum value of this function? What is the period of this function? $\frac{1}{2} ; 360^{\circ}$

[0, 720] scl: 45 by [-2.5, 2.5$]$ scl: 0.5
7. Use the equations $y=a \sin x$ and $y=a \cos x$. Repeat Exercises 5 and 6 for other values of a. What conjecture can you make about the effect of a on the amplitudes and periods of $y=a \sin x$ and $y=a \cos x$?

The results of the investigation suggest the following generalization.
Key Concept
Amplitudes and Periods

- Words For functions of the form $y=a \sin b \theta$ and $y=a \cos b \theta$, the amplitude is $|a|$, and the period is $\frac{360^{\circ}}{|b|}$ or $\frac{2 \pi}{|b|}$.
For functions of the form $y=a \tan b \theta$, the amplitude is not defined, and the period is $\frac{180^{\circ}}{|b|}$ or $\frac{\pi}{|b|}$.
- Examples $y=3 \sin 4 \theta \quad$ amplitude 3 and period $\frac{360^{\circ}}{4}$ or 90°
$y=-6 \cos 5 \theta$ amplitude $|-6|$ or 6 and period $\frac{2 \pi}{5}$
$y=2 \tan \frac{1}{3} \theta$ no amplitude and period 3π

Graphing Calculator Investigation

Graphing Trigonometric Functions To set the calculator for degrees, press MODE and move the cursor to highlight DEGREE and press ENTER. Also, be sure to have students clear the $\mathrm{Y}=$ lists before beginning Exercise 1.

You can use the amplitude and period of a trigonometric function to help you graph the function.

Example 1 Graph Trigonometric Functions

Find the amplitude and period of each function. Then graph the function.
a. $y=\cos 3 \theta$

First, find the amplitude.
$|a|=|1| \quad$ The coefficient of $\cos 3 \theta$ is 1 .
Next, find the period.

$$
\begin{aligned}
\frac{360^{\circ}}{|b|} & =\frac{360^{\circ}}{|3|} \quad b=3 \\
& =120^{\circ}
\end{aligned}
$$

Use the amplitude and period to graph the function.

b. $y=\frac{1}{4} \sin \theta$

$$
\begin{aligned}
& \text { Amplitude } \\
& |a|=\left|\frac{1}{4}\right| \\
& =\frac{1}{4} \\
& \text { Period: } \\
& \frac{360^{\circ}}{|b|}=\frac{360^{\circ}}{|1|} \\
& =360^{\circ}
\end{aligned}
$$

c. $y=\frac{1}{2} \sin \left(-\frac{1}{3} \theta\right)$

Amplitude

$$
\begin{aligned}
|a| & =\left|\frac{1}{2}\right| \\
& =\frac{1}{2}
\end{aligned}
$$

Period:

$$
\begin{aligned}
\frac{2 \pi}{|b|} & =\frac{2 \pi}{\left|-\frac{1}{3}\right|} \\
& =6 \pi
\end{aligned}
$$

www.algebra2.com/extra_examples
Lesson 14-1 Graphing Trigonometric Functions 765

Teacher to Teacher

Berchie Holliday

Author, Cincinnati, OH
"I have my students construct a unit circle on a coordinate plane with a toothpick length radius. They mark every 15°. Students form right triangles inside the circle and break toothpicks to match the lengths of each vertical leg. (See Figure 1 at the right.) They transfer each leg to its appropriate degree mark on a second x-axis and place a dot at the top of each toothpick. (See Figure 2.) Finally, students connect the dots with a smooth curve."

1 Find the amplitude and period of each function. Then graph the function.
a. $y=\sin \frac{1}{3} \theta$
ampl: 1; period: 1080°

b. $y=\frac{1}{3} \cos \theta$
ampl: $\frac{1}{3}$; period: 360°

c. $y=2 \sin \frac{1}{4} \theta$
ampl: 2; period: 1440°

Figure 1

Figure 2

the application at the beginning of the lesson. The tidal range in the Bay of Fundy in Canada measures 50 feet.
a. Write a function to represent the height h of the tide. Assume that the tide is at equilibrium at $t=0$ and that the high tide is beginning.

$$
y=25 \sin \frac{\pi}{6} t
$$

b. Graph the tide function.

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 14.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

INIERVENIION FIND THE ERROR

Students should quickly notice that Dante must be incorrect because his graph does not have an amplitude of 3. Ask students if they can identify the mistake that Dante made.

Example 2 Use Trigonometric Functions

-OCEANOGRAPHY Refer to the application at the beginning of the lesson. Suppose the tidal range of a city on the Atlantic coast is 18 feet. A tide is at equilibrium when it is at its normal level, halfway between its highest and lowest points.
a. Write a function to represent the height h of the tide. Assume that the tide is at equilibrium at $t=0$ and that the high tide is beginning.

Since the height of the tide is 0 at $t=0$, use the sine function $h=a \sin b t$, where a is the amplitude of the tide and t is the time in hours
Find the amplitude. The difference between high tide and low tide is the tidal range or 18 feet.
$a=\frac{18}{2}$ or 9
Find the value of b. Each tide cycle lasts about 12 hours.

$$
\begin{aligned}
\frac{2 \pi}{|b|} & =12 & & \text { period }=\frac{2 \pi}{|b|} \\
b & =\frac{2 \pi}{12} \text { or } \frac{\pi}{6} & & \text { Solve for } b .
\end{aligned}
$$

Thus, an equation to represent the height of the tide is $h=9 \sin \frac{\pi}{6} t$.
b. Graph the tide function.

Check for Understanding

Concept Check

2. Sample answer:

 The graph repeats itself every 180°.3. Jamile; the amplitude is 3 , and the period is 3π
4. OPEN ENDED Explain why $y=\tan \theta$ has no amplitude. See margin.
5. Explain what it means to say that the period of a function is 180°.
6. FIND THE ERROR Dante and Jamile graphed $y=3 \cos \frac{2}{3} \theta$.

Who is correct? Explain your reasoning.
766 Chapter 14 Trigonometric Graphs and Identities

Answer

1. Sample answer: Amplitude is half the difference between the maximum and minimum values of a graph; $y=\tan \theta$ has no maximum or minimum value.

Find the amplitude, if it exists, and period of each function. Then graph each function. 4-12. See pp. 811A-811N.

GUIDED PRACTICE KEY	
Exercises	Examples
$4-12$	1
13,14	2

4. $y=\frac{1}{2} \sin \theta$
5. $y=2 \sin \theta$
6. $y=\frac{2}{3} \cos \theta$
7. $y=\frac{1}{4} \tan \theta$
8. $y=\csc 2 \theta$
9. $y=4 \sin 2 \theta$
10. $y=4 \cos \frac{3}{4} \theta$
11. $y=\frac{1}{2} \sec 3 \theta$
12. $y=\frac{3}{4} \cos \frac{1}{2} \theta$

Application BIology For Exercises 13 and 14, use the following information.
In a certain wildlife refuge, the population of field mice can be modeled by $y=3000+1250 \sin \frac{\pi}{6} t$, where y represents the number of mice and t represents the number of months past March 1 of a given year.
13. Determine the period of the function. What does this period represent?
13. 12 months; Sample answer: The pattern in the population will repeat itself every 12 months.
14. What is the maximum number of mice and when does this occur? 4250; June 1

Practice and Apply

Homework Help

For Exercises	See Examples
$15-35$	1
$36-41$	2

Extra Practice
See page 859.

More About.

Medicine
The tuning fork was invented in 1711 by English trumpeter John Shore.
Source: www.encarta.msn.com
36. $y=0.25 \sin$
$128 \pi t, y=0.25 \mathrm{sin}$
$512 \pi t, y=0.25 \mathrm{sin}$
$1024 \pi t$
38. $f(x)=\cos x$ and
$f(x)=\sec x$, See pp.
811A-811N for graphs.

Find the amplitude, if it exists, and period of each function. Then graph each function. 15-32. See pp. 811A-811N.
15. $y=3 \sin \theta$
16. $y=5 \cos \theta$
17. $y=2 \csc \theta$
18. $y=2 \tan \theta$
19. $y=\frac{1}{5} \sin \theta$
20. $y=\frac{1}{3} \sec \theta$
21. $y=\sin 4 \theta$
22. $y=\sin 2 \theta$
23. $y=\sec 3 \theta$
24. $y=\cot 5 \theta$
25. $y=4 \tan \frac{1}{3} \theta$
26. $y=2 \cot \frac{1}{2} \theta$
27. $y=6 \sin \frac{2}{3} \theta$
28. $y=3 \cos \frac{1}{2} \theta$
29. $y=3 \csc \frac{1}{2} \theta$
30. $y=\frac{1}{2} \cot 2 \theta$
31. $2 y=\tan \theta$
32. $\frac{3}{4} y=\frac{2}{3} \sin \frac{3}{5} \theta$

* 33. Draw a graph of a sine function with an amplitude $\frac{3}{5}$ and a period of 90°. Then write an equation for the function. See pp. 811A-811N for graph; $y=\frac{3}{5} \sin 4 \theta$.
* 34. Draw a graph of a cosine function with an amplitude of $\frac{7}{8}$ and a period of $\frac{2 \pi}{5}$. Then write an equation for the function. See pp. 811A-811N for graph;

$$
y=\frac{7}{8} \cos 5 \theta \text {. }
$$

35. COMMUNICATIONS The carrier wave for a certain FM radio station can be modeled by the equation $y=A \sin \left(10^{7} \cdot 2 \pi t\right)$, where A is the amplitude of the wave and t is the time in seconds. Determine the period of the carrier wave. $\frac{1}{10^{7}}$

- MEDICINE For Exercises 36 and 37, use the following information.

Doctors may use a tuning fork that resonates at a given frequency as an aid to diagnose hearing problems. The sound wave produced by a tuning fork can be modeled using a sine function.
36. If the amplitude of the sine function is 0.25 , write the equations for tuning forks that resonate with a frequency of 64,256 , and 512 Hertz.
37. How do the periods of the tuning forks compare? See margin.
38. CRITICAL THINKING A function is called even if the graphs of $y=f(x)$ and $y=f(-x)$ are exactly the same. Which of the six trigonometric functions are even? Justify your answer with a graph of each function.
www.algebra2.com/self_check_quiz
Lesson 14-1 Graphing Trigonometric Functions 767

Answer

37. Sample answer: The amplitudes are the same. As the frequency increases, the period decreases.

Study Guide and Intervention,

Exercisess

What is the amplitude of each function?

Skills Practice, P. 839 and Practice, p. 840 (shown) Find the amplitude, if it exists, and period of each function. Then graph each
function.

FORCE For Exercises 7 and 8 , use the following information.
FORCE For Exercises 7 and 8, use the following information.
An anchoring cable exerts a force of 500 Newtons on a pole. The force ha
 is the force that gives an acceleration of $1 \mathrm{~m} / \mathrm{sec}^{2}$ to a mass of 1 kg .)
7. The function $F_{x}=500$ cos θ describes the relationship between the 7. The function $F_{x}=500$ cos θ describes the relationship between the
angle θ and the horizontal force. What are the amplitude and period
of this function $500 ; 360{ }^{\circ}$
8. The function $F_{y}=500 \sin \theta$ describes the relationship between the angle θ and the
vertical force. What are the amplitude and period of this function? 500 ; 360°

WEATHER For Exercises 9 and 10, use the following information.
The function $y=60+25$ sin $\frac{\pi}{6} t$ where t is in months and $t=0$ corresponds to April 15 ,
models the average high temperature in degress Fhrrenheit in Centerville.
9. Determine the period of this function. What does this period represent?
12; a calendar year
10. What is the maximum high temperature and when does this occur? $85^{\circ} \mathrm{F}$; July 15

Reading to Learn

Mathematics, p. 841

ELL

Pre-Activity why can you predict the behavior of tides?

 Read the introduction to Lesson 14-1 at the top of page 762 in your textbook. Consider the tides of the Atlantic Ocean as a function of time.Approximately what is the period of this function? 12 hours

Reading the Lesson

1. Determine whether each statement is true or false.
a. The period of a function is the distance between the maximum and minimum points.
false
b. The amplitude of a f
values. false
c. The amplitude of the function $y=\sin \theta$ is 2π. false
d. The function $y=\cot \theta$ has no amplitude. true
e. The period of the function $y=\sec \theta$ is π. false
f. The amplitude of the function $y=2 \cos \theta$ is 4 . false
g. The function $y=\sin 2 \theta$ has a period of π. true
h. The period of the function $y=\cot 3 \theta$ is $\frac{\pi}{3}$. true
i. The amplitude of the function $y=-5 \sin \theta$ is -5 . false
j. The period of the function $y=\csc \frac{1}{4} \theta$ is 4π. false
k. The graph of the function $y=\sin \theta$ has no asymptotes. true
2. The graph of the function $y=\tan \theta$ has an asymptote at $\theta=180^{\circ}$. false
m. When $\theta=360^{\circ}$, the values of $\cos \theta$ and $\sec \theta$ are equal. true
n. When $\theta=270^{\circ}, \cot \theta$ is undefined. false
o. When $\theta=180^{\circ}, \csc \theta$ is undefined. true

Helping You Remember
2. What is an easy way to remember the periods of $y=a \sin b \theta$ and $y=a$ cos $b \theta$? Sample
answer: The period of the functions $y=\sin \theta$ and $y=\cos \theta$ is 360° or 2π.
Divide 360° or 2π by the absolute value of the coefficient of θ, depending
Divide 360° or 2π by the absolute value of the coefficient of θ, de.
on whether you want to find the period in degrees or in radians.

About the Exercises...
 Organization by Objective
 - Graph Trigonometric Functions: 15-34
 - Variations of Trigonometric Functions: 15-34

Odd/Even Assignments

Exercises 15-34 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15-31 odd, 35-56
Average: 15-35 odd, 36-56
Advanced: 16-34 even, 36-52 (optional: 53-56)

4 Assess

Open-Ended Assessment

Modeling Provide students with a coordinate grid and a length of string. Give students one of the six basic trigonometric functions and have them model the graph using the string. Have students check their model with a graphing calculator.

Getting Ready for

Lesson 14-2
PREREQUISITE SKILL Students will graph horizontal and vertical translations of trigonometric functions in Lesson 14-2. Students will apply what they learned about families of quadratic functions. Use Exercises 53-56 to determine your students' familiarity with the graphs of families of functions.

Answers

BOATING For Exercises 39-41, use the following information.
A marker buoy off the coast of Gulfport, Mississippi, bobs up and down with the waves. The distance between the highest and lowest point is 4 feet. The buoy moves from its highest point to its lowest point and back to its highest point every 10 seconds.
39. Write an equation for the motion of the buoy. Assume that it is at equilibrium at $t=0$ and that it is on the way up from the normal water level. $y=2 \sin \frac{\pi}{5} t$
40. Draw a graph showing the height of the buoy as a function of time. See margin.
41. What is the height of the buoy after 12 seconds? about 1.9 ft
42. WRITING IN MATH

Answer the question that was posed at the beginning of the lesson. See margin.

Why can you predict the behavior of tides?
Include the following in your answer:

- an explanation of why certain tidal characteristics follow the patterns seen in the graph of the sine function, and
- a description of how to determine the amplitude of a function using the maximum and minimum values.

Standardized
Test Practice (A) (B) (C) (D)
43. What is the period of $f(x)=\frac{1}{2} \cos 3 x$? A
(A) 120°
(B) 180°
(C) 360°
(D) 720°
44. Identify the equation of the graphed function. C
(A) $y=\frac{1}{2} \sin 4 \theta$
(B) $y=2 \sin \frac{1}{4} \theta$
(C) $y=\frac{1}{4} \sin 2 \theta$
(D) $y=4 \sin \frac{1}{2} \theta$

Maintain Your Skills

Mixed Review Solve each equation. (Lesson 13-7)
45. $x=\operatorname{Sin}^{-1} 190^{\circ}$ 46. $\operatorname{Arcsin}(-1)=y-90^{\circ}$ 47. $\operatorname{Arccos} \frac{\sqrt{2}}{2}=x 45^{\circ}$

Find the exact value of each function. (Lesson 13-6)
48. $\sin 390^{\circ} \frac{1}{2}$
49. $\sin \left(-315^{\circ}\right) \frac{\sqrt{2}}{2}$
50. $\cos 405^{\circ} \frac{\sqrt{2}}{2}$
51. PROBABILITY There are 8 girls and 8 boys on the Faculty Advisory Board. Three are juniors. Find the probability of selecting a boy or a girl from the committee who is not a junior. (Lesson 12-5) $\frac{13}{16}$
52. Find the first five terms of the sequence in which $a_{1}=3, a_{n+1}=2 a_{n}+5$. (Lesson 11-5) 3, 11, 27, 59, 123

```
Getting Ready for
    the Next Lesson
53-56. See pp.
811A-811N.
```

PREREQUISITE SKILL Graph each pair of functions on the same set of axes.
(To review graphs of quadratic functions, see Lesson 6-6.)
53. $y=x^{2}, y=3 x^{2} \quad$ 54. $y=3 x^{2}, y=3 x^{2}-4$
55. $y=2 x^{2}, y=2(x+1)^{2}$
56. $y=x^{2}+2, y=(x-3)^{2}+2$

```
768 Chapter 14 Trigonometric Graphs and Identities
```

42. Sample answer: Tides display periodic behavior. This means that their pattern repeats at regular intervals. Answers should include the following information.

- Tides rise and fall in a periodic manner, similar to the sine function.
- In $f(x)=a \sin b x$, the amplitude is the absolute value of a.

What You'll Learn

- Graph horizontal translations of trigonometric graphs and find phase shifts.
- Graph vertical translations of trigonometric graphs.

Vocabulary

phase shift
vertical shift midline

TEACHING TIP
For Exercise 4, point out that since the calculator has no preprogrammed button for the secant function, they will need to graph $y=\frac{1}{\cos x}$

How can translations of trigonometric graphs be used to show animal populations?

In predator-prey ecosystems, the number of predators and the number of prey tend to vary in a periodic manner. In a certain region with coyotes as predators and rabbits as prey, the rabbit population R can be modeled by the equation $R=1200+250 \sin \frac{1}{2} \pi t$, where t is the time in years since January 1, 2001.

HORIZONTAL TRANSLATIONS Recall that a translation is a type of transformation in which the image is identical to the preimage in all aspects except its location on the coordinate plane. A horizontal translation shifts to the left or right, and not upward or downward.

Graphing Calculator Investigation

Horizontal Translations

On a TI-83 Plus, set the MODE to degrees.
Think and Discuss 1-3. See margin.

1. Graph $y=\sin x$ and $y=\sin (x-30)$. How do the two graphs compare?
2. Graph $y=\sin (x+60)$. How does this graph compare to the other two?
3. What conjecture can you make about the effect of h in the function $y=\sin (x-h)$?

[0, 720] scl: 45 by [$-1.5,1.5$] scl: 0.5
4. Test your conjecture on the following pairs of graphs.

- $y=\cos x$ and $y=\cos (x+30)$ See pp. 811A-811N for graphs;
- $y=\tan x$ and $y=\tan (x-45)$ the conjecture holds.
- $y=\sec x$ and $y=\sec (x+75)$

Notice that when a constant is added to an angle measure in a trigonometric function, the graph is shifted to the left or to the right. If (x, y) are coordinates of $y=\sin x$, then $(x \pm h, y)$ are coordinates of $y=\sin (x \mp h)$. A horizontal translation of a trigonometric function is called a phase shift.

Workbook and Reproducible Masters

Chapter 14 Resource Masters

- Study Guide and Intervention, pp. 843-844
- Skills Practice, p. 845
- Practice, p. 846
- Reading to Learn Mathematics, p. 847
- Enrichment, p. 848
- Assessment, p. 893

1 Focus

©
 5-Minute Check Transparency 14-2 Use as

 a quiz or review of Lesson 14-1.Mathematical Background notes are available for this lesson on page 760C.

How can translations of trigonometric graphs

 be used to show animal populations?
Ask students:

- Why might the two animal populations vary? Sample answer: As the number of predators increases, more prey are eaten and there are fewer prey left. Lower numbers of prey means increased competition for food by the predator species, so the number of predators decreases as their food supply diminishes.
- What are the minimum and maximum rabbit populations shown by the graph? 950 rabbits, 1450 rabbits
- How could you find the range of the population without calculating the maximum and minimum values or graphing the function? The range, 500 , is twice the amplitude, 250 , of the graph.

Answers

See p. 770 for Graphing Calculator answers.

Resource Manager

Transparencies

5-Minute Check Transparency 14-2
Answer Key Transparencies

- Technology

Alge2PASS: Tutorial Plus, Lesson 27
Interactive Chalkboard

Graphing Calculator and Spreadsheet Masters, p. 53
School-to-Career Masters, p. 27

Building on Prior Knowledge

In Lesson 6-6, students learned about the translations of graphs of quadratic functions. In this lesson, students will use similar techniques to study the translations of graphs of the trigonometric functions.

HORIZONTAL TRANSLATIONS

In-Class Example

1 State the amplitude, period, and phase shift for each function. Then graph the function.
a. $y=2 \sin \left(\theta+20^{\circ}\right)$ amplitude: 2 ; period: 360°; phase shift: 20° left

b. $y=\frac{1}{2} \cos \left(\theta-\frac{\pi}{6}\right)$ amplitude: $\frac{1}{2}$; period: 2π;
phase shift: $\frac{\pi}{6}$ right

Answers (p. 769)

Graphing Calculator Investigation

1. The graph of $y=\sin (x-30)$ is shifted 30° to the right of the graph of $\boldsymbol{y}=\sin \boldsymbol{x}$.
2. The graph of $y=\sin (x+60)$ is shifted 60° to the left of the graph of $y=\sin x$.
3. Sample answer: When h is positive the graph shifts right h units. When h is negative the graph shifts left h units.

- Words: The phase shift of the functions $y=a \sin b(\theta-h), y=a \cos b(\theta-h)$, and $y=a \tan b(\theta-h)$ is h, where $b>0$.
If $h>0$, the shift is to the right. If $h<0$, the shift is to the left.
- Models:

Cosine

Tangent

The secant, cosecant, and cotangent can be graphed using the same rules.

Example 1 Graph Horizontal Translations

State the amplitude, period, and phase shift for each function. Then graph the function.
a. $y=\cos \left(\theta-60^{\circ}\right)$

Since $a=1$ and $b=1$, the amplitude and period of the function are the same as $y=\cos \theta$. However, $h=60^{\circ}$, so the phase shift is 60°. Because $h>0$, the parent graph is shifted to the right.
To graph $y=\cos \left(\theta-60^{\circ}\right)$, consider the graph of $y=\cos \theta$. Graph this function and then shift the graph 60° to the right. The graph $y=\cos \left(\theta-60^{\circ}\right)$ is the graph of $y=\cos \theta$ shifted to the right.
b. $y=2 \sin \left(\theta+\frac{\pi}{4}\right)$

Amplitude: $a=|2|$ or 2
Period: $\quad \frac{2 \pi}{|b|}=\frac{2 \pi}{|1|}$ or 2π
Phase Shift: $\quad h=-\frac{\pi}{4} \quad\left(\theta+\frac{\pi}{4}\right)=\theta-\left(-\frac{\pi}{4}\right)$
The phase shift is to the left since $-\frac{\pi}{4}<0$.

Study Tip

Verifying a Graph After drawing the graph of a trigonometric function, select value of θ and evaluate them in the equation to verify your graph.

Graphing Calculator Investigation

Graphing the Secant Function The graph of the secant function should look like a pattern of U shapes, alternately opening upward and downward. Students might want to extend the activity by investigating the graphs of cosecant (csc) and cotangent (cot). The graphing calculator does not have a button for graphing either of these functions so students should enter $Y=1 / \sin x$ to graph the cosecant function, and they should enter $Y=1 / \tan x$ to graph the cotangent function.

Look Back
Pay close attention to trigonometric functions for the placement of parentheses. Note that $\sin (\theta+x) \neq \sin \theta+x$. The expression on the left represents a phase shift while the expression on the right represents a vertical shift.

VERTICAL TRANSLATIONS In Chapter 6, you learned that the graph of $y=x^{2}+4$ is a vertical translation of the parent graph of $y=x^{2}$. Similarly, graphs of trigonometric functions can be translated vertically through a vertical shift.
When a constant is added to a trigonometric function, the graph is shifted upward or downward. If (x, y) are coordinates of $y=\sin x$, then $(x, y \pm k)$ are coordinates of $y=\sin x \pm k$.
A new horizontal axis called the midline becomes the reference line about which the graph oscillates. For the graph of $y=\sin \theta+k$, the midline is the graph of $y=k$.

Key Concept

- Words The vertical shift of the functions $y=a \sin b(\theta-h)+k, y=a \cos b(\theta-h)+k$, and $y=a \tan b(\theta-h)+k$ is k.
If $k>0$, the shift is up. If $k<0$, the shift is down. The midline is $y=k$.
- Models:

Sine

Cosine

Tangent

The secant, cosecant, and cotangent can be graphed using the same rules.

Example 2 Graph Vertical Translations

State the vertical shift, equation of the midline, amplitude, and period for each function. Then graph the function.
a. $y=\tan \theta-2$

Since $\tan \theta-2=\tan \theta+(-2), k=-2$, and the vertical shift is -2 . Draw the midline, $y=-2$. The tangent function has no amplitude and the period is the same as that of $\tan \theta$.

Draw the graph of the function relative to the midline.

www.algebra2.com/extra_examples
Lesson 14-2 Translations of Trigonometric Graphs 771

Interactive

Chalkboard
PowerPoint ${ }^{\text {® }}$
Presentations

This CD-ROM is a customizable Microsoft ${ }^{\circledR}$ PowerPoint ${ }^{\circledR}$ presentation that includes:

- Step-by-step, dynamic solutions of each In-Class Example from the Teacher Wraparound Edition
- Additional, Your Turn exercises for each example
- The 5-Minute Check Transparencies
- Hot links to Glencoe Online Study Tools

VERTICAL TRANSLATIONS

Teaching Tip Make sure students are clear about the difference between the terms vertical and horizontal. Students can use the words vertigo (a sense of dizziness some people experience when looking down from a great height) and horizon to help link vertical and horizontal to their relative direction.

In-Class Example

Power
 Point ${ }^{\circledR}$

2 State the vertical shift, equation of the midline, amplitude, and period for each function. Then graph the function.
a. $y=2 \sin \theta-1$
vertical shift: -1; midline:
$y=-1$; amplitude: 2 ; period: 2π

b. $y=\frac{1}{2} \cos \theta+3$
vertical shift: +3 ; midline: $y=3$; amplitude: $\frac{1}{2}$; period: 2π

Teaching Tip Suggest that students write the general form of the sine, cosine, and tangent functions given in the Key Concept box on p. 771 at the top of separate index cards. Using the steps listed in the Concept Summary on p. 772, have students identify the parts of the equation used in each step to find the information listed in each step. They can then use their index cards to work Example 3.

In-Class Example

3 State the vertical shift, amplitude, period, and phase shift of $y=3 \sin \left[2\left(\theta-\frac{\pi}{2}\right)\right]+4$. Then graph the function. The vertical shift is +4 . The amplitude is 3 . The period is π. The phase shift is $\frac{\pi}{2}$ to the right.

Study Tip
Look Back It may be helpful to first graph the parent graph $y=\sin \theta$ in one color. Then apply the vertical shift and graph the function in another color. Then apply the change in amplitude and graph the function in the final color.
b. $y=\frac{1}{2} \sin \theta+1$

Vertical shift: $\quad k=1$, so the midline is the graph of $y=1$.
Amplitude:

$$
|a|=\left|\frac{1}{2}\right| \text { or } \frac{1}{2}
$$

Period:

$$
\frac{2 \pi}{|b|}=2 \pi
$$

Since the amplitude of the function is $\frac{1}{2}$, draw dashed lines parallel to the midline that are $\frac{1}{2}$ unit above and below the midline. Then draw the sine curve.

In general, use the following steps to graph any trigonometric function.

Concept Summary

Graphing Trigonometric Functions
Step 1 Determine the vertical shift, and graph the midline.
Step 2 Determine the amplitude, if it exists. Use dashed lines to indicate the maximum and minimum values of the function.

Step 3 Determine the period of the function and graph the appropriate function.
Step 4 Determine the phase shift and translate the graph accordingly.

Example 3 Graph Transformations

State the vertical shift, amplitude, period, and phase shift of $y=4 \cos \left[\frac{1}{2}\left(\theta-\frac{\pi}{3}\right)\right]-6$. Then graph the function.
The function is written in the form $y=a \cos [b(\theta-h)]+k$. Identify the values of k, a, b, and h.
$k=-6$, so the vertical shift is -6 .
$a=4$, so the amplitude is $|4|$ or 4 .
$b=\frac{1}{2}$, so the period is $\frac{2 \pi}{\left|\frac{1}{2}\right|}$ or 4π.
$h=\frac{\pi}{3}$, so the phase shift is $\frac{\pi}{3}$ to the right.
Then graph the function.
Step 1 The vertical shift is -6 . Graph the midline $y=-6$.
Step 2 The amplitude is 4. Draw dashed lines 4 units above and below the midline at $y=-2$ and $y=-10$.

Step 3 The period is 4π, so the graph will be stretched. Graph $y=4 \cos \frac{1}{2} \theta-6$ using the midline as a reference.

Step 4 Shift the graph $\frac{\pi}{3}$ to the right.

More About.

Health .
Blood preasure can change from minute to minute and can be affected by the slightest of movements, such as tapping your fingers or crossing your arms.
Source: American Heart Association

You can use information about amplitude, period, and translations of trigonometric functions to model real-world applications.

Example 4 Use Translations to Solve a Problem

- HEALTH Suppose a person's resting blood pressure is 120 over 80. This means that the blood pressure oscillates between a maximum of 120 and a minimum of 80. If this person's resting heart rate is 60 beats per minute, write a sine function that represents the blood pressure for t seconds. Then graph the function.
Explore You know that the function is periodic and can be modeled using sine.
Plan Let P represent blood pressure and let t represent time in seconds. Use the equation $P=a \sin [b(t-h)]+k$.
Solve - Write the equation for the midline. Since the maximum is 120 and the minimum is 80 , the midline lies halfway between these values.
$P=\frac{120+80}{2}$ or 100
- Determine the amplitude by finding the difference between the midline value and the maximum and minimum values.

$$
\begin{aligned}
a & =|120-100| & a & =|80-100| \\
& =|20| \text { or } 20 & & =|-20| \text { or } 20
\end{aligned}
$$

Thus, $a=20$.

- Determine the period of the function and solve for b. Recall that the period of a function can be found using the expression $\frac{2 \pi}{|b|}$. Since the heart rate is 60 beats per minute, there is one heartbeat, or cycle, per second. So, the period is 1 second.

$$
\begin{aligned}
1 & =\frac{2 \pi}{|b|} & & \text { Write an equation. } \\
|b| & =2 \pi & & \text { Multiply each side by }|b| . \\
b & = \pm 2 \pi & & \text { Solve. }
\end{aligned}
$$

For this example, let $b=2 \pi$. The use of the positive or negative value depends upon whether you begin a cycle with a maximum value (positive) or a minimum value (negative).

- There is no phase shift, so $h=0$. So, the equation is $P=20 \sin 2 \pi t+100$.
- Graph the function.

Step 1 Draw the midline $P=100$.

Step 2 Draw maximum and minimum reference lines.

Step 3 Use the period to draw the graph of the function.

Step 4 There is no phase shift.
Examine Notice that each cycle begins at the midline, rises to 120, drops to 80, and then returns to the midline. This represents the blood pressure of 120 over 80 for one heartbeat. Since each cycle lasts 1 second, there will be 60 cycles, or heartbeats, in 1 minute. Therefore, the graph accurately represents the information.

4 HEALTH Refer to Example 4 in the Student Edition. Write a sine function that represents the blood pressure for t seconds of a person with a resting blood pressure of 120 over 90 and a heart rate of 75 beats per minute. Then graph the function.
$P=15 \sin \frac{5 \pi}{2} t+105$

Differentiated Instruction

Kinesthetic Make coordinate axes with masking tape on the classroom floor. Give students at least 15 feet of rope and have them stand along the x-axis, positioning the rope to model the graph of $y=\sin x$. As you call out equations of functions whose graphs are horizontal phase shifts of the graph of $y=\sin x$, students can step left or right to model the translated graph. Similarly, call out functions whose graphs are vertical shifts of the graph of $y=\sin x$.

Check for Understanding

Concept Check
1-3. See margin.

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 14.
- record the Key Concepts box on p. 771 and the Concept Summary on p. 772.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..
 Organization by Objective
 - Horizontal Translations:

 19-24, 33-42- Vertical Translations: 25-42

Odd/Even Assignments

Exercises 19-42 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 19-29 odd, 33-43 odd, 44-73
Average: 19-43 odd, 44-73
Advanced: 20-42 even, 44-46, 48-65 (optional: 66-73)

Answers

1. vertical shift: 15 ; amplitude: 3 ; period: 180°; phase shift: 45°
2. The midline of a trigonometric function is the line about which the graph of the function oscillates after a vertical shift.
3. Sample answer: $y=\sin \left(\theta+45^{\circ}\right)$
4.

32.

774 Chapter 14 Trigonometric Graphs and Identities

Translations of project.

Homework For Ferces Exee See	
$19-24$	1
$25-30$	2
31,32	1,2
$33-42$	3
$37-40$	4

Extra Practice See page 859.
28. $-\frac{3}{4} ; y=-\frac{3}{4}$; no amplitude; 360° trigonometric graphs can be used to describe temperature trends. Visit wwww.algebra2.com/ webquest to continue work on your WebQuest

$$
\begin{aligned}
& \text { 47. } h=9+6 \sin \\
& {\left[\frac{\pi}{9}(t-1.5)\right]}
\end{aligned}
$$

State the vertical shift, equation of the midline, amplitude, and period for each function. Then graph the function. 25-30. See pp. 811A-811N for graphs.
25. $y=\sin \theta-1-1 ; y=-1 ; 1 ; 360^{\circ}$
26. $y=\sec \theta+2$ 2; $y=2$; no
27. $y=\cos \theta-5-5 ; y=-5 ; 1 ; 360^{\circ}$
28. $y=\csc \theta-\frac{3}{4}$
29. $y=\frac{1}{2} \sin \theta+\frac{1}{2} \frac{1}{2} ; y=\frac{1}{2} ; \frac{1}{2} ; 360^{\circ}$
30. $y=6 \cos \theta+1.5$
1.5; $y=1.5 ; 6 ; 360^{\circ}$
\star 31. Graph $y=5+\tan \left(\theta+\frac{\pi}{4}\right)$. Describe the transformation to the parent graph $y=\tan \theta$. See margin for graph; translation $\frac{\pi}{4}$ units left and 5 units up.
32. Draw a graph of the function $y=\frac{2}{3} \cos \left(\theta-50^{\circ}\right)+2$. How does this graph compare to the graph of $y=\cos \theta$? See margin for graph; translation 50° right and 2 units up with an amplitude of $\frac{2}{3}$ unit.
State the vertical shift, amplitude, period, and phase shift of each function. Then graph the function. 33-42. See pp. 811A-811N.
33. $y=2 \sin \left[3\left(\theta-45^{\circ}\right)\right]+1$
34. $y=4 \cos \left[2\left(\theta+30^{\circ}\right)\right]-5$
35. $y=3 \csc \left[\frac{1}{2}\left(\theta+60^{\circ}\right)\right]-3.5$
36. $y=6 \cot \left[\frac{2}{3}\left(\theta-90^{\circ}\right)\right]+0.75$
37. $y=\frac{1}{4} \cos \left(2 \theta-150^{\circ}\right)+1$
38. $y=\frac{2}{5} \tan \left(6 \theta+135^{\circ}\right)-4$
39. $y=3+2 \sin \left[2\left(\theta+\frac{\pi}{4}\right)\right]$
40. $y=4+5 \sec \left[\frac{1}{3}\left(\theta+\frac{2 \pi}{3}\right)\right]$
41. Graph $y=3-\frac{1}{2} \cos \theta$ and $y=3+\frac{1}{2} \cos (\theta+\pi)$. How do the graphs compare?
42. Compare the graphs of $y=-\sin \left[\frac{1}{4}\left(\theta-\frac{\pi}{2}\right)\right]$ and $y=\cos \left[\frac{1}{4}\left(\theta+\frac{3 \pi}{2}\right)\right]$.
43. MUSIC When represented on an oscilloscope, the note A above middle C has period of $\frac{1}{440}$. Which of the following can be an equation for an oscilloscope graph of this note? The amplitude of the graph is K. C
a. $y=K \sin 220 \pi t$
b. $y=K \sin 440 \pi t$
c. $y=K \sin 880 \pi t$

ZOOLOGY For Exercises 44-46, use the following information.

The population of predators and prey in a closed ecological system tends to vary periodically over time. In a certain system, the population of owls O can be represented by $O=150+30 \sin \left(\frac{\pi}{10} t\right)$ where t is the time in years since January 1, 2001. In that same system, the population of mice M can be represented by $M=600+300 \sin \left(\frac{\pi}{10} t+\frac{\pi}{20}\right) .44 .180 ; 5 \mathrm{yr}$
44. Find the maximum number of owls. After how many years does this occur?
45. What is the minimum number of mice? How long does it take for the population of mice to reach this level? 300; 14.5 yr
46. Why would the maximum owl population follow behind the population of mice? See margin.
47. TIDES The height of the water in a harbor rose to a maximum height of 15 feet at 6:00 P.M. and then dropped to a minimum level of 3 feet by 3:00 A.M. Assume that the water level can be modeled by the sine function. Write an equation that represents the height h of the water t hours after noon on the first day.

Online Research Data Update Use the Internet or another resource to find tide data for a location of your choice. Write a sine function to represent your data. Then graph the function. Visit wwwv.algebra2.com/data_update to learn more.
wwww.algebra2.com/self_check_quiz
Lesson 14-2 Translations of Trigonometric Graphs 775

Answer

46. Sample answer: When the prey (mouse) population is at its greatest the predator will consume more and the predator population will grow while the prey population falls.

Study Guide and Intervention, p. 843 (shown) and p. 844

Skills Practice, p. 845 and Practice, p. 846 (shown)

$2 . y=2 \cos \left(\theta+30^{\circ}\right)+3$ $3 ; 2 ; 360 ;-30^{\circ}$	$3 . y=3 \csc \left(2 \theta+60^{\circ}\right)-2.5$ $-2.5 ; ~ n o ~ a m p l i t u d e ; ~$ $180^{\circ} ;-60^{\circ}$

ECOLOGY For Exercises 4-6, use the following information.
The population of an insect species in stand of trees foll
The population of an insect species in a stand of trees follows the growth cycle of a
particularar tree species. The insect population can be modeled hy the function particular tree species. The insect population can be modeled by the function
$y=40+30$ sin $6 t$, where t is the number of years since the stand was first cut in
November, 1920
4. How often does the insect population reach its maximum level? every 60 yr
5. When did the population last reach its maximum? 1995
6. What condition in the stand do you think corresponds with a minimum insect population
Sample answer: The species on which the insect feeds has been cut.

BLOOD PRESSURE For Exercises 7-9, use the following information
Jason's blood pressure is 110 over 70 , meaning that the pressure oscillates between a maximum
of 110 and a minimum of 70 . Jason's heart rate is 45 beats per minute. The function that of 110 and a minimum of 70 . Jason's heart rate is 45 beats per minute. The function that
represents J Jason's blood pressure P can be modeled using a sine function with no phase shit
7. Find the amplitude, midline, and period in seconds of the function. 20; $P=90 ; 1 \frac{1}{3} \mathrm{~s}$
8. Write a function that represents Jason's blood
pressure P after t seconds. $P=20 \sin 270 t+9$
9. Graph the function.

Reading to Learn
Mathematics, p. 847
ELL
Pre-Activity How can translations of trigonometric graphs be used to show Read the introduction to Lesson 14-2 at the top of page 769 in your textbook. According to the model given in your textbook, what would be the estimate
rabbit population for January 1,2055 ? 1200

Reading the Lesson

1. Determine whether the graph of each function represents a shith of the parent function
to the left, to the right, upuard, or downuard. (Do not actually
raph the functions. a. $y=\sin \left(\theta+90^{\circ}\right.$) to the left \quad b. $y=\sin \theta+3$ upward c. $y=\cos \left(\theta-\frac{\pi}{3}\right)$ to the right \quad d. $y=\tan \theta-4$ downward
2. Determine whether the graph of each function has an amplitude change, period change.
phase shitt, or vertical shift compared to the rapah of the parent function. (More than phase shift, or vertical shift compared to the graph of the parent function. (More th
one of these may apply to each function. Do not actually graph the functions.) a. $y=3 \sin \left(\theta+\frac{5 \pi}{6}\right) \quad$ amplitude change and phase shift b. $y=\cos \left(2 \theta+70^{\circ}\right) \quad$ period change and phase shift c. $y=-4 \cos 3 \theta \quad$ amplitude change and period change d. $y=\sec \frac{1}{2} \theta+3 \quad$ period change and vertical shift e. $y=\tan \left(\theta-\frac{\pi}{4}\right)-1 \quad$ phase shift and vertical shift f. $y=2 \sin \left(\frac{1}{3} \theta+\frac{\pi}{6}\right)-4 \quad \begin{aligned} & \text { amplitude change, period change, phase shift, } \\ & \text { and vertical shift }\end{aligned}$

Helping You Remember

3. Many students have trouble remembering which of the functions $y=\sin (\theta+\alpha)$ and $y=\sin (\theta-\alpha$ represents a anift to the leff and which represen
Using $\alpha=45^{\circ}$, explain a good way to remember which is which.
Sample answer: Although sine curves are infinitely repeating period graphs, think of $y=\sin x$ starting a period or cycle at (0,0). Then $y=\sin \left(\theta+45^{\circ}\right)$ "starts early" at $\left(-45^{\circ}\right)$ a shift of 45° to the left, while
$y=\sin \left(\theta-45^{\circ}\right)$ "starts late" at 45°, a shift of 45° to the right.

4 Assess

Open-Ended Assessment

Writing Have students write a summary explaining how to use the equation for a trigonometric function to identify how its graph is shifted vertically and/or horizontally from its parent graph.

Getting Ready for
 Lesson 14-3

PREREQUISITE SKILL Students will find the value of a trigonometric function in Lesson 14-3. Students should be familiar with values of the sine, cosine, and tangent functions for various reference angles in order to determine the sign of the value. Use Exercises 66-73 to determine your students' familiarity with reference angles.

Assessment Options

Quiz (Lessons 14-1 and 14-2)
is available on p .893 of the Chapter 14 Resource Masters.

Answers

52. amplitude: does not exist; period: 360° or 2π

53. amplitude: 1; period: 720° or 4π

54. CRITICAL THINKING The graph of $y=\cot \theta$ is a transformation of the graph of $y=\tan \theta$. Determine a, b, and h so that $\cot \theta=a \tan [b(\theta-h)]$ for all values of θ for which each function is defined. $a=-1, b=1, h=\frac{\pi}{2}$
55. WRITING IN MATH

Answer the question that was posed at the beginning of the lesson. See pp. 811A-811N.
How can translations of trigonometric graphs be used to show animal populations?
Include the following in your answer:

- a description of what each number in the equation
$R=1200+250 \sin \frac{1}{2} \pi t$ represents, and
- a comparison of the graphs of $y=a \cos b x, y=a \cos b x+k$, and $y=a \cos [b(x-h)]$.

Standardized
Test Practice
(A) (B) (C) (D)
50. Which equation is represented by the graph? B
(A) $y=\cot \left(\theta+45^{\circ}\right)$
(B) $y=\cot \left(\theta-45^{\circ}\right)$
(C) $y=\tan \left(\theta+45^{\circ}\right)$
(D) $y=\tan \left(\theta-45^{\circ}\right)$

51. Identify the equation for a sine function of period 90°, after a phase shift 20° to the left. D
(A) $y=\sin \left[0.25\left(\theta-20^{\circ}\right)\right]$
(B) $y=\sin \left[4\left(\theta-20^{\circ}\right)\right]$
(C) $y=\sin \left[0.25\left(\theta+20^{\circ}\right)\right]$
(D) $y=\sin \left[4\left(\theta+20^{\circ}\right)\right]$

Maintain Your Skills

Mixed Review Find the amplitude, if it exists, and period of each function. Then graph each

 function. (Lesson 14-1) 52-54. See margin.52. $y=3 \csc \theta$
53. $y=\sin \frac{\theta}{2}$
54. $y=3 \tan \frac{2}{3} \theta$

Find each value. (Lesson 13-7)
55. $\sin \left(\operatorname{Cos}^{-1} \frac{2}{3}\right)$
56. $\cos \left(\cos ^{-1} \frac{4}{7}\right)$
57. $\operatorname{Sin}^{-1}\left(\sin \frac{5}{6}\right)$
58. $\cos \left(\operatorname{Tan}^{-1} \frac{3}{4}\right)$
0.75
0.57
0.83
0.8
59. GEOMETRY Find the total number of diagonals that can be drawn in a decagon. (Lesson 12-2) 35

Solve each equation. Round to the nearest hundredth. (Lesson 10-4)
63. $\frac{5 a-13}{(a-2)(a-3)}$
65. $\frac{3 y^{2}+10 y+5}{2(y-5)(y+3)}$
60. $4^{x}=242.29$
61. $4.3^{3 x+1}=78.50 .66$
62. $7^{x-2}=53^{-x} 0.66$

Simplify each expression. (Lesson 9-4)
63. $\frac{3}{a-2}+\frac{2}{a-3}$
64. $\frac{w+12}{4 w-16}-\frac{w+4}{2 w-8}-\frac{1}{4}$
65. $\frac{3 y+1}{2 y-10}+\frac{1}{y^{2}-2 y-15}$

Getting Ready for

PREREQUISITE SKILL Find the value of each function.
(To review reference angles, see Lesson 13-3.)
66. $\cos 150^{\circ}-\frac{\sqrt{3}}{2}$
67. $\tan 135^{\circ}-1$
71. $\tan \left(-\frac{5 \pi}{6}\right) \frac{\sqrt{3}}{3}$
68. $\sin \frac{3 \pi}{2}-1$
69. $\cos \left(-\frac{\pi}{3}\right) \frac{1}{2}$
70. $\sin (-\pi) 0$
72. $\cos 225^{\circ}-\frac{\sqrt{2}}{2}$
73. $\tan 405^{\circ} 1$

776 Chapter 14 Trigonometric Graphs and Identities
54. amplitude: does not exist; period: 270° or $\frac{3 \pi}{2}$

What You'll Learn

- Use identities to find trigonometric values.
- Use trigonometric identities to simplify expressions

Vocabulary
- trigonometric identity

How can trigonometry be used to model the path of a baseball?

A model for the height of a baseball after it is hit as a function of time can be determined using trigonometry. If the ball is hit with an initial velocity of v feet per second at an angle of θ from the horizontal, then the height h of the ball after t seconds can be represented by $h=\left(\frac{-16}{v^{2} \cos ^{2} \theta}\right) t^{2}+\left(\frac{\sin \theta}{\cos \theta}\right) t+h_{0}$, where h_{0} is the height of the ball in feet the moment it is hit.

FIND TRIGONOMETRIC VALUES In the equation above, the second term $\left(\frac{\sin \theta}{\cos \theta}\right) t$ can also be written as $(\tan \theta) t .\left(\frac{\sin \theta}{\cos \theta}\right) t=(\tan \theta) t$ is an example of a trigonometric identity. A trigonometric identity is an equation involving trigonometric functions that is true for all values for which every expression in the equation is defined.
The identity $\tan \theta=\frac{\sin \theta}{\cos \theta}$ is true except for angle measures such as $90^{\circ}, 270^{\circ}$, $450^{\circ}, \ldots, 90^{\circ}+180^{\circ} \cdot k$. The cosine of each of these angle measures is 0 , so none of the expressions $\tan 90^{\circ}, \tan 270^{\circ}, \tan 450^{\circ}$, and so on, are defined. An identity similar to this is $\cot \theta=\frac{\cos \theta}{\sin \theta}$.
These identities are sometimes called quotient identities. These and other basic trigonometric identities are listed below.

Key Concept	\quad Basic Trigonometric Identities
Quotient Identities	$\tan \theta=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{\cos \theta}{\sin \theta}$
Reciprocal Identities	$\csc \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}$
Pythagorean Identities	$\cos ^{2} \theta+\sin ^{2} \theta=1$ $\tan ^{2} \theta+1=\sec ^{2} \theta$ $\cot ^{2} \theta+1=\csc ^{2} \theta$

You can use trigonometric identities to find values of trigonometric functions.
Lesson 14-3 Trigonometric Identities

1 Focus

5-Minute Check
 Transparency 14-3 Use as

 a quiz or review of Lesson 14-2.Mathematical Background notes are available for this lesson on page 760D.

How
 can trigonometry be used to model the path

 of a baseball?Ask students:

- What assumptions are made when using this function as a model for the height of the ball above the ground? Sample answers: There is no wind; there is no friction as the ball passes through the air; the ball does not hit an obstruction.
- To hit the ball the farthest horizontal distance, is it better for the angle θ to be a large angle or a small angle? Answers will vary. Ignoring friction, an angle measure of 45° will result in the farthest horizontal distance.
- What might be a reasonable value for h_{0} ? Sample answer: 3 ft

Resource Manager

Transparencies

5-Minute Check Transparency 14-3
Answer Key Transparencies

2 Teach

FIND TRIGONOMETRIC VALUES

Teaching Tip You can use the familiar definitions of sine, cosine, and tangent as the ratios of the opposite side, adjacent side, and hypotenuse of a right triangle to show why $\frac{\sin \theta}{\cos \theta}=\tan \theta$.

In-Class Example

a. Find $\tan \theta$ if $\sec \theta=-2$ and $180^{\circ}<\theta<270^{\circ} . \tan \theta=\sqrt{3}$
b. Find $\sin \theta$ if $\cos \theta=-\frac{1}{2}$ and $90^{\circ}<\theta<180^{\circ} . \sin \theta=\frac{\sqrt{3}}{2}$

SIMPLIFY EXPRESSIONS

In-Class Example

2 Simplify $\sin \theta(\csc \theta-\sin \theta)$. $\cos ^{2} \theta$

Example 1 Find a Value of a Trigonometric Function

a. Find $\cos \theta$ if $\sin \theta=-\frac{3}{5}$ and $90^{\circ}<\theta<180^{\circ}$.

$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 & & \text { Trigonometric identity } \\
\cos ^{2} \theta & =1-\sin ^{2} \theta & & \text { Subtract } \sin ^{2} \theta \text { from each side. } \\
\cos ^{2} \theta & =1-\left(\frac{3}{5}\right)^{2} & & \text { Substitute } \frac{3}{5} \text { for } \sin \theta . \\
\cos ^{2} \theta & =1-\frac{9}{25} & & \text { Square } \frac{3}{5} . \\
\cos ^{2} \theta & =\frac{16}{25} & & \text { Subtract. } \\
\cos \theta & = \pm \frac{4}{5} & & \text { Take the square root of each side. }
\end{aligned}
$$

Since θ is in the second quadrant, $\cos \theta$ is negative. Thus, $\cos \theta=-\frac{4}{5}$.
b. Find $\csc \theta$ if $\cot \theta=-\frac{1}{4}$ and $270^{\circ}<\theta<360^{\circ}$.

$$
\begin{array}{rll}
\cot ^{2} \theta+1 & =\csc ^{2} \theta & \\
\begin{array}{rlrl}
\left(-\frac{1}{4}\right)^{2}+1 & =\csc ^{2} \theta & & \text { Substitute }-\frac{1}{4} \text { for } \cot \theta \\
\frac{1}{16}+1 & =\csc ^{2} \theta & & \text { Square }-\frac{1}{4} \\
\frac{17}{16} & =\csc ^{2} \theta & \text { Add. } \\
\pm \frac{\sqrt{17}}{4} & =\csc \theta & & \text { Take the square root of each side. }
\end{array} .
\end{array}
$$

Since θ is in the fourth quadrant, $\csc \theta$ is negative. Thus, $\csc \theta=-\frac{\sqrt{17}}{4}$.

SIMPLIFY EXPRESSIONS Trigonometric identities can also be used to simplify expressions containing trigonometric functions. Simplifying an expression that contains trigonometric functions means that the expression is written as a numerical value or in terms of a single trigonometric function, if possible.

$$
\begin{aligned}
& \text { Example } 2 \text { Simplify an Expression } \\
& \text { Simplify } \frac{\csc ^{2} \theta-\cot ^{2} \theta}{\cos \theta} \text {. } \\
& \frac{\csc ^{2} \theta-\cot ^{2} \theta}{\cos \theta}=\frac{\frac{1}{\sin ^{2} \theta}-\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{\cos \theta} \quad \csc ^{2} \theta=\frac{1}{\sin ^{2} \theta}, \cot ^{2} \theta=\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& =\frac{\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta}}{\cos \theta} \quad \text { Add. } \\
& =\frac{\frac{\sin ^{2} \theta}{\sin ^{2} \theta}}{\cos \theta} \quad 1-\cos ^{2} \theta=\sin ^{2} \theta \\
& =\frac{1}{\cos \theta} \quad \frac{\sin ^{2} \theta}{\sin ^{2} \theta}=1 \\
& =\sec \theta \quad \frac{1}{\cos \theta}=\sec \theta
\end{aligned}
$$

Differentiated Instruction

Logical Have students work in groups of three. Ask each group to choose one of the identities in the Key Concept box on p. 777 and work together to demonstrate that it is true. Students should verify their results using the definitions of sine, cosine, and tangent in terms of the sides of a right triangle.

Example 3 Simplify and Use an Expression

BASEBALL Refer to the application at the beginning of the lesson. Rewrite the equation in terms of $\tan \boldsymbol{\theta}$.

$$
\begin{aligned}
& h=\left(\frac{-16}{v^{2} \cos ^{2} \theta}\right) t^{2}+\left(\frac{\sin \theta}{\cos \theta}\right) t+h_{0} \quad \text { Original equation } \\
&=\frac{-16}{v^{2}}\left(\frac{1}{\cos ^{2} \theta}\right) t^{2}+\left(\frac{\sin \theta}{\cos \theta}\right) t+h_{0} \quad \text { Factor. } \\
&=\frac{-16}{v^{2}}\left(\frac{1}{\cos ^{2} \theta}\right) t^{2}+(\tan \theta) t+h_{0} \quad \frac{\sin \theta}{\cos \theta}=\tan \theta \\
&=\frac{-16}{v^{2}}\left(\sec ^{2} \theta\right) t^{2}+(\tan \theta) t+h_{0} \quad \text { Since } \frac{1}{\cos \theta}=\sec \theta, \frac{1}{\cos ^{2} \theta}=\sec ^{2} \theta . \\
&=\frac{-16}{v^{2}}\left(1+\tan ^{2} \theta\right) t^{2}+(\tan \theta) t+h_{0} \quad \sec ^{2} \theta=1+\tan ^{2} \theta \\
& \text { Thus, }\left(\frac{-16}{v^{2} \cos ^{2} \theta}\right) t^{2}+\left(\frac{\sin \theta}{\cos \theta}\right) t+h_{0}=\frac{-16}{v^{2}}\left(1+\tan ^{2} \theta\right) t^{2}+(\tan \theta) t+h_{0} .
\end{aligned}
$$

Check for Understanding

$\begin{array}{ll}\text { Concept Check } & \text { 1. Describe how you can determine the quadrant in which the terminal side of } \\ \text { angle } \alpha \text { lies if } \sin \alpha=-\frac{1}{4} .\end{array}$ 1-3. See margin. angle α lies if $\sin \alpha=-\frac{1}{4}$.
2. Explain why the Pythagorean identities are so named.
3. OPEN ENDED Explain what it means to simplify a trigonometric expression.

Guided Practice Find the value of each expression.

GUIDED PRACTICE KEY	
Exercises	Examples
$4-7$	1
$9-11$	2
12	3

4. $\tan \theta$, if $\sin \theta=\frac{1}{2} ; 90^{\circ} \leq \theta<180^{\circ}-\frac{\sqrt{3}}{3} 5$. $\csc \theta$, if $\cos \theta=-\frac{3}{5} ; 180^{\circ} \leq \theta<270^{\circ}-\frac{5}{4}$
5. $\cos \theta$, if $\sin \theta=\frac{4}{5} ; 0^{\circ} \leq \theta<90^{\circ} \frac{3}{5}$
6. $\sec \theta$, if $\tan \theta=-1 ; 270^{\circ}<\theta<360^{\circ}$ $\sqrt{2}$
Simplify each expression.
7. $\sec ^{2} \theta-1 \tan ^{2} \theta$
8. $\csc \theta \cos \theta \tan \theta \quad 1$
9. $\frac{\tan \theta}{\sin \theta} \sec \theta$
10. $\sin \theta\left(1+\cot ^{2} \theta\right) \csc \theta$

Application 12. PHYSICAL SCIENCE When a person moves along a circular path, the body leans away from a vertical position. The nonnegative acute angle that the body makes with the vertical is called the angle of inclination and is represented by the equation $\tan \theta=\frac{v^{2}}{g R}$, where R is the radius of the circular path, v is the speed of the person in meters per second, and g is the acceleration due to gravity, 9.8 meters per second squared. Write an equivalent expression using $\sin \theta$ and $\cos \theta \cdot \sin \theta=\cos \theta \frac{v^{2}}{g R}$

Practice and Apply

Practice and Apply Find the value of each expression.
13. $\tan \theta$, if $\cot \theta=2 ; 0^{\circ} \leq \theta<90^{\circ} \frac{1}{2}$
15. $-\sqrt{5}$
15. $\sec \theta$, if $\tan \theta=-2 ; 90^{\circ}<\theta<180^{\circ}$
16. $2 \sqrt{2}$
wwww.algebra2.com/extra_examples
14. $\sin \theta$, if $\cos \theta=\frac{2}{3} ; 0^{\circ} \leq \theta<90^{\circ} \frac{\sqrt{5}}{3}$
16. $\tan \theta$, if $\sec \theta=-3 ; 180^{\circ}<\theta<270^{\circ}$

Lesson 14-3 Trigonometric Identities 779

Answers

1. Sample answer: The sine function is negative in the third and fouth quadrants. Therefore, the terminal side of the angle must lie in one of those two quadrants.
2. Sample answer: Pythagorean identities are derived by applying the Pythagorean Theorem to trigonometric concepts.
3. Sample answer: Simplifying a trigonometric expression means writing the expression as a numerical value or in terms of a single trigonometric function, if possible.
(3) BASEBALL Refer to the application at the beginning of the lesson. Rewrite the equation in terms of $\sec \theta$.
$h=\frac{-16}{v^{2}}\left(\sec ^{2} \theta\right) t^{2}+$
$\left(\sqrt{\sec ^{2} \theta-1}\right)_{t}+h_{0}$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 14.
- record the basic trigonometric identities from the Key Concept box on p. 77 .
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...
 Organization by Objective
 - Find Trigonometric Values:

 13-24- Simplify Expressions: 25-36

Odd/Even Assignments
Exercises 13-36 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13-35 odd, 37-41, 43-58
Average: 13-35 odd, 37-41, 43-58
Advanced: 14-36 even, 37-54
(optional: 55-58)
All: Practice Quiz 1 (1-5)

Study Guide and Intervention, p. 849 (shown) and p. 850

Skills Practice, p. 851 and Practice, P. 852 (shown)			
Find the value of each expression.			
$\begin{aligned} & \text { 1. } \sin \theta \text {, if } \cos \theta=\frac{5}{13} \text { and } 0^{\circ} \leq \theta<90^{\circ} \\ & \frac{12}{13} \end{aligned}$		2. $\sec \theta$ if $\sin \theta=-\frac{15}{17}$ and $180^{\circ}<\theta<270^{\circ}$	
3. $\cot \theta$, if $\cos \theta=\frac{3}{10}$ and $270^{\circ}<\theta<360^{\circ}$$-\frac{3 \sqrt[3]{91}}{91}$		$\begin{aligned} & \text { 4. } \sin \theta \text { if } \cot \theta=\frac{1}{2} \text { and } 0^{\circ} \leq \theta<90^{\circ} \\ & \frac{2 \sqrt{5}}{5} \end{aligned}$	
5. $\cot \theta$, if csc $\theta=-\frac{3}{2}$ and $180^{\circ}<\theta<270^{\circ}$$\frac{\sqrt{5}}{2}$		$\begin{aligned} & \text { 6. sece } \theta \text { if csce } \theta=-8 \text { and } 270^{\circ}<\theta<360^{\circ} \\ & \frac{8 V 7}{21} \end{aligned}$	
$\begin{aligned} & \text { 7. } \sec \theta \text {, if } \tan \theta=4 \text { and } 180^{\circ}<\theta<270^{\circ} \\ & -\sqrt{17} \end{aligned}$		$\begin{aligned} & \text { 8. } \sin \theta \text { if } \tan \theta=-\frac{1}{2} \text { and } 270^{\circ}<\theta<360^{\circ} \\ & -\frac{\sqrt{5}}{5} \end{aligned}$	
$\begin{aligned} & \text { 9. } \cot \theta \text {, if } \tan \theta=\frac{2}{5} \text { and } 0^{\circ} \leq \theta<90^{\circ} \\ & \frac{5}{2} \end{aligned}$		10. $\cot \theta$ if $\cos \theta=\frac{1}{3}$ and $270^{\circ}<\theta<360^{\circ}$$-\frac{\sqrt{2}}{4}$	
Simplify each expression.			
11. $\csc \theta \tan \theta \sec X$	12. $\frac{\sin ^{2} \theta}{\tan ^{2} \theta}$	$\mathrm{os}^{2} \theta$	13. $\sin ^{2} \theta \cot ^{2} \theta \cos ^{2} \theta$
14. $\cot ^{2} \theta+1 \csc ^{2} \theta$	15. $\frac{\operatorname{sc}^{2} \theta-\cos ^{2}}{1-\cos ^{2}}$	$\operatorname{st2}^{2} \theta \csc ^{2} \theta$	16. $\frac{\csc \theta-\sin \theta}{\cos \theta} \cot \theta$
17. $\sin \theta+\cos \theta \cot \theta$ $\boldsymbol{\operatorname { c s c }} \theta$	$\text { 18. } \frac{\cos \theta}{1-\sin \theta} \begin{aligned} & 2 \tan \theta \end{aligned}$	$-\frac{\cos \theta}{1+\sin \theta}$	$\begin{aligned} & \text { 19. } \sec ^{2} \theta \cos ^{2} \theta-\tan ^{2} \theta \\ & \sec ^{2} \theta \end{aligned}$

20. AERIAL PHOTOGRAPHY The illustration shows a plane taking
an aerial photograph of point A. Because the point is is diectaky below
the plane, there is no distortion in the image. For any point B not the plane, there is no distortion in the image. For any point B not
diriectly below the pane however the incease in distance crates
distortion in the photograph. This is because as the distance from the camera to the point being photographed increases, the
exposure of the fimm reduues by (sin θ sccs θ sin
sin $)$ Express exposure of the film reduces by $(\sin \theta) \csc \theta-\sin \theta)$. Exp
$(\sin \theta)(\csc \theta-\sin \theta)$ in terms of $\cos \theta$ only. $\cos ^{2} \theta$
21. TSUNAMIS The equation $y=a$ sin θt represents the height of the waves passin buoy at a time t in seconds. Express a in terms of csc θt. $a=y \csc \theta t$

Reading to Learn

Mathematics, p. 853

ELL

Pre-Activity How can trigonometry be used to model the path of a baseball? Ruppose that a baseball is hit from at the top of page 777 in your textb Suppose that a baseball is hit from home plate with an initial velocity of
58 feet per second at an angle of 36^{6} with the horizontal from an initial height of 5 feet. Show the equation that you would usse to find the heigh
the ball 10 seconds after the ball is hit. Show the formula with the ppropriate numbers substituted, but do not do a formula with $h=\left(\frac{-16}{58^{2} \cos ^{2} 36^{\circ}}\right) 10^{2}+\left(\frac{\sin 36^{\circ}}{\cos 36^{\circ}}\right) 10+5$
Reading the Lesson

1. Match each expression from the list on the left with an expression from the list on the
right that is equal to to to all values for which each expression is defined. (some of the
expressions from the list on the right may be used more than once or not at all.) expressions from the list on the right may be used more than once or not at all.) a. $\sec ^{2} \theta-\tan ^{2} \theta$ iii
b. $\cot ^{2} \theta+1 \mathrm{v}$
c. $\frac{\sin \theta}{\cos \theta}$ ii
d. $\sin ^{2} \theta+\cos ^{2} \theta$ iii
e. $\csc \theta$ i
f. $\frac{1}{\cos \theta}$ iv
. $\csc ^{2} \theta$
g. $\frac{\cos \theta}{\sin \theta}$ vi

Amusement Parks ..
The oldest operational carousel in the United States is the Flying Horse Carousel at Martha's Vineyard, Massachusetts.
source: Martha's Vineyard Preservation Trust

Find the value of each expression.

17. $\csc \theta$, if $\cos \theta=-\frac{3}{5} ; 90^{\circ}<\theta<180^{\circ} \frac{5}{4}$ 18. $\cos \theta$, if $\sec \theta=\frac{5}{3} ; 270^{\circ}<\theta<360^{\circ} \frac{3}{5}$
18. $\cos \theta$, if $\sin \theta=\frac{1}{2} ; 0^{\circ} \leq \theta<90^{\circ} \frac{\sqrt{3}}{2}$
19. $\csc \theta$, if $\cos \theta=-\frac{2}{3} ; 180^{\circ}<\theta<270^{\circ}$
20. $\tan \theta$, if $\cos \theta=\frac{4}{5} ; 0^{\circ} \leq \theta<90^{\circ} \frac{3}{4}$
21. $\cos \theta$, if $\csc \theta=-\frac{5}{3} ; 270^{\circ}<\theta<360^{\circ}$
22. $\sec \theta$, if $\sin \theta=\frac{3}{4} ; 90^{\circ}<\theta<180^{\circ}$

Simplify each expression.
$-\frac{4 \sqrt{7}}{7}$
25. $\cos \theta \csc \theta \cot \theta$
27. $\sin \theta \cot \theta \cos \theta$
29. $2\left(\csc ^{2} \theta-\cot ^{2} \theta\right) 2$
31. $\frac{\cos \theta \csc \theta}{\tan \theta} \cot ^{2} \boldsymbol{\theta}$
33. $\frac{1-\cos ^{2} \theta}{\sin ^{2} \theta} 1$
35. $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta} \csc ^{2} \theta$
24. $\sin \theta$, if $\tan \theta=4 ; 180^{\circ}<\theta<270^{\circ}$

$$
-\frac{4 \sqrt{17}}{17}
$$

26. $\tan \theta \cot \theta 1$
27. $\cos \theta \tan \theta \sin \theta$
28. $3\left(\tan ^{2} \theta-\sec ^{2} \theta\right)-3$
29. $\frac{\sin \theta \csc \theta}{\cot \theta} \tan \theta$
30. $\frac{1-\sin ^{2} \theta}{\sin ^{2} \theta} \cot ^{2} \theta$
31. $\frac{\tan ^{2} \theta-\sin ^{2} \theta}{\tan ^{2} \theta \sin ^{2} \theta} 1$

AMUSEMENT PARKS For Exercises 37-39, use the following information.
Suppose a child is riding on a merry-go-round and is seated on an outside horse. The diameter of the merry-go-round is 16 meters.
37. If the sine of the angle of inclination of the child is $\frac{1}{5}$, what is the angle of inclination made by the child? Refer to Exercise 12 for information on the angle of inclination. about 11.5°
38. What is the velocity of the merry-go-round? about $4 \mathrm{~m} / \mathrm{s}$
39. If the speed of the merry-go-round is 3.6 meters per second, what is the value of the angle of inclination of a rider? about 9.4°

LIGHTING For Exercises 40 and 41, use the following information.
The amount of light that a source provides to a surface is called the illuminance. The illuminance E in foot candles on a surface is related to the distance R in feet from the light source. The formula $\sec \theta=\frac{I}{E R^{2}}$, where I is the intensity of the light source measured in candles and θ is the angle between the light beam and a line perpendicular to the surface, can be used in situations in which lighting is important.
40. Solve the formula in terms of $E . E=\frac{I \cos \theta}{R^{2}}$
41. Is the equation in Exercise 40 equivalent to $R^{2}=\frac{I \tan \theta \cos \theta}{E}$? Explain. No; $R^{2}=\frac{I \tan \theta \cos \theta}{E}$ simplifies to $E=\frac{I \sin \theta}{R^{2}}$.

ELECTRONICS For Exercises 42 and 43, use the following information.

When an alternating current of frequency f and a peak current I pass through a resistance R, then the power delivered to the resistance at time t seconds is $P=I^{2} R-I^{2} R \cos ^{2}(2 f t \pi)$.
42. Write an expression for the power in terms of $\sin ^{2} 2 f t \pi . P=I^{2} R \sin ^{2} 2 \pi f t$
43. Write an expression for the power in terms of $\tan ^{2} 2 f t \pi . P=I^{2} R-\frac{I^{2} R}{1+\tan ^{2} 2 \pi f t}$
44. CRITICAL THINKING If $\tan \beta=\frac{3}{4}$, find $\frac{\sin \beta \sec \beta}{\cot \beta} \cdot \frac{9}{16}$

780 Chapter 14 Trigonometric Graphs and Identities

2. Write an identity that you could use to find each of the indicated trigonometric values
and tell whether that value is positive or negative. (Do not actually find the values.) a. $\tan \theta$, if $\sin \theta=-\frac{4}{5}$ and $180^{\circ}<\theta<270^{\circ} \tan \theta=\frac{\sin \theta}{\cos \theta}$; positive b. $\sec \theta$, if $\tan \theta=-3$ and $90^{\circ}<\theta<180^{\circ} \tan ^{2} \theta+1=\sec ^{2} \theta$; negative

Helping You Remember

3. A good way to remember something new is to relate it to something you already know
How can you use the unit circle definitions of the sine and cosine that you learned in How can you use the unit circle definitions of the sine and cosine that you learned in
Chapter 13 to thelp your remember the Pythastorean idend ty
 She unit circle if $x^{2}+y^{2}=1$, so this is equivalent to the equation
$\cos ^{2} \theta+\sin ^{2} \theta=1$

780 Chapter 14 Trigonometric Graphs and Identities
45.

How can trigonometry be used to model the path of a baseball?
Include the following in your answer:

- an explanation of why the equation at the beginning of the lesson is the
same as $y=\frac{-16 \sec ^{2} \theta}{v^{2}} x^{2}+(\tan \theta) x+h_{0}$, and
- examples of how you might use this equation for other situations.

46. If $\sin x=m$ and $0<x<90^{\circ}$, then $\tan x=\mathbf{B}$
(A) $\frac{1}{m^{2}}$.
(B) $\frac{m}{\sqrt{1-m^{2}}}$.
(C) $\frac{1-m^{2}}{m}$.
(D) $\frac{m}{1-m^{2}}$.
47. $\frac{1}{1+\sin x}+\frac{1}{1-\sin x}=\mathbf{A}$
(A) $2 \sec ^{2} x$
(B) $-\sec ^{2} x$
(C) $2 \csc ^{2} x$
(D) $-\csc ^{2} x$

Maintain Your Skills

Mixed Review State the vertical shift, equation of the midline, amplitude, and period for each function. Then graph the function. (Lesson 14-2)
48. $y=\sin \theta-1-1 ; y=-1 ; 1 ; 360^{\circ} \quad$ 49. $y=\tan \theta+12 \begin{aligned} & 12 ; y=12 ; \\ & \text { no amplitude; } 180^{\circ}\end{aligned}$

Find the amplitude, if it exists, and period of each function. Then graph each function. (Lesson 14-1) 50-52. See pp. 811A-811N.
50. $y=\csc 2 \theta$
51. $y=\cos 3 \theta$
52. $y=\frac{1}{3} \cot 5 \theta$
53. Find the sum of a geometric series for which $a_{1}=48, a_{n}=3$, and $r=\frac{1}{2}$. (Lesson 11-4) 93
54. Write an equation of a parabola with focus at $(11,-1)$ and whose directrix is $y=2$. (Lesson 8-2) $y=-\frac{1}{6}(x-11)^{2}+\frac{1}{2}$

Getting Ready for the Next Lesson

PREREQUISITE SKILL Name the property illustrated by each statement. (To review properties of equality, see Lesson 1-3.)
55. Symmetric $(=)$
55. If $4+8=12$, then $12=4+8$.
56. If $7+s=21$, then $s=14$. Subt. ($=$)
57. If $4 x=16$, then $12 x=48$.

Multiplication (=)
58. If $q+(8+5)=32$, then $q+13=32$. Substitution (=)

Lessons 14-1 through 14-3

1. Find the amplitude and period of $y=\frac{3}{4} \sin \frac{1}{2} \theta$. Then graph the function. $1-2$. See pp. 811A-811N for (Lesson 14-1) $\frac{3}{4}, 720^{\circ}$ or 4π
graphs.
2. State the vertical shift, amplitude, period, and phase shift for
$y=2 \cos \left[\frac{1}{4}\left(\theta-\frac{\pi}{4}\right)\right]-5$. Then graph the function. (Lesson 14-2) $-5,2,8 \pi, \frac{\pi}{4}$

Find the value of each expression. (Lesson 14-3)
3. $\cos \theta$, if $\sin \theta=\frac{4}{5} ; 90^{\circ}<\theta<180^{\circ}-\frac{3}{5}$
4. $\csc \theta$, if $\cot \theta=-\frac{2}{3} ; 270^{\circ}<\theta<360^{\circ}-\frac{\sqrt{13}}{3}$
5. $\sec \theta$, if $\tan \theta=\frac{1}{2} ; 0^{\circ}<\theta<90^{\circ} \frac{\sqrt{5}}{2}$
www.algebra2.com/self_check_quiz Lesson 14-3 Trigonometric Identities 781

Answer

45. Sample answer: You can use equations to find the height and the horizontal distance of a baseball after it has been hit. The equations involve using the initial angle the ball makes with the ground with the sine function. Answers should include the following information.

- Both equations are quadratic in nature with a leading negative coefficient. Thus, both are inverted parabolas which model the path of a baseball.
- model rockets, hitting a golf ball, kicking a rock

4 Assess

Open-Ended Assessment

Speaking Have students explain how to rewrite and simplify expressions using trigonometric identities, using an example they worked during the lesson.

Getting Ready for Lesson 14-4

PREREQUISITE SKILL Students will verify trigonometric identities in Lesson $14-4$ by rewriting them using the properties of equality. Use Exercises 55-58 to determine your students' familiarity with the properties of equality.

Assessment Options

Practice Quiz 1 The quiz provides students with a brief review of the concepts and skills in Lessons 14-1 through 14-3. Lesson numbers are given to the right of the exercises or instruction lines so students can review concepts not yet mastered.

Answers

48.

49.

1 Focus

5-Minute Check

 Transparency 14-4 Use as a quiz or review of Lesson 14-3.Mathematical Background notes are available for this lesson on p. 760D.

How can you verify trigonometric identities?

Ask students:

- Can you give an example of two functions in x whose values are equal for some values of x but not all? Sample answer: $y=x$ and $y=|x|$ are the same for $x \geq 0$ but not for $x<0$.
- Why is it not sufficient to show that two functions have equal values for specific values of x when trying to justify that two functions are equivalent? The functions might have equal values for some values of x but not others.

What Youll Learn

- Verify trigonometric identities by transforming one side of an equation into the form of the other side.
- Verify trigonometric identities by transforming each side of the equation into the same form.

How can you verify trigonometric identities?

Examine the graphs of $y=\tan ^{2} \theta-\sin ^{2} \theta$ and $y=\tan ^{2} \theta \sin ^{2} \theta$. Recall that when the graphs of two functions coincide, the functions are equivalent. However, the graphs only show a limited range of solutions. It is not sufficient to show some values of θ and conclude that the statement is true for all values of θ. In order to show that the equation $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta$ for all values of θ, you must consider the general case.

TRANSFORM ONE SIDE OF AN EQUATION You can use the basic

 trigonometric identities along with the definitions of the trigonometric functions to verify identities. For example, if you wish to show that $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta$ is an identity, you need to show that it is true for all values of θ.Verifying an identity is like checking the solution of an equation. You must simplify one or both sides of an equation separately until they are the same. In many cases, it is easier to work with only one side of an equation. You may choose either side, but it is often easier to begin with the more complicated side of the equation. Transform that expression into the form of the simpler side.

Example 1 Transform One Side of an Equation
 Verify that $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta$ is an identity.
 Transform the left side.

$$
\begin{array}{rll}
\tan ^{2} \theta-\sin ^{2} \theta & \stackrel{?}{=} \tan ^{2} \theta \sin ^{2} \theta & \text { Original equation } \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\sin ^{2} \theta & \stackrel{?}{=} \tan ^{2} \theta \sin ^{2} \theta & \tan ^{2} \theta=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} & \stackrel{?}{=} \tan ^{2} \theta \sin ^{2} \theta & \text { Rewrite using the LCD, } \cos ^{2} \theta \\
\frac{\sin ^{2} \theta-\sin ^{2} \theta \cos ^{2} \theta}{\cos ^{2} \theta} & \stackrel{?}{=} \tan ^{2} \theta \sin ^{2} \theta & \text { Subtract. } \\
\frac{\sin ^{2} \theta\left(1-\cos ^{2} \theta\right)}{\cos ^{2} \theta} & \stackrel{?}{=} \tan ^{2} \theta \sin ^{2} \theta & \text { Factor. } \\
\frac{\sin ^{2} \theta \sin ^{2} \theta}{\cos ^{2} \theta} & \stackrel{?}{=} \tan ^{2} \theta \sin ^{2} \theta & 1-\cos ^{2} \theta=\sin ^{2} \theta \\
\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{\sin ^{2} \theta}{1} & \stackrel{?}{=} \tan ^{2} \theta \sin ^{2} \theta & \frac{a b}{c}=\frac{a}{c} \cdot \frac{b}{1} \\
\tan ^{2} \theta \sin ^{2} \theta & =\tan ^{2} \theta \sin ^{2} \theta & \frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan \theta
\end{array}
$$

Resource Manager

Workbook and Reproducible Masters

Chapter 14 Resource Masters

- Study Guide and Intervention, pp. 855-856
- Skills Practice, p. 857
- Practice, p. 858
- Reading to Learn Mathematics, p. 859
- Enrichment, p. 860
- Assessment, pp. 893, 895

Transparencies

5-Minute Check Transparency 14-4
Answer Key Transparencies

- Technology

Alge2PASS: Tutorial Plus, Lesson 28
Interactive Chalkboard Test-Taking Tip Verify your answer by choosing values for θ. Then evaluate the original expression and compare to your answer choice.

Example 2 Find an Equivalent Expression
Multiple-Choice Test Item
$\sin \theta\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\cot \theta}\right)=$
(A) $\cos \theta$
(B) $\sin \theta$
(C) $\cos ^{2} \theta$
(D) $\sin ^{2} \theta$

Read the Test Item
Find an expression that is equal to the given expression.

Solve the Test Item

Write a trigonometric identity by using the basic trigonometric identities and the definitions of trigonometric functions to transform the given expression to match one of the choices.

$$
\begin{aligned}
\sin \theta\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\cot \theta}\right) & =\sin \theta\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\frac{\cos \theta}{\sin \theta}}\right) & & \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& =\sin \theta\left(\frac{1}{\sin \theta}-\frac{\cos \theta \sin \theta}{\cos \theta}\right) & & \text { Simplify. } \\
& =\sin \theta\left(\frac{1}{\sin \theta}-\sin \theta\right) & & \text { Simplify. } \\
& =1-\sin ^{2} \theta & & \text { Distributive property. } \\
& =\cos ^{2} \theta & & 1-\sin ^{2} \theta=\cos ^{2} \theta
\end{aligned}
$$

Since $\sin \theta\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\cot \theta}\right)=\cos ^{2} \theta$, the answer is C.

TRANSFORM BOTH SIDES OF AN EQUATION Sometimes it is easier to transform both sides of an equation separately into a common form. The following suggestions may be helpful as you verify trigonometric identities.

- Substitute one or more basic trigonometric identities to simplify an expression.
- Factor or multiply to simplify an expression.
- Multiply both the numerator and denominator by the same trigonometric expression.
- Write both sides of the identity in terms of sine and cosine only. Then simplify each side as much as possible.

Example 3 Verify by Transforming Both Sides

Verify that $\sec ^{2} \theta-\tan ^{2} \theta=\tan \theta \cot \theta$ is an identity.

$$
\begin{aligned}
\sec ^{2} \theta-\tan ^{2} \theta & \stackrel{?}{=} \tan \theta \cot \theta & & \text { Original equation } \\
\frac{1}{\cos ^{2} \theta}-\frac{\sin ^{2} \theta}{\cos ^{2} \theta} & \stackrel{?}{=} \frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} & & \text { Express all terms using sine and cosine. } \\
\frac{1-\sin ^{2} \theta}{\cos ^{2} \theta} & \stackrel{?}{=} 1 & & \text { Subtract on the left. Multiply on the right. } \\
\frac{\cos ^{2} \theta}{\cos ^{2} \theta} & \stackrel{?}{=} 1 & & 1-\sin ^{2} \theta=\cos ^{2} \theta \\
1 & =1 & & \text { Simplify the left side. }
\end{aligned}
$$

Standardized Test Practice

Example 2 Urge students to read slowly and carefully so they do not mistake cot for cos or csc for cos. In addition, students may find the correct answer, $\cos ^{2} \theta$, but choose choice A because they did not notice the difference between $\cos ^{2} \theta$ and $\cos \theta$.

2 Teach

TRANSFORM ONE SIDE OF AN EQUATION

In-Class Examples

Power

Point ${ }^{\circledR}$

1. Verify that $\csc \theta \cos \theta \tan \theta=1$ is an identity.
$\csc \theta \cos \theta \tan \theta \stackrel{?}{ } 1$
$\frac{1}{\sin \theta} \cdot \cos \theta \cdot \frac{\sin \theta}{\cos \theta} \stackrel{?}{\underline{?}} 1$
$1=1$
(2) $\frac{\csc \theta}{\cos \theta}-\tan \theta=\mathbf{A}$
A $\cot \theta$
B $\frac{1-\sin \theta}{\cos ^{2} \theta}$
C 0
D $\cos ^{2} \theta$

TRANSFORM BOTH SIDES OF AN EQUATION

In-Class Example

Power
 Point ${ }^{\circledR}$

3. Verify that $\csc \theta+\sec \theta=$ $\frac{1+\cot \theta}{\cos \theta}$ is an identity.
$\csc \theta+\sec \theta \stackrel{?}{\underline{?}} \frac{1+\cot \theta}{\cos \theta}$
$\frac{1}{\sin \theta}+\frac{1}{\cos \theta} \stackrel{?}{\underline{?}} \frac{1+\frac{\cos \theta}{\sin \theta}}{\cos \theta}$
$\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta} \stackrel{\sin \theta\left(1+\frac{\cos \theta}{\sin \theta}\right)}{\sin \theta \cos \theta}$
$\frac{\cos \theta+\sin \theta}{\sin \theta \cos \theta}=\frac{\sin \theta+\cos \theta}{\sin \theta \cos \theta}$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their
Vocabulary Builder worksheets for Chapter 14.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises...
 Organization by Objective
 - Transform One Side of an Equation: 11-24, 26-30

- Transform Both Sides of an Equation: 25

Odd/Even Assignments

Exercises 11-30 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercises 37-42 require a graphing calculator.

Assignment Guide

Basic: 11-31 odd, 33-36, 43-54
Average: 11-31 odd, 33-36, 43-54 (optional: 37-42)
Advanced: 12-30 even, 31-50 (optional: 51-54)

4 Assess

Open-Ended Assessment

Speaking Have students explain some of the techniques they have seen or used to verify trigonometric identities in this lesson.

Getting Ready for
 Lesson 14-5

PREREQUISITE SKILL Students will simplify radical expressions in the process of using the Sum and Difference of Angles Formulas in Lesson 14-5. Use Exercises 51-54 to determine your students' familiarity with simplifying radical expressions.

Assessment Options

Quiz (Lessons 14-3 and 14-4)
is available on p. 893 of the Chapter 14 Resource Masters.
Mid-Chapter Test (Lessons 14-1
through 14-4) is available on p. 895 of the Chapter 14 Resource Masters.

Check for Understanding
Concept Check
1-3. See pp. 811A811N.

1. Explain the steps used to verify the identity $\sin \theta \tan \theta=\sec \theta-\cos \theta$.
2. Describe the various methods you can use to show that two trigonometric expressions form an identity.
3. OPEN ENDED Write a trigonometric equation that is not an identity. Explain how you know it is not an identity.

Guided Practice Verify that each of the following is an identity. 4-9. See pp. 811A-811N.

GUIDED PRACTICE KEY Exercises Examples
4, 6-10 $\quad 1,2$
$5 \quad 3$
4. $\tan \theta(\cot \theta+\tan \theta)=\sec ^{2} \theta$
5. $\tan ^{2} \theta \cos ^{2} \theta=1-\cos ^{2} \theta$
6. $\frac{\cos ^{2} \theta}{1-\sin \theta}=1+\sin \theta$
7. $\frac{1+\tan ^{2} \theta}{\csc ^{2} \theta}=\tan ^{2} \theta$
8. $\frac{\sin \theta}{\sec \theta}=\frac{1}{\tan \theta+\cot \theta}$
9. $\frac{\sec \theta+1}{\tan \theta}=\frac{\tan \theta}{\sec \theta-1}$

Standardized Test Practice (A) (B) (D)
10. Which expression is equivalent to $\frac{\sec \theta+\csc \theta}{1+\tan \theta}$? \mathbf{D}
(A) $\sin \theta$
(B) $\cos \theta$
(C) $\tan \theta$
(D) $\csc \theta$

Practice and Apply

Homework Help

For Exercises	See Examples
$11-24$,	1,2
$26-32$	
25	3

Extra Practice See page 860 .

Verify that each of the following is an identity. 11-28. See pp. 811A-811N.
11. $\cos ^{2} \theta+\tan ^{2} \theta \cos ^{2} \theta=1$ 12. $\cot \theta(\cot \theta+\tan \theta)=\csc ^{2} \theta$
13. $1+\sec ^{2} \theta \sin ^{2} \theta=\sec ^{2} \theta \quad$ 14. $\sin \theta \sec \theta \cot \theta=1$
15. $\frac{1-\cos \theta}{1+\cos \theta}=(\csc \theta-\cot \theta)^{2}$
16. $\frac{1-2 \cos ^{2} \theta}{\sin \theta \cos \theta}=\tan \theta-\cot \theta$
17. $\cot \theta \csc \theta=\frac{\cot \theta+\csc \theta}{\sin \theta+\tan \theta}$
18. $\sin \theta+\cos \theta=\frac{1+\tan \theta}{\sec \theta}$
20. $\frac{\sin \theta}{1-\cos \theta}+\frac{1-\cos \theta}{\sin \theta}=2 \csc \theta$
22. $\frac{1+\tan \theta}{1+\cot \theta}=\frac{\sin \theta}{\cos \theta}$
24. $1+\frac{1}{\cos \theta}=\frac{\tan ^{2} \theta}{\sec \theta-1}$
26. $\cos ^{4} \theta-\sin ^{4} \theta=\cos ^{2} \theta-\sin ^{2} \theta$
28. $\frac{\cos \theta}{1+\sin \theta}+\frac{\cos \theta}{1-\sin \theta}=2 \sec \theta$
29. Verify that $\tan \theta \sin \theta \cos \theta \csc ^{2} \theta=1$ is an identity. See pp. 811A-811N.
30. Show that $1+\cos \theta$ and $\frac{\sin ^{2} \theta}{1-\cos \theta}$ form an identity. See pp. 811A-811N.

PHYSICS For Exercises 31 and 32, use the following information. If an object is propelled from ground level, the maximum height that it reaches is given by $h=\frac{v^{2} \sin ^{2} \theta}{2 g}$, where θ is the angle between the ground and the initial path of the object, v is the object's initial velocity, and g is the acceleration due to gravity, 9.8 meters per second squared.
31. Verify the identity $\frac{v^{2} \sin ^{2} \theta}{2 g}=\frac{v^{2} \tan ^{2} \theta}{2 g \sec ^{2} \theta}$. See pp. 811A-811N.
32. A model rocket is launched with an initial velocity of 110 meters per second at an angle of 80° with the ground. Find the maximum height of the rocket. 598.7 m

784 Chapter 14 Trigonometric Graphs and Identities

D A \| L Y TNIERVENION

Differentiated Instruction

Interpersonal Have groups or pairs of students work together to verify some of the identities in Exercises 4-9. Have students record the techniques they found helpful. Ask students to compare their list of techniques to the list of suggestions given above Example 3 on p. 783.
33. CRITICAL THINKING Present a logical argument for why the identity $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$ is true when $0 \leq x \leq 1$. See margin.
34.

Answer the question that was posed at the beginning of the lesson. See pp. 811A-811N.
How can you verify trigonometric identities?
Include the following in your answer:

- an explanation of why you cannot perform operations to each side of an unverified identity,
- an explanation of how you can tell if two expressions are equivalent, and
- an explanation of why you cannot use the graphs of two equations to verify an identity.

Standardized
Test Practice
(B) Co
35. Which of the following is not equivalent to $\cos \theta$? \mathbf{D}
(A) $\frac{\cos \theta}{\cos ^{2} \theta+\sin ^{2} \theta}$
(B) $\frac{1-\sin ^{2} \theta}{\cos \theta}$
(C) $\cot \theta \sin \theta$
(D) $\tan \theta \csc \theta$
36. Which of the following is equivalent to $\sin \theta+\cot \theta \cos \theta$? \mathbf{B}
(A) $2 \sin \theta$
(B) $\frac{1}{\sin \theta}$
(C) $\cos ^{2} \theta$
(D) $\frac{\sin \theta+\cos \theta}{\sin ^{2} \theta}$

Graphing VERIFYING TRIGONOMETRIC IDENTITIES You can determine whether or not an Calculator equation may be a trigonometric identity by graphing the expressions on either side of the equals sign as two separate functions. If the graphs do not match, then the equation is not an identity. If the two graphs do coincide, the equation might be an identity. The equation has to be verified algebraically to ensure that it is an identity. Determine whether each of the following may be or is not an identity.
37. $\cot x+\tan x=\csc x \cot x$ is not
38. $\sec ^{2} x-1=\sin ^{2} x \sec ^{2} x$ may be
39. $(1+\sin x)(1-\sin x)=\cos ^{2} x$ may be 40. $\frac{1}{\sec x \tan x}=\csc x-\sin x$ may be
41. $\frac{\sec ^{2} x}{\tan x}=\sec x \csc x$ may be
42. $\frac{1}{\sec x}+\frac{1}{\csc x}=1$ is not

Maintain Your Skills

Mixed Review
 44. $-\frac{\sqrt{5}}{3}$
 45. $\frac{\sqrt{193}}{12}$
 46. $-\frac{\sqrt{7}}{4}$
 49. $3 ; 2 \pi ;-\frac{\pi}{2}$
 53. $\frac{\sqrt{6}+2 \sqrt{2}}{4}$
 54. $\frac{2-\sqrt{3}}{4}$
 Getting Ready for
 the Next Lesson

Find the value of each expression. (Lesson 14-3)
43. $\sec \theta$, if $\tan \theta=\frac{1}{2} ; 0^{\circ}<\theta<90^{\circ} \frac{\sqrt{5}}{2}$
44. $\cos \theta$, if $\sin \theta=-\frac{2}{3} ; 180^{\circ}<\theta<270^{\circ}$
45. $\csc \theta$, if $\cot \theta=-\frac{7}{12} ; 90^{\circ}<\theta<180^{\circ}$
46. $\sin \theta$, if $\cos \theta=\frac{3}{4} ; 270^{\circ}<\theta<360^{\circ}$

State the amplitude, period, and phase shift of each function. Then graph each function. (Lesson 14-2) 47-49. See pp. 811A-811N for graphs.
47. $y=\cos \left(\theta-30^{\circ}\right)$
$1 ; 360^{\circ} ; 30^{\circ}$
48. $y=\sin \left(\theta-45^{\circ}\right)$
49. $y=3 \cos \left(\theta+\frac{\pi}{2}\right)$
50. What is the probability that an event occurs if the odds of the event occurring are 5:1? (Lesson 12-4) $\frac{5}{6}$
PREREQUISITE SKILL Simplify each expression.
(To review simplifying radical expressions, see Lesson 5-6.)
51. $\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} \frac{\sqrt{6}}{4}$
52. $\frac{1}{2} \cdot \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{4}$
53. $\frac{\sqrt{6}}{4}+\frac{\sqrt{2}}{2}$
54. $\frac{1}{2}-\frac{\sqrt{3}}{4}$
www.algebra2.com/self_check_quiz
Lesson 14-4 Verifying Trigonometric Identities 785

Answer

33. Sample answer: Consider a right triangle $A B C$ with right angle at C. If an angle, say A, has a sine of x, then angle B must have a cosine of x. Since A and B are both in a right triangle and neither is the right angle, their sum must be $\frac{\pi}{2}$.

Enrichment, p. 860

Heron's Formula
Herons formula can be used to find the area of a triangle if you know the
lengths of the three sides. Consider any triangle $A B C$. Let K represent the
area of $\triangle A B C$. Then
lengths of the three
area of $\triangle A B C$. Then
$K=\frac{1}{b c} b c$.
$\begin{aligned} K & =\frac{1}{2} b c \sin A \\ K^{2} & =\frac{b^{2} c^{2} \sin ^{2} A}{4} \quad \text { Square bath sides. } \\ & =\frac{b^{2} c^{2}\left(1-\cos ^{2} A\right)}{}\end{aligned}$
$=\frac{b^{2} c^{2}\left(1-\cos ^{2} A\right)}{4}$

$=\frac{b+c+a, b+c-a-a+\frac{a+b-c, a-b+c}{2}}{2}$

Study Guide and Intervention,
Example Verify that ea

a. $\frac{\sin \theta}{\cot \theta}-\sec \theta=-\cos \theta$
$\frac{\sin \theta}{\cot \theta}-\sec \theta \underline{\underline{2}}-\cos \theta$
$\frac{\sin \theta}{\frac{\sin \theta}{\sin \theta}-\frac{1}{\sin \theta}-\frac{1}{\cos \theta} \frac{2}{2}-\cos \theta}$
$\frac{\sin \theta}{\frac{\sin }{\sin \theta}} \cos \theta$

Exerifices
Verify that each of the following is an identity.
$\begin{array}{ll}1.1+\csc ^{2} \theta \cdot \cos ^{2} \theta=\csc ^{2} \theta & \text { 2. } \frac{\sin \theta}{1-\cos \theta}-\frac{\cot \theta}{1+\cos \theta}=\frac{1-\cos ^{3} \theta}{\sin ^{3} \theta}\end{array}$
$\begin{array}{rr}1+\frac{1}{\sin ^{2} \theta} \cdot \cos ^{2} \theta \underline{\underline{\Omega}} \csc ^{2} \theta & \frac{\sin \theta(1+\cos \theta)-\frac{\cos \theta}{\sin \theta}(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)} \underline{\underline{\underline{3}}} \frac{1-\cos ^{3} \theta}{\sin ^{3} \theta} \\ \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta} \underline{\underline{\Omega}} \csc ^{2} \theta & \frac{\sin \theta+\sin \theta \cdot \cos \theta-\cos \theta+\cos ^{2} \theta}{}\end{array}$ $\frac{1}{\sin ^{2} \theta} \stackrel{?}{\operatorname{secs}^{2} \theta} \frac{\sin \theta+\sin \theta \cdot \cos \theta-\frac{\cos \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}}{1-\cos ^{2} \theta} \frac{1-\cos ^{3} \theta}{\sin ^{3} \theta}$ $\left.\begin{array}{lll}\sin ^{2} \theta \\ \csc ^{2} \theta=\csc ^{2} \theta & \frac{1-\cos ^{2} \theta}{\sin ^{2} \theta+\sin ^{2} \theta \cos \theta-\cos \theta+\cos ^{2} \theta} \\ \sin ^{2} \theta & \sin ^{3} \theta \\ & \frac{1-\cos ^{3} \theta}{\sin ^{2} \theta} \\ \sin ^{2} \theta+\cos ^{2} \theta+\cos ^{2} \theta \\ \sin ^{3} \theta\end{array} \sin ^{2} \theta-1\right) \geq \frac{1-\cos ^{3} \theta}{\sin ^{3} \theta}$ $\frac{1+\cos \theta\left(-\cos ^{2} \theta\right)}{\sin ^{3} \theta} \frac{3-\cos ^{3} \theta}{\sin ^{3} \theta}$
$\frac{1-\cos ^{3} \theta}{\sin ^{3} \theta}=\frac{1-\cos ^{3} \theta}{\sin ^{3} \theta}$
Skills Practice, p. 857 and Practice, p. 858 (shown)
Verify that each of the following is an identity.

1. $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin ^{2} \theta \theta+\cos ^{2} \theta}=\sec ^{2} \theta$
$\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos ^{2} \theta} \underline{\underline{2}} \sec ^{2} \theta$

$$
\begin{aligned}
& \frac{1}{\cos ^{2} \theta} \frac{1}{} \sec ^{2} \theta \\
& \sec ^{2} \theta=\sec ^{2} \theta
\end{aligned}
$$

2. $\frac{\cos ^{2} \theta}{1-\sin ^{2} \theta}=$ $\sin ^{2} \theta$
$\sin ^{2} \theta$
$\cos ^{2} \theta$
$-\sin ^{2} \theta$
$\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=1$ $(1+\sin \theta)(1-\sin \theta) \frac{3}{1} \cos ^{2} \theta$
5. $\cos ^{2} \theta \cot ^{2} \theta=\cot ^{2} \theta-\cos ^{2} \theta \quad$. $\left.\left(\sin ^{2} \theta\right) \cos ^{2} \theta+\sec ^{2} \theta\right)=\sec ^{2} \theta$ $\cos ^{2} \theta \cot ^{2} \theta \underline{\underline{I}} \frac{\cos ^{2} \theta}{\sin ^{2} \theta}-\cos ^{2} \theta$ $\cos ^{2} \theta \cot ^{2} \theta \underline{\underline{2}} \frac{\operatorname{sos}^{2} \theta-\cos ^{2} \theta \sin ^{2} \theta}{\sin ^{2} \theta}$ $\left.\left(\sin ^{\theta} \theta\right) \csc ^{2} \theta+\sec ^{2} \theta\right) \underline{\underline{s} \sec ^{2}}$
$\left(\sin ^{2} \theta\right)\left(\frac{1}{\sin ^{2} \theta}+\frac{1}{\cos ^{2} \theta}\right) \underline{\underline{?}} \sec ^{2} \theta$
$\cos ^{2} \theta \cot ^{2} \theta \xrightarrow{\underline{I}} \frac{\left(\cos ^{2} \theta()^{2} \theta-\sin ^{2} \theta\right)}{\sin ^{2} \theta}$
$1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \frac{\mathfrak{2}}{\sin } \sec ^{2} \theta$
$\cos ^{2} \theta \cot ^{2} \theta \underline{\underline{2}} \frac{\cos ^{2} \theta}{1} \cdot \frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$\cos ^{2} \theta \cot ^{2} \theta=\cos ^{2} \theta \cot ^{2} \theta$
7. PROJECTLLES The square of the initial velocity of an object launched from the ground is $v^{2}=\frac{2 \mathrm{Sg} h}{} \mathrm{sin}^{2}$, where θ is the angle between the ground and the initial path, h is the
 $\frac{2 g h}{\sin ^{2} \theta}=\frac{2 g h}{1-\cos ^{2} \theta}=\frac{2 g h}{1-\frac{1}{\sec ^{2} \theta}}=\frac{2 g h}{\frac{\sec ^{2} \theta-1}{\sec ^{2} \theta}}=\frac{2 g h \sec ^{2} \theta}{\sec ^{2} \theta-1}$
8. LIGHT The intensity of a light source measured in candles is given by $I=E R^{2} \sec \theta$, where \mathcal{E} is light source, and θ is the angle between the light beam and a line perpendicular to the . Verify the identity $E P^{2}\left(1-\tan ^{2} \theta\right) \cos \theta=E R^{2} \sec \theta$.
$E R^{2}\left(1+\tan ^{2} \theta\right) \cos \theta=E R^{2} \sec ^{2} \theta \cos \theta=E R^{2} \sec ^{2} \theta \cdot \frac{1}{\sec \theta}=E R^{2} \sec \theta$

Reading to Learn
Mathematics, p. 859
ELL
Pre-Activity How can you verify trigonometric identities? Read the introduction to Lesson $14-4$ at the top of page 782 in your textbook For $\theta=-\pi, 0$ or $\pi, \sin \theta=\sin 2 \theta$. Does this mean that $\sin \theta=\sin 2 \theta$ is an For $\theta=-\pi, 0$, or $\pi, \sin \theta=\sin 2 \theta$. Does this mean that $\sin \theta=\sin 2 \theta$ is an
identity Explaian your reasongy. Sample answer: No, an identity is
an equation that is true for all values of a variable for which an equation that is true for all values of a variable for which
the functions involved are defined, not just some values. If $\theta=\frac{\pi}{4}, \sin \theta=\frac{\sqrt{2}}{2}$, and $\sin 2 \theta=1$.

Reading the Lesson

1. Determine whether each equation is an identity or not an identity.
a. $\frac{1}{\sin ^{2} \theta}-\frac{1}{\tan ^{2} \theta}=1$ identity
b. $\frac{\cos \theta}{\sin \theta \tan \theta}$ not an identity
c. $\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}=\cos \theta \sin \theta$ not an identity
d. $\cos ^{2} \theta\left(\tan ^{2} \theta+1\right)=1$ identity
e. $\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\sin \theta \csc \theta=\sec ^{2} \theta$ identity
f. $\frac{1}{1-\sin \theta}+\frac{1}{1+\sin \theta}=2 \cos ^{2} \theta$ not an identity
g. $\tan ^{2} \theta \cos ^{2} \theta=\frac{1}{\csc ^{2} \theta}$ identity
h. $\frac{\sin \theta}{\sec \theta}=\frac{1}{\tan \theta}+\frac{1}{\cot \theta}$ not an identity
2. Which of the following is not permitted when verifying an identity? B
A. simplifying one side of the identity to match the other side
B. cross multiplying if the identity is a proportion
C. simplifying each side of the identity separately to get the same expression on both sides

Helping You Remember

3. Many students have trouble knowing where to start in verifying a trigonometric identit, quacker approach? Sample answer: Write both sides in terms of sines and quicker approach? Sample answer: Write both sides in ter
cosines. Then simplify each side as much as possible.

Sum and Difference of Angles Formulas

1 Focus

5-Minute Check Transparency 14-5 Use as a quiz or review of Lesson 14-4.

Mathematical Background notes

 are available for this lesson on p. 760D.
How
 are the sum and difference formulas used to

 describe communication interference?Ask students:

- Where else have you heard the term interference? Sample answer: television and radio
- At its peak, how does the amplitude of the combined wave compare to the amplitude of the initial two waves? The amplitude of the combined wave is the sum of the amplitudes of the two initial waves.
- Why does the combined wave cross the x-axis at a point where neither of the two initial waves are crossing the axis? The combined wave is the sum of the other two waves. It crosses the x-axis at points where one of the initial waves is above the x-axis and the other wave is an equal distance below the x-axis.

What You'll Learn

- Find values of sine and cosine involving sum and difference formulas
- Verify identities by using sum and difference formulas.

How are the sum and difference formulas used to describe communication interference?

Have you ever been talking on a cell phone and temporarily lost the signal? Radio waves that pass through the same place at the same time cause interference. Constructive interference occurs when two waves combine to have a greater amplitude than either of the component waves. Destructive interference occurs when the component waves combine to have a smaller amplitude.

SUM AND DIFFERENCE FORMULAS Notice that the third equation shown above involves the sum of α and β. It is often helpful to use formulas for the trigonometric values of the difference or sum of two angles. For example, you could find $\sin 15^{\circ}$ by evaluating $\sin \left(60^{\circ}-45^{\circ}\right)$. Formulas can be developed that can be used to evaluate expressions like $\sin (\alpha-\beta)$ or $\cos (\alpha+\beta)$.
The figure at the right shows two angles α and β in standard position on the unit circle.
Use the Distance Formula to find d, where $\left(x_{1}, y_{1}\right)=(\cos \beta, \sin \beta)$ and $\left(x_{2}, y_{2}\right)=(\cos \alpha, \sin \alpha)$.

$\begin{aligned} d & =\sqrt{(\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}} \\ d^{2} & =(\cos \alpha-\cos \beta)^{2}+(\sin \alpha-\sin \beta)^{2}\end{aligned}$
$d^{2}=\left(\cos ^{2} \alpha-2 \cos \alpha \cos \beta+\cos ^{2} \beta\right)+\left(\sin ^{2} \alpha-2 \sin \alpha \sin \beta+\sin ^{2} \beta\right)$
$d^{2}=\cos ^{2} \alpha+\sin ^{2} \alpha+\cos ^{2} \beta+\sin ^{2} \beta-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta$
$d^{2}=1+1-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta \quad \sin ^{2} \alpha+\cos ^{2} \alpha=1$ and
$d^{2}=2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta \quad \sin ^{2} \beta+\cos ^{2} \beta=1$

Now find the value of d^{2} when the angle having measure $\alpha-\beta$ is in standard position on the unit circle, as shown in the figure at the left.

$$
\begin{aligned}
d & =\sqrt{[\cos (\alpha-\beta)-1]^{2}+[\sin (\alpha-\beta)-0]^{2}} \\
d^{2} & =[\cos (\alpha-\beta)-1]^{2}+[\sin (\alpha-\beta)-0]^{2} \\
& =\left[\cos ^{2}(\alpha-\beta)-2 \cos (\alpha-\beta)+1\right]+\sin ^{2}(\alpha-\beta) \\
& =\cos ^{2}(\alpha-\beta)+\sin ^{2}(\alpha-\beta)-2 \cos (\alpha-\beta)+1 \\
& =1-2 \cos (\alpha-\beta)+1 \\
& =2-2 \cos (\alpha-\beta)
\end{aligned}
$$

786 Chapter 14 Trigonometric Graphs and Identities

Resource Manager

Workbook and Reproducible Masters

Chapter 14 Resource Masters

- Study Guide and Intervention, pp. 861-862
- Skills Practice, p. 863
- Practice, p. 864
- Reading to Learn Mathematics, p. 865
- Enrichment, p. 866

Transparencies

5-Minute Check Transparency 14-5
Answer Key Transparencies

By equating the two expressions for d^{2}, you can find a formula for $\cos (\alpha-\beta)$.

$$
\begin{aligned}
d^{2} & =d^{2} \\
2-2 \cos (\alpha-\beta) & =2-2 \cos \alpha \cos \beta-2 \sin \alpha \sin \beta \\
-1+\cos (\alpha-\beta) & =-1+\cos \alpha \cos \beta+\sin \alpha \sin \beta \quad \text { Divide each side by }-2 . \\
\cos (\alpha-\beta) & =\cos \alpha \cos \beta+\sin \alpha \sin \beta \quad \text { Add } 1 \text { to each side. }
\end{aligned}
$$

Use the formula for $\cos (\alpha-\beta)$ to find a formula for $\cos (\alpha+\beta)$.
$\cos (\alpha-\beta)=\cos [\alpha-(-\beta)]$

$$
\begin{aligned}
& =\cos \alpha \cos (-\beta)+\sin \alpha \sin (-\beta) \\
& =\cos \alpha \cos \beta-\sin \alpha \sin \beta \quad \cos (-\beta)=\cos \beta ; \sin (-\beta)=-\sin \beta
\end{aligned}
$$

You can use a similar method to find formulas for $\sin (\alpha+\beta)$ and $\sin (\alpha-\beta)$.

Key Concept Sum and Difference of Angles Formulas

The following identities hold true for all values of α and β.

$$
\begin{aligned}
& \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
\end{aligned}
$$

Notice the symbol \mp in the formula for $\cos (\alpha \pm \beta)$. It means "minus or plus." In the cosine formula, when the sign on the left side of the equation is plus, the sign on the right side is minus; when the sign on the left side is minus, the sign on the right side is plus. The signs match each other in the sine formula.

Example 1 Use Sum and Difference of Angles Formulas

Find the exact value of each expression.
a. $\cos 75^{\circ}$

Use the formula $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$.

$$
\begin{aligned}
\cos 75^{\circ} & =\cos \left(30^{\circ}+45^{\circ}\right) & & \alpha=30^{\circ}, \beta=45^{\circ} \\
& =\cos 30^{\circ} \cos 45^{\circ}-\sin 30^{\circ} \sin 45^{\circ} & & \\
& =\left(\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2}\right)-\left(\frac{1}{2} \cdot \frac{\sqrt{2}}{2}\right) & & \text { Evaluate each expression. } \\
& =\frac{\sqrt{6}}{4}-\frac{\sqrt{2}}{4} & & \text { Multiply. } \\
& =\frac{\sqrt{6}-\sqrt{2}}{4} & & \text { Simplify. }
\end{aligned}
$$

b. $\sin \left(-210^{\circ}\right)$

Use the formula $\sin (\alpha-\beta)=\sin \alpha \cos \beta-\cos \alpha \sin \beta$.

$$
\begin{aligned}
\sin \left(-210^{\circ}\right) & =\sin \left(60^{\circ}-270^{\circ}\right) & & \alpha=60^{\circ}, \beta=270^{\circ} \\
& =\sin 60^{\circ} \cos 270^{\circ}-\cos 60^{\circ} \sin 270^{\circ} & & \\
& =\left(\frac{\sqrt{3}}{2}\right)(0)-\left(\frac{1}{2}\right)(-1) & & \text { Evaluate each expression. } \\
& =0-\left(-\frac{1}{2}\right) & & \text { Multiply. } \\
& =\frac{1}{2} & & \text { Simplify. }
\end{aligned}
$$

www.algebra2.com/extra_examples
Lesson 14-5 Sum and Difference of Angles Formulas 787

TNIERVENIION

Differentiated Instruction

Naturalist Have students apply what they know about geography, or have them conduct research, to find out whether the light energy per square foot would be increasing or decreasing as you travel toward the equator. Have students research the latitude of your city, or a city that interests them, and repeat Example 2 for that city.

2 Teach

Building on Prior Knowledge

The Distance Formula was first discussed and used back in Lesson 8-1. In this lesson, students will learn how to apply the Distance Formula to derive the Sum and Difference of Angles Formulas.

SUM AND DIFFERENCE FORMULAS

Teaching Tip Explain that sin 15° can be found by evaluating $\sin \left(60^{\circ}-45^{\circ}\right)$ because the exact values of $\sin 60^{\circ}$ and $\sin 45^{\circ}$ are known. Stress that using a difference such as $\sin \left(90^{\circ}-75^{\circ}\right)$ is ineffective because $\sin 75^{\circ}$ is not easily computed or remembered.
Reading Tip Have the entire class read aloud the paragraph directly below the Key Concept box, about the minus and plus signs. Stress that its use in the formula for the cosine of a sum or difference indicates that the sign on the right side of the identity is the opposite of the sign on the left side.

In-Class Examples

Power
 Point ${ }^{\circledR}$

1 Find the exact value of each expression.
a. $\sin 75^{\circ} \frac{\sqrt{2}+\sqrt{6}}{4}$
b. $\cos \left(-75^{\circ}\right) \frac{\sqrt{6}-\sqrt{2}}{4}$

2 Refer to Example 2 in the Student Edition. Use the difference of angles formula to determine the amount of light energy in Raleigh, North Carolina, located at a latitude of $35.8^{\circ} \mathrm{N}$. The maximum light energy per square foot is 0.9770 E .

VERIFY IDENTITIES

In-Class Example

Power Point ${ }^{\circledR}$

3 Verify that each of the following is an identity.
a. $\cos \left(90^{\circ}-\theta\right)=\sin \theta$ $\cos \left(90^{\circ}-\theta\right) \underline{\underline{?}} \sin \theta$
$\cos 90^{\circ} \cos \theta+\sin 90^{\circ} \sin \theta \stackrel{?}{\underline{?}} \sin \theta$ $0 \cos \theta+1 \sin \theta \stackrel{?}{\underline{\underline{?}}} \sin \theta$ $\sin \theta=\sin \theta$
b. $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$ $\cos \left(180^{\circ}-\theta\right) \underline{\underline{?}}-\cos \theta$ $\cos 180^{\circ} \cos \theta+$
$\sin 180^{\circ} \sin \theta \underline{\underline{?}}-\cos \theta$ $-1 \cos \theta+0 \sin \theta \stackrel{?}{\underline{?}}-\cos \theta$ $-\cos \theta=-\cos \theta$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 14.
- record the sum and difference formulas.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises... Organization by Objective
 - Sum and Difference
 Formulas: 14-27
 - Verify Identities: 28-39
 Odd/Even Assignments

Exercises 14-39 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15-25 odd, 29-37 odd, 40, 41-45 odd, 46-74
Average: 15-39 odd, 40, 41-45 odd, 46-74
Advanced: 14-40 even, 41-66 (optional: 67-74)

Example 2 Use Sum and Difference Formulas to Solve a Problem

Study Tip

Reading Math
The symbol ϕ is the lowercase Greek letter phi.

PHYSICS On June 22, the maximum amount of light energy falling on a square foot of ground at a location in the northern hemisphere is given by $E \sin \left(113.5^{\circ}-\phi\right)$, where ϕ is the latitude of the location and E is the amount of light energy when the Sun is directly overhead. Use the difference of angles formula to determine the amount of light energy in Rochester, New York,
located at a latitude of $43.1^{\circ} \mathrm{N}$.
Use the difference formula for sine.
$\sin \left(113.5^{\circ}-\phi\right)=\sin 113.5^{\circ} \cos \phi-\cos 113.5^{\circ} \sin \phi$

$$
\begin{aligned}
& =\sin 113.5^{\circ} \cos 43.1^{\circ}-\cos 113.5^{\circ} \sin 43.1^{\circ} \\
& =0.9171 \cdot 0.7301-(-0.3987) \cdot 0.6833 \\
& =0.9420
\end{aligned}
$$

In Rochester, New York, the maximum light energy per square foot is 0.9420 E .

VERIFY IDENTITIES You can also use the sum and difference formulas to verify identities.

Example 3 Verify Identities

Verify that each of the following is an identity.
a. $\sin \left(180^{\circ}+\theta\right)=-\sin \theta$

$$
\sin \left(180^{\circ}+\theta\right) \stackrel{?}{=}-\sin \theta \quad \text { Original equation }
$$

$\sin 180^{\circ} \cos \theta+\cos 180^{\circ} \sin \theta \stackrel{?}{=}-\sin \theta \quad$ Sum of angles formula
$0 \cos \theta+(-1) \sin \theta \stackrel{?}{\underline{?}}-\sin \theta \quad$ Evaluate each expression. $-\sin \theta=-\sin \theta \quad$ Simplify.
b. $\cos \left(180^{\circ}+\theta\right)=-\cos \theta$

$$
\cos \left(180^{\circ}+\theta\right) \stackrel{?}{=}-\cos \theta \quad \text { Original equation }
$$

$\cos 180^{\circ} \cos \theta-\sin 180^{\circ} \sin \theta \stackrel{?}{=}-\cos \theta \quad$ Sum of angles formula
$(-1) \cos \theta-0 \sin \theta \stackrel{?}{=}-\cos \theta \quad$ Evaluate each expression.
$-\cos \theta=-\cos \theta \quad$ Simplify.

Check for Understanding

Concept Check

 $1-2$. See margin. 3. Sometimes; sample answer: The cosine function can equal 1.Guided Practice
GUIDED PRACTICE KEY Exercises Examples

$4-9,13$	1
$10-12$	3

1. Determine whether $\sin (\alpha+\beta)=\sin \alpha+\sin \beta$ is an identity.
2. Describe a method for finding the exact value of $\sin 105^{\circ}$. Then find the value.
3. OPEN ENDED Determine whether $\cos (\alpha-\beta)<1$ is sometimes, always, or never true. Explain your reasoning.
4. $\sin 75^{\circ} \sqrt{6}+\sqrt{2}$
5. $\sin 165^{\circ} \sqrt{6}-\sqrt{2}$
6. $\cos 255^{\circ} \frac{\sqrt{2}-\sqrt{6}}{4}$
7. $\cos \left(-30^{\circ}\right) \sqrt[4]{3}$
8. $\sin \left(-240^{\circ}\right) \sqrt{3}$
9. $\cos \left(-120^{\circ}\right)-\frac{1}{2}$

Verify that each ${ }^{2}$ f the following is an identity. ${ }^{2} 10-12$. See pp 811A-811N.
10. $\cos \left(270^{\circ}-\theta\right)=-\sin \theta \quad$ 11. $\sin \left(\theta+\frac{\pi}{2}\right)=\cos \theta$
12. $\sin \left(\theta+30^{\circ}\right)+\cos \left(\theta+60^{\circ}\right)=\cos \theta$

788 Chapter 14 Trigonometric Graphs and Identities

Answers

1. $\sin (\alpha+\beta) \stackrel{?}{=} \sin \alpha+\sin \beta$
$\sin \alpha \cos \beta+\cos \alpha \sin \beta \neq \sin \alpha+\sin \beta$
2. Use the formula $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$.

Since $\sin 105^{\circ}=\sin \left(60^{\circ}+45^{\circ}\right)$, replace α with 60° and β with 45° to get
$\sin 60^{\circ} \cos 45^{\circ}+\cos 60^{\circ} \sin 45^{\circ}$. By finding the sum of the products of
the values, the result is $\frac{\sqrt{6}+\sqrt{2}}{4}$ or about 0.9659 .

788 Chapter 14 Trigonometric Graphs and Identities

Application 13. GEOMETRY Determine the exact value of $\tan \alpha$. $\frac{5-\sqrt{3}}{1+5 \sqrt{3}}$

\star indicates increased difficulty

Practice and Apply

Homework Help

For Exercises	See Examples
$14-27$	1
$28-39$	3
40,41,	2
$43-46$	

Extra Practice

See page 860 .
17. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
18. $\frac{-\sqrt{6}^{4}-\sqrt{2}}{4}$
19. $\frac{-\sqrt{6}-\sqrt{2}}{4}$
23. $\frac{\sqrt{2}}{2}$
24. $-\frac{\sqrt{3}}{2}$
25. $\frac{\sqrt{2}-\sqrt{6}}{4}$

More About.

Physics .
In the northern
hemisphere, the day with the least number of hours of daylight is December 21 or 22 , the first day of winter.
Source: wnw.infoplease.com
Find the exact value of each expression.
14. $\sin 135^{\circ} \frac{\sqrt{2}}{2}$
15. $\cos 105^{\circ} \frac{\sqrt{2}-\sqrt{6}}{4}$
16. $\sin 285^{\circ} \frac{-\sqrt{6}-\sqrt{2}}{4}$
17. $\cos 165^{\circ}{ }^{2}$
18. $\cos 195^{\circ}$
$-\frac{\sqrt{2}}{2}$
19. $\sin 255^{\circ}$ 2in $\left(-15^{\circ}\right) \frac{\sqrt{2}-\sqrt{6}}{4}$
20. $\cos 225^{\circ}-\frac{\sqrt{2}}{2}$
21. $\sin 315^{\circ}-\frac{\sqrt{2}}{2}$
25. $\sin \left(-165^{\circ}\right)$
\star 26. What is the exact value of $\sin 75^{\circ}-\sin 15^{\circ}$? $\frac{\sqrt{2}}{2}$
$\star 27$. Find the exact value of $\cos 105^{\circ}+\cos 225^{\circ} .-\sqrt{6}-\sqrt{2}$
Verify that each of the following is an identity. 28-39. See pp. 811A-811N.
28. $\sin \left(270^{\circ}-\theta\right)=-\cos \theta \quad$ 29. $\cos \left(90^{\circ}+\theta\right)=-\sin \theta$
30. $\cos \left(90^{\circ}-\theta\right)=\sin \theta$
31. $\sin \left(90^{\circ}-\theta\right)=\cos \theta$
32. $\sin \left(\theta+\frac{3 \pi}{2}\right)=-\cos \theta$
33. $\cos (\pi-\theta)=-\cos \theta$
34. $\cos (2 \pi+\theta)=\cos \theta$
35. $\sin (\pi-\theta)=\sin \theta$
36. $\sin \left(60^{\circ}+\theta\right)+\sin \left(60^{\circ}-\theta\right)=\sqrt{3} \cos \theta$
37. $\sin \left(\theta+\frac{\pi}{3}\right)-\cos \left(\theta+\frac{\pi}{6}\right)=\sin \theta$

夫 38. $\sin (\alpha+\beta) \sin (\alpha-\beta)=\sin ^{2} \alpha-\sin ^{2} \beta$
39. $\cos (\alpha+\beta)=\frac{1-\tan \alpha \tan \beta}{\sec \alpha \sec \beta}$

COMMUNICATION For Exercises 40 and 41, use the following information. A radio transmitter sends out two signals, one for voice communication and another for data. Suppose the equation of the voice wave is $v=10 \sin \left(2 t-30^{\circ}\right)$ and the equation of the data wave is $d=10 \cos \left(2 t+60^{\circ}\right)$.
40. Draw a graph of the waves when they are combined. See margin.
41. Refer to the application at the beginning of the lesson. What type of interference results? Explain. Destructive; the resulting graph has a smaller amplitude than the two initial graphs.

- PHYSICS For Exercises 42-45, use the following information.

On December 22, the maximum amount of light energy that falls on a square foot of ground at a certain location is given by $E \sin \left(113.5^{\circ}+\phi\right)$, where ϕ is the latitude of the location. Use the sum of angles formula to find the amount of light energy, in terms of E, for each location. 42. 0.3681 E 43. 0.4179 E
42. Salem, OR (Latitude: $44.9^{\circ} \mathrm{N}$)
43. Chicago, IL (Latitude: $41.8^{\circ} \mathrm{N}$)
44. Charleston, SC (Latitude: $28.5^{\circ} \mathrm{N}$) 0.6157 E
45. San Diego, CA (Latitude $32.7^{\circ} \mathrm{N}$) $0.5563 E$
46. CRITICAL THINKING Use the sum and difference formulas for sine and cosine to derive formulas for $\tan (\alpha+\beta)$ and $\tan (\alpha-\beta)$. See pp. 811A-811N.
www.algebra2.com/self-check_quiz
Lesson 14-5 Sum and Difference of Angles Formulas 789

Study Guide and Intervention, p. 861 (shown) and p. 862

Sum and Difference Formulas The following formulas are useful for er expression like sin 15° from the known values of sine and cosine of 60° and 45°

```
|
*)
```


Example

a. $\cos 345^{\circ}$
$\cos 345^{\circ}=\cos \left(300^{\circ}+45^{\circ}\right)$

```
= =os 300.
```

b. $\sin \left(-105^{\circ}\right)$
b. $\begin{aligned} & \sin \left(-105^{\circ}\right) \\ & \sin \left(-105^{\circ}\right)=\sin \left(45^{\circ}-150^{\circ}\right) \\ &=\sin 45^{\circ} \cdot \cos 155^{\circ}-\cos 45^{\circ} \cdot \sin 150^{\circ}\end{aligned}$ $\begin{aligned} & =\sin \left(45^{\circ}-150^{\circ}\right) \\ & =\sin 45^{\circ} \cdot \cos 150^{\circ}-\cos 45^{\circ} \cdot \sin 150^{\circ} \\ & =\frac{\sqrt{2}}{2} \cdot\left(-\frac{\sqrt{3}}{2}\right)-\frac{\sqrt{2}}{2} \cdot \frac{1}{2} \\ & =-\frac{\sqrt{2}+\sqrt{6}}{4}\end{aligned}$

Exerises		
Find the exact value of each expression.		
$\begin{aligned} & \text { 1. } \sin 105^{\circ} \\ & \frac{\sqrt{2}+\sqrt{6}}{4} \end{aligned}$	$\text { 2. }{ }^{2 . \cos 285^{\circ}} \text { } \frac{\sqrt{6}-\sqrt{2}}{4}$	$\text { 3. } \frac{\cos \left(-75^{\circ}\right)}{\sqrt{6}-\sqrt{2}}$
$\begin{aligned} & \text { 4. } \cos \left(-165^{\circ}\right) \\ & -\frac{\sqrt{2}+\sqrt{6}}{4} \end{aligned}$	$\text { 5. } \frac{\sin 195^{\circ}}{\sqrt{2}-\sqrt{6}} 44$	$\begin{aligned} & \text { 6. } \cos 420^{\circ} \\ & \frac{1}{2} \end{aligned}$
7. $\sin \left(-75^{\circ}\right)$ $-\frac{\sqrt{2}+\sqrt{6}}{4}$		$\begin{aligned} & \text { 9. } \frac{\cos \left(-15^{\circ}\right)}{\sqrt{2}+\sqrt{6}} \\ & 4 \end{aligned}$
10. $\sin 345^{\circ}$ $\frac{\sqrt{2}-\sqrt{6}}{4}$	$\begin{gathered} \text { 11. } \cos \left(-105^{\circ}\right) \\ \frac{\sqrt{2}-\sqrt{6}}{4} \end{gathered}$	$\frac{\text { 12. } \sin 495^{\circ}}{\frac{\sqrt{2}}{2}}$

Skills Practice, P. 863 and

Practice, P. 864 (shown)

```
Find the exact value of each expression.
1. }\operatorname{cos}7\mp@subsup{5}{}{\circ}\frac{\sqrt{}{6}-\sqrt{}{2}}{4}\quad\mathrm{ 2. }\operatorname{cos}37\mp@subsup{5}{}{\circ}\frac{\sqrt{}{6}+\sqrt{}{2}}{4}\quad\mathrm{ 3. }\operatorname{sin}(-16\mp@subsup{5}{}{\circ})\frac{\sqrt{}{2}-\sqrt{}{6}}{4
4. \operatorname{sin}(-10\mp@subsup{5}{}{\circ})\frac{-\sqrt{}{2}-\sqrt{}{6}}{4}
```

$\begin{array}{llll}\text { 7. } \sin 225^{\circ}-\frac{\sqrt{2}}{2} & \text { 8. } \sin \left(-75^{\circ}\right) \frac{-\sqrt{2}-\sqrt{6}}{4} & \text { 9. } \cos 240^{\circ}-\frac{1}{2} \\ \text { 9. } 195^{\circ} & \frac{\sqrt{2}-\sqrt{6}}{4}\end{array}$
Verify that each of the following is an identity.
10. $\cos \left(180^{\circ}-\theta\right)=-\cos \theta$
$\cos \left(180^{\circ}-\theta\right) \frac{3}{\frac{3}{2}}-\cos \theta$
$\cos 180^{\circ} \cos \theta+\sin 180^{\circ} \sin \theta$
$-1 \cos \theta+0 \sin \theta \frac{3}{3}-\cos \theta$
$-\cos \theta$
$-\cos \theta=-\cos \theta$
$\sin \left(360^{\circ}+\theta\right)=\sin \theta$
$\sin 360^{\circ} \cos \theta+\cos \left(360^{\circ}+\theta\right) \frac{1}{3} \sin \theta$
$0 \cos \theta+1 \sin \theta \frac{\sin }{}+\frac{3}{3} \sin \theta$
$0 \operatorname{cin} \theta$
12. $\sin \left(45^{\circ}+\theta\right)-\sin \left(45^{\circ}-\theta\right)=\sqrt{2} \sin \theta$
$\sin \left(45^{\circ}+\theta\right)-\sin \left(45^{\circ}-\theta\right)$
\sin
$\frac{3}{3} \sin 45^{\circ} \cos \theta+\cos 45^{\circ} \sin \theta-\left(\sin 45^{\circ} \cos \theta-\cos 45^{\circ} \sin \theta\right)$
$\frac{1}{2} 2 \cdot \cos 45^{\circ} \sin \theta$
$\underline{3} 2 \cdot \frac{\sqrt{2}}{2} \cdot \sin \theta$
$=\sqrt{2} \sin \theta$
13. $\cos \left(x-\frac{\pi}{6}\right)+\sin \left(x-\frac{\pi}{3}\right)=\sin$
$\cos \left(x-\frac{\pi}{6}\right)+\sin \left(x-\frac{\pi}{3}\right)$
$\xrightarrow[3]{ } \cos x \cos \frac{\pi}{6}+\sin x \sin \frac{\pi}{6}+\sin x \cos \frac{\pi}{3}-\cos x \sin \frac{\pi}{3}$
$=\frac{\sqrt{3}}{2} \cos x+\frac{1}{2} \sin x+\frac{1}{2} \sin x-\frac{\sqrt{3}}{2} \cos x$
$=\sin x$
$=\sin x$
14. SOLAR ENERGY On March 21 , the maximum amount of solar energy that falls on a

latitude of the location and E is a constant. Use the difference of angles formula to fin
the amount of solar energy, in terms of cos ϕ, for a location that has a latitude of ϕ.

the amount
$E \cos \phi$

ELECTRICITY In Exercises 15 and 16, use the following information.
In a certain circuit carrying alternating current, the formula $i=2 \sin (120 t)$ can be used to
In a certain circuit carrying atcernating current, the formula $i=2 \sin (120)$ can
find the current in ampers anter second.
15. Rewrite the formula using the sum of two angles. $i=2 \sin (90 t+30 t)$
16. Use the sum of angles formula to find the exact current at $t=1$ second. $\sqrt{3}$ amperes
Reading to Learn
Mathematics, p. 865

Pre-Activity How are the sum and difference formulas used to describe Read the introduction to Lesson $14-5$ at the top of page 786 in your textbo onsider the functions $y=\sin x$ and $y=2 \sin x$. Do the graphs of these tw Anctions have constructive interference or destructive interference?

Reading the Lesson

1. Match each expression from the list on the left with an expression from the list on the
right that is equal toit for all values of the variables. Some of the expressions from the right that is equal to it for all values of the variables. (some of
list on the right may be used more than once or not at all.)

a. $\sin (\alpha-\beta)$ v	i. $\sin \beta$

b. $\cos (\alpha+\beta)$ vi ii. $\sin \alpha \cos \beta+\cos \alpha \sin \beta$
c. $\sin \left(180^{\circ}+\beta\right)$ vii iii. $-\cos \beta$
d. $\sin \left(180^{\circ}-\beta\right)$ i iv. $\cos \alpha \cos \beta+\sin \alpha \sin \beta$
e. $\cos \left(180^{\circ}+\beta\right)$ iii \quad v. $\sin \alpha \cos \beta-\cos \alpha \sin \beta$
f. $\sin (\alpha+\beta)$ ii vi. $\cos \alpha \cos \beta-\sin \alpha \sin \beta$
g. $\cos \left(90^{\circ}-\beta\right) \mathbf{i} \quad$ vii. $-\sin \beta$
h. $\cos (\alpha-\beta)$ iv viii. $\cos \beta$
2. Which expressions are equal to $\sin 15^{\circ}$? (There may be more than one correct choice.)
A. $\sin 45^{\circ} \cos 30^{\circ}+\cos 45^{\circ} \sin 30^{\circ} \quad$ B. $\sin 45^{\circ} \cos 30^{\circ}-\cos 45^{\circ} \sin 30^{\circ}$ B and C
C. $\sin 60^{\circ} \cos 45^{\circ}-\cos 60^{\circ} \sin 45^{\circ} \quad$ D. $\cos 60^{\circ} \cos 45^{\circ}-\sin 60^{\circ} \sin 45^{\circ}$

Helping You Remember
3. Some students have trouble remembering which signs to use on the right-hand sides
the sum and difference of angle formulas. What is an easy way to remember this? Sample answer: In the sine identities, the signs are the same on both

4 Assess

Open-Ended Assessment

Modeling Show students a graph of the function $y=\sin x$. Have students point out on the graph which values would be most useful to use with the sum and difference of angles formulas, and ask them to explain their reasoning.

Getting Ready for
 Lesson 14-6

PREREQUISITE SKILL Students

 will find values using half-angle formulas in Lesson 14-6. The halfangle formulas include expressions within square root symbols, so students must be comfortable evaluating square roots. Use Exercises 67-74 to determine your students' familiarity with the Square Root Property.
Answers

47. Sample answer: To determine communication interference, you need to determine the sine or cosine of the sum or difference of two angles. Answers should include the following information.

- Interference occurs when waves pass through the same space at the same time. When the combined waves have a greater amplitude, constructive interference results and when the combined waves have a smaller amplitude, destructive interference results.

58. $\sin \theta=-\frac{3 \sqrt{34}}{34}, \cos \theta=\frac{5 \sqrt{34}}{34}$, $\tan \theta=-\frac{3}{5}, \csc \theta=-\frac{\sqrt{34}}{3}$, $\sec \theta=\frac{\sqrt{34}}{5}, \cot \theta=-\frac{5}{3}$
59. $\sin \theta=-\frac{4}{5}, \cos \theta=-\frac{3}{5}$,
$\tan \theta=\frac{4}{3}, \csc \theta=-\frac{5}{4}$,
$\sec \theta=-\frac{5}{3}, \cot \theta=\frac{3}{4}$
$60 . \sin \theta=1, \cos \theta=0$,
$\tan \theta=$ undefined, $\csc \theta=1$,
$\sec \theta=$ undefined, $\cot \theta=0$ the lesson. See margin.
How are the sum and difference formulas used to describe communication interference?
Include the following in your answer:

- an explanation of the difference between constructive and destructive interference, and
- a description of how you would explain wave interference to a friend.

Standardized

Test Practice
(A) (B) C D
48. Find the exact value of $\sin \theta$. A
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{\sqrt{2}}{2}$
(C) $\frac{1}{2}$
(D) $\frac{\sqrt{3}}{3}$

49. Find the exact value of $\cos \left(-210^{\circ}\right)$. C
(A) $\frac{\sqrt{3}}{2}$
(B) 0.5
(C) $-\frac{\sqrt{3}}{2}$
(D) -0.5

Maintain Your Skills

Mixed Review Verify that each of the following is an identity. (Lesson 14-4)

50-53.
See pp. 811A-811N.
50. $\cot \theta+\sec \theta=\frac{\cos ^{2} \theta+\sin \theta}{\sin \theta \cos \theta}$
52. $\sin \theta(\sin \theta+\csc \theta)=2-\cos ^{2} \theta$

Simplify each expression. (Lesson 14-3)
54. $\frac{\tan \theta \csc \theta}{\sec \theta} 1$
56. $(\cot \theta+\tan \theta) \sin \theta \sec \theta$
51. $\sin ^{2} \theta+\tan ^{2} \theta=\left(1-\cos ^{2} \theta\right)+\frac{\sec ^{2} \theta}{\csc ^{2} \theta}$
53. $\frac{\sec \theta}{\tan \theta}=\csc \theta$
55. $4\left(\sec ^{2} \theta-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}\right) 4$
57. $\csc \theta \tan \theta+\sec \theta 2 \sec \theta$

Find the exact values of the six trigonometric functions of θ if the terminal side of θ in standard position contains the given point. (Lesson 13-3) 58-60. See margin
58. $(5,-3)$
59. $(-3,-4)$
60. $(0,2)$

Evaluate each expression. (Lesson 12-2)
61. $P(6,4) 360$
62. $P(12,7) 3,991,680$
63. $C(8,3) 56$
64. $C(10,4) 210$
65. about 228 mi
73. $\pm \frac{\sqrt{\sqrt{6}-\sqrt{2}}}{2}$

Getting Ready for
the Next Lesson
74. $\pm \frac{\sqrt{2-2 \sqrt{2}}}{2}$
65. AVIATION A pilot is flying from Chicago to Columbus, a distance of 300 miles. In order to avoid an area of thunderstorms, she alters her initial course by 15° and flies on this course for 75 miles. How far is she from Columbus? (Lesson 13-5)
66. Write $6 y^{2}-34 x^{2}=204$ in standard form. (Lesson 8-5) $\frac{y^{2}}{34}-\frac{x^{2}}{6}=1$

PREREQUISITE SKILL Solve each equation.
(To review solving equations using the Square Root Property, see Lesson 6-4.) 72. $\pm \frac{3 \sqrt{5}}{5}$
67. $x^{2}=\frac{20}{16} \pm \frac{2 \sqrt{5}}{2}$ 68. $x^{2}=\frac{9}{25} \pm \frac{3}{5}$
69. $x^{2}=\frac{5}{25} \pm \frac{\sqrt{5}}{5}$
70. $x^{2}=\frac{18}{32} \pm \frac{3}{4}$
71. $x^{2}-1=\frac{1}{2} \pm \frac{\sqrt{6}}{2} 72 . x^{2}-1=\frac{4}{5}$
73. $x^{2}=\frac{\sqrt{3}}{2}-\frac{1}{2}$
74. $x^{2}=\frac{\sqrt{2}}{2}-1$

What You'll Learn

- Find values of sine and cosine involving double-angle formulas.
- Find values of sine and cosine involving half-angle formulas.

How can trigonometric functions be used to describe music?

Stringed instruments such as a piano, guitar, or violin rely on waves to produce the tones we hear. When the strings are struck or plucked, they vibrate. If the motion of the strings were observed in slow motion, you could see that there are places on the string, called nodes, that do not move under the vibration. Halfway between each pair of consecutive nodes are antinodes that undergo the maximum vibration. The nodes and antinodes form harmonics. These harmonics can be represented using variations of the equations $y=\sin 2 \theta$ and $y=\sin \frac{1}{2} \theta$.

DOUBLE-ANGLE FORMULAS You can use the formula for $\sin (\alpha+\beta)$ to find the sine of twice an angle $\theta, \sin 2 \theta$, and the formula for $\cos (\alpha+\beta)$ to find the cosine of twice an angle $\theta, \cos 2 \theta$.

$$
\begin{aligned}
\sin 2 \theta & =\sin (\theta+\theta) & \cos 2 \theta & =\cos (\theta+\theta) \\
& =\sin \theta \cos \theta+\cos \theta \sin \theta & & =\cos \theta \cos \theta-\sin \theta \sin \theta \\
& =2 \sin \theta \cos \theta & & =\cos ^{2} \theta-\sin ^{2} \theta
\end{aligned}
$$

You can find alternate forms for $\cos 2 \theta$ by making substitutions into the expression $\cos ^{2} \theta-\sin ^{2} \theta$.

$$
\begin{aligned}
\cos ^{2} \theta-\sin ^{2} \theta & =\left(1-\sin ^{2} \theta\right)-\sin ^{2} \theta & & \text { Substitute } 1-\sin ^{2} \theta \text { for } \cos ^{2} \theta . \\
& =1-2 \sin ^{2} \theta & & \text { Simplify. } \\
\cos ^{2} \theta-\sin ^{2} \theta & =\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right) & & \text { Substitute } 1-\cos ^{2} \theta \text { for } \sin ^{2} \theta . \\
& =2 \cos ^{2} \theta-1 & & \text { Simplify. }
\end{aligned}
$$

These formulas are called the double-angle formulas.

Key Concept Double-Angle Formulas

The following identities hold true for all values of θ.

$$
\begin{array}{ll}
\sin 2 \theta=2 \sin \theta \cos \theta & \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta \\
& \cos 2 \theta=1-2 \sin ^{2} \theta \\
& \cos 2 \theta=2 \cos ^{2} \theta-1
\end{array}
$$

1 Focus

5-Minute Check

Transparency 14-6 Use as a quiz or review of Lesson 14-5.

Mathematical Background notes are available for this lesson on page 760D.

How
 can trigonometric functions be used to

 describe music?
Ask students:

- What do the values of n represent on the right side of the diagram? the number of antinodes
- What is occurring at an antinode? maximum vibration
- At what point do you think a guitar string would be more likely to break, a node or an antinode? at an antinode

2 Teach

DOUBLE-ANGLE FORMULAS

Teaching Tip Point out that the double-angle formulas are derived using the sum and difference of angles formulas presented in Lesson 14-5.

Workbook and Reproducible Masters Chapter 14 Resource Masters

- Study Guide and Intervention, pp. 867-868
- Skills Practice, p. 869
- Practice, p. 870
- Reading to Learn Mathematics, p. 871
- Enrichment, p. 872
- Assessment, p. 894

Resource Manager

Transparencies

5-Minute Check Transparency 14-6
Answer Key Transparencies

Teaching Tip Remind students of the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, and its two variations that occur by subtracting either $\sin ^{2} \theta$ or $\cos ^{2} \theta$ from both sides. Explain that there are three versions of the formula for $\cos 2 \theta$ because of the three variations of the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$.

In-Class Example

Power
Point
1 Find the exact value of each expression if $\sin \theta=\frac{3}{4}$ and θ is between 0° and 90°.
a. $\sin 2 \theta \frac{3 \sqrt{7}}{8}$
b. $\cos 2 \theta-\frac{1}{8}$

Example 1 Double-Angle Formulas

Find the exact value of each expression if $\sin \theta=\frac{4}{5}$ and θ is between 90° and 180°.
a. $\sin 2 \theta$

Use the identity $\sin 2 \theta=2 \sin \theta \cos \theta$.
First, find the value of $\cos \theta$.
$\cos ^{2} \theta=1-\sin ^{2} \theta \quad \cos ^{2} \theta+\sin ^{2} \theta=1$
$\cos ^{2} \theta=1-\left(\frac{4}{5}\right)^{2} \quad \sin \theta=\frac{4}{5}$
$\cos ^{2} \theta=\frac{9}{25} \quad$ Subtract.
$\cos \theta= \pm \frac{3}{5} \quad$ Find the square root of each side.
Since θ is in the second quadrant, cosine is negative. Thus, $\cos \theta=-\frac{3}{5}$.
Now find $\sin 2 \theta$.
$\sin 2 \theta=2 \sin \theta \cos \theta \quad$ Double-angle formula

$$
\begin{aligned}
\sin 2 \theta & =2\left(\frac{4}{5}\right)\left(-\frac{3}{5}\right) & & \sin \theta=\frac{4}{5}, \cos \theta=-\frac{3}{5} \\
& =-\frac{24}{25} & & \text { The value of } \sin 2 \theta \text { is }-\frac{24}{25} .
\end{aligned}
$$

b. $\cos 2 \theta$

Use the identity $\cos 2 \theta=1-2 \sin ^{2} \theta$.
$\cos 2 \theta=1-2 \sin ^{2} \theta \quad$ Double-angle formula

$$
\begin{array}{ll}
=1-2\left(\frac{4}{5}\right)^{2} & \sin \theta=\frac{4}{5} \\
=-\frac{7}{25} & \text { The value of } \cos 2 \theta \text { is }-\frac{7}{25}
\end{array}
$$

HALF-ANGLE FORMULAS You can derive formulas for the sine and cosine of half a given angle using the double-angle formulas.
Find $\sin \frac{\alpha}{2}$.

$$
\begin{aligned}
1-2 \sin ^{2} \theta & =\cos 2 \theta & & \text { Double-angle formula } \\
1-2 \sin ^{2} \frac{\alpha}{2} & =\cos \alpha & & \text { Substitute } \frac{\alpha}{2} \text { for } \theta \text { and } \alpha \text { for } 2 \theta . \\
\sin ^{2} \frac{\alpha}{2} & =\frac{1-\cos \alpha}{2} & & \text { Solve for } \sin ^{2} \frac{\alpha}{2} . \\
\sin \frac{\alpha}{2} & = \pm \sqrt{\frac{1-\cos \alpha}{2}} & & \text { Take the square root of each side. }
\end{aligned}
$$

Find $\cos \frac{\alpha}{2}$.

$$
\begin{aligned}
2 \cos ^{2} \theta-1 & =\cos 2 \theta & & \text { Double-angle formula } \\
2 \cos ^{2} \frac{\alpha}{2}-1 & =\cos \alpha & & \text { Substitute } \frac{\alpha}{2} \text { for } \theta \text { and } \alpha \text { for } 2 \theta . \\
\cos ^{2} \frac{\alpha}{2} & =\frac{1+\cos \alpha}{2} & & \text { Solve for } \cos ^{2} \frac{\alpha}{2} . \\
\cos \frac{\alpha}{2} & = \pm \sqrt{\frac{1+\cos \alpha}{2}} & & \text { Take the square root of each side. }
\end{aligned}
$$

Study Tip
Choosing the Sign You may want to determine the quadrant in which the terminal side of $\frac{\alpha}{2}$ will lie in the first step
of the solution. Then you can use the correct sign from the beginning.

These are called the half-angle formulas. The signs are determined by the function of $\frac{\alpha}{2}$.

Key Concept

The following identities hold true for all values of α.

$$
\sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}} \quad \cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}}
$$

Example 2 Half-Angle Formulas

Find $\cos \frac{\alpha}{2}$ if $\sin \alpha=-\frac{3}{4}$ and α is in the third quadrant.
Since $\cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}}$, we must find $\cos \alpha$ first.
$\cos ^{2} \alpha=1-\sin ^{2} \alpha \quad \cos ^{2} \alpha+\sin ^{2} \alpha=1$
$\cos ^{2} \alpha=1-\left(-\frac{3}{4}\right)^{2} \quad \sin \alpha=-\frac{3}{4}$
$\cos ^{2} \alpha=\frac{7}{16} \quad$ Simplify.
$\cos \alpha= \pm \frac{\sqrt{7}}{4} \quad$ Take the square root of each side.
Since α is in the third quadrant, $\cos \alpha=-\frac{\sqrt{7}}{4}$.
$\cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}} \quad$ Half-angle formula
$= \pm \sqrt{\frac{1-\frac{\sqrt{7}}{4}}{2}} \quad \cos \alpha=-\frac{\sqrt{7}}{4}$
$= \pm \sqrt{\frac{4-\sqrt{7}}{8}} \quad$ Simplify the radicand.
$= \pm \frac{\sqrt{4-\sqrt{7}}}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}$ Rationalize.
$= \pm \frac{\sqrt{8-2 \sqrt{7}}}{4} \quad$ Multiply.
Since α is between 180° and $270^{\circ}, \frac{\alpha}{2}$ is between 90° and 135°. Thus, $\cos \frac{\alpha}{2}$ is
negative and equals $-\frac{\sqrt{8-2 \sqrt{7}}}{4}$.

Example 3 Evaluate Using Half-Angle Formulas

Find the exact value of each expression by using the half-angle formulas.
a. $\sin 105^{\circ}$

$$
\begin{aligned}
\sin 105^{\circ} & =\sin \frac{210^{\circ}}{2} \\
& =\sqrt{\frac{1-\cos 210^{\circ}}{2}} \quad \sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}}
\end{aligned}
$$

Intervention
Stress the Study Tip provided in the margin next to Example 2.
Determining the proper sign for the answer at the beginning of the computation will help some students avoid forgetting this step at the end of their computations.

In-Class Example

 α is in the second quadrant. $\frac{\sqrt{5}}{5}$
Differentiated Instruction

Auditory/Musical If possible, ask a music teacher at your school to talk to students about harmonics. Students playing stringed instruments may also be willing to share what they have learned about harmonics and waves. If a music teacher is not available, a physics teacher may also be able to demonstrate harmonics or bring a device that creates standing waves to class.

3 Find the exact value of each expression by using the halfangle formulas.
a. $\sin 165^{\circ} \frac{\sqrt{2-\sqrt{3}}}{2}$
b. $\cos \frac{9 \pi}{8}-\frac{\sqrt{2+\sqrt{2}}}{2}$

4 Verify that $\sin \theta\left(\cos ^{2} \theta-\cos 2 \theta\right)=\sin ^{3} \theta$ is an identity.
$\sin \theta\left(\cos ^{2} \theta-\cos 2 \theta\right)$
$\stackrel{?}{\underline{=}} \sin \theta\left[\cos ^{2} \theta-\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\right]$
$\stackrel{?}{\underline{?}} \sin \theta\left(\cos ^{2} \theta-\cos ^{2} \theta+\sin ^{2} \theta\right)$
$\stackrel{?}{\underline{?}} \sin \theta\left(\sin ^{2} \theta\right)$
$=\sin ^{3} \theta$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 14.
- record the double-angle and
half-angle formulas.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

Answers

1. Sample answer: If x is in the third quadrant, then $\frac{X}{2}$ is between 90° and 135°. Use the half-angle formula for cosine knowing that the value is negative.
2. Sample answer: $45^{\circ} ; \cos 2\left(45^{\circ}\right)=$ $\cos 90^{\circ}$ or $0,2 \cos 45^{\circ}=2 \cdot \frac{\sqrt{2}}{2}$ or $\sqrt{2}$
3. Sample answer: The identity used for $\cos 2 \theta$ depends on whether you know the value of $\sin \theta, \cos \theta$, or both values.
4. $\frac{24}{25},-\frac{7}{25}, \frac{\sqrt{5}}{5}, \frac{2 \sqrt{5}}{5}$

$$
\begin{array}{ll}
=\sqrt{\frac{1-\left(-\frac{\sqrt{3}}{2}\right)}{2}} & \cos 210^{\circ}=-\frac{\sqrt{3}}{2} \\
=\sqrt{\frac{2+\sqrt{3}}{4}} & \text { Simplify the radicand. } \\
=\frac{\sqrt{2+\sqrt{3}}}{2} & \text { Simplify the denominator. }
\end{array}
$$

b. $\cos \frac{\pi}{8}$
$\cos \frac{\pi}{8}=\frac{\frac{\pi}{4}}{2}$

$$
\begin{aligned}
& =\sqrt{\frac{1+\cos \frac{\pi}{4}}{2}} \\
& =\sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}} \\
& =\cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}} \\
& =\sqrt{\frac{2+\sqrt{2}}{4}}
\end{aligned} \quad \text { Simplify the radicand. }
$$

Recall that you can use the sum and difference formulas to verify identities. Double- and half-angle formulas can also be used to verify identities.

Example 4 Verify Identities

Verify that $(\sin \theta+\cos \theta)^{2}=1+\sin 2 \theta$ is an identity.

$$
(\sin \theta+\cos \theta)^{2} \stackrel{?}{=} 1+\sin 2 \theta \quad \text { Original equation }
$$

$\sin ^{2} \theta+2 \sin \theta \cos \theta+\cos ^{2} \theta \stackrel{?}{=} 1+\sin 2 \theta \quad$ Multiply.

$$
\begin{aligned}
& 1+2 \sin \theta \cos \theta \stackrel{?}{=} 1+\sin 2 \theta \quad \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& 1+\sin 2 \theta=1+\sin 2 \theta \quad \text { Double-angle formula }
\end{aligned}
$$

Check for Understanding

Concept Check 1. Explain how to find $\cos \frac{x}{2}$ if x is in the third quadrant.
1-3. See margin.
2. Find a counterexample to show that $\cos 2 \theta=2 \cos \theta$ is not an identity.
3. OPEN ENDED Describe the conditions under which you would use each of the three identities for $\cos 2 \theta$.
Guided Practice Find the exact values of $\sin 2 \theta, \cos 2 \theta, \sin \frac{\theta}{2}$, and $\cos \frac{\theta}{2}$ for each of the following.

GUIDED PRACTICE KEY	
Exercises	Examples
$4-7$	$1-2$
$8,9,12$	3
10,11	4

4. $\cos \theta=\frac{3}{5} ; 0^{\circ}<\theta<90^{\circ}$
5. $\cos \theta=-\frac{2}{3} ; 180^{\circ}<\theta<270^{\circ}$
6. $\sin \theta=\frac{1}{2} ; 0^{\circ}<\theta<90^{\circ}$
7. $\sin \theta=-\frac{3}{4} ; 270^{\circ}<\theta<360^{\circ}$
$4-7$. See margin.
Find the exact value of each expression by using the half-angle formulas.
8. $\sin 195^{\circ}-\frac{\sqrt{2-\sqrt{3}}}{2}$
9. $\cos \frac{19 \pi}{12} \frac{\sqrt{2-\sqrt{3}}}{2}$

794 Chapter 14 Trigonometric Graphs and Identities
5. $\frac{4 \sqrt{5}}{9},-\frac{1}{9}, \frac{\sqrt{30}}{6},-\frac{\sqrt{6}}{6}$
6. $\frac{\sqrt{3}}{2}, \frac{1}{2}, \frac{\sqrt{2-\sqrt{3}}}{2}, \frac{\sqrt{2+\sqrt{3}}}{2}$
7. $-\frac{3 \sqrt{7}}{8},-\frac{1}{8}, \frac{\sqrt{8-2 \sqrt{7}}}{4},-\frac{\sqrt{8+2 \sqrt{7}}}{4}$

Verify that each of the following is an identity. 10-11. See margin.
10. $\cot x=\frac{\sin 2 x}{1-\cos 2 x}$
11. $\cos ^{2} 2 x+4 \sin ^{2} x \cos ^{2} x=1$

Application
12. AVIATION When a jet travels at speeds
greater than the speed of sound, a sonic boom is created by the sound waves forming a cone behind the jet. If θ is the measure of the angle at the vertex of the cone, then the Mach number M can be determined using the formula $\sin \frac{\theta}{2}=\frac{1}{M}$. Find the Mach number of a jet if a sonic boom is created by a cone with a vertex angle of 75°. 1.64

Practice and Apply

Homework Help

For Exercises	See Examples
$13-24,38$,	1,2
39	
$25-30,37$	3
$31-36$	4

Extra Practice See page 861.

13-24. See margin.

Optics •.................
A rainbow appears when the sun shines through water droplets that act as a prism.

Find the exact values of $\sin 2 \theta, \cos 2 \theta, \sin \frac{\theta}{2}$, and $\cos \frac{\theta}{2}$ for each of the following.
13. $\sin \theta=\frac{5}{13} ; 90^{\circ}<\theta<180^{\circ}$
14. $\cos \theta=\frac{1}{5} ; 270^{\circ}<\theta<360^{\circ}$
15. $\cos \theta=-\frac{1}{3} ; 180^{\circ}<\theta<270^{\circ}$
16. $\sin \theta=-\frac{3}{5} ; 180^{\circ}<\theta<270^{\circ}$
17. $\sin \theta=-\frac{3}{8} ; 270^{\circ}<\theta<360^{\circ}$
18. $\cos \theta=-\frac{1}{4} ; 90^{\circ}<\theta<180^{\circ}$
19. $\cos \theta=\frac{1}{6} ; 0^{\circ}<\theta<90^{\circ}$
20. $\cos \theta=-\frac{12}{13} ; 180^{\circ}<\theta<270^{\circ}$
21. $\sin \theta=-\frac{1}{3} ; 270^{\circ}<\theta<360^{\circ}$
22. $\sin \theta=-\frac{1}{4} ; 180^{\circ}<\theta<270^{\circ}$
23. $\cos \theta=\frac{2}{3} ; 0^{\circ}<\theta<90^{\circ}$
24. $\sin \theta=\frac{2}{5} ; 90^{\circ}<\theta<180^{\circ}$

Find the exact value of each expression by using the half-angle formulas.
25. $\cos 165^{\circ}-\frac{\sqrt{2+\sqrt{3}}}{2} \sqrt{2+\sqrt{2}}$
26. $\sin 22 \frac{1}{2}^{\circ} \frac{\sqrt{2-\sqrt{2}}}{2}$
27. $\cos 157 \frac{1}{2} \circ \quad-\frac{\sqrt{2+\sqrt{2}}}{2}$
28. $\sin 345^{\circ} \quad-\frac{\sqrt{2-\sqrt{3}}}{2}$
29. $\sin \frac{7 \pi}{8} \frac{\sqrt{2-\sqrt{2}}}{2}$
30. $\cos \frac{7 \pi}{12}-\frac{\sqrt{2-\sqrt{3}}}{2}$

Verify that each of the following is an identity. 31-36. See pp. 811A-811N.
31. $\sin 2 x=2 \cot x \sin ^{2} x$
32. $2 \cos ^{2} \frac{x}{2}=1+\cos x$
33. $\sin ^{4} x-\cos ^{4} x=2 \sin ^{2} x-1$
34. $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
35. $\tan ^{2} \frac{x}{2}=\frac{1-\cos x}{1+\cos x}$
36. $\frac{1}{\sin x \cos x}-\frac{\cos x}{\sin x}=\tan x$
37. OPTICS If a glass prism has an apex angle of measure α and an angle of deviation of measure β, then the index of refraction n of the prism is given by $n=\frac{\sin \left[\frac{1}{2}(\alpha+\beta)\right]}{\sin \frac{\alpha}{2}}$

What is the angle of deviation of a prism with an apex angle of 40° and an index of refraction of 2? 46.3 ${ }^{\circ}$

Answers

10. $\cot x \stackrel{?}{=} \frac{\sin 2 x}{1-\cos 2 x}$
$\stackrel{?}{=} \frac{2 \sin x \cos x}{1-\left(1-2 \sin ^{2} x\right)}$
$\stackrel{?}{=} \frac{2 \sin x \cos x}{2 \sin ^{2} x}$
$\stackrel{?}{=} \frac{\cos x}{\sin x}$
$=\cot x$
11. $\cos ^{2} 2 x+4 \sin ^{2} x \cos ^{2} x \stackrel{?}{=} 1$ $\cos ^{2} 2 x+\sin ^{2} 2 x \xrightarrow{?} 1$ $1=1$
12. $-\frac{120}{169}, \frac{119}{169}, \frac{5 \sqrt{26}}{26}, \frac{\sqrt{26}}{26}$
13. $-\frac{4 \sqrt{6}}{25},-\frac{23}{25}, \frac{\sqrt{10}}{5},-\frac{\sqrt{15}}{5}$

About the Exercises...

 Organization by Objective- Double-Angle Formulas: 13-24, 31
- Half-Angle Formulas: 13-30, 32, 35

Odd/Even Assignments

Exercises 13-36 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13-37 odd, 38, 39, 41-65
Average: 13-37 odd, 38, 39, 41-65
Advanced: 14-38 even, 39-59 (optional: 60-65)
All: Practice Quiz 2 (1-10)

Answers

15. $\frac{4 \sqrt{2}}{9},-\frac{7}{9}, \frac{\sqrt{6}}{3},-\frac{\sqrt{3}}{3}$
16. $\frac{24}{25}, \frac{7}{25}, \frac{3 \sqrt{10}}{10},-\frac{\sqrt{10}}{10}$
17. $-\frac{3 \sqrt{55}}{32}, \frac{23}{32}, \frac{\sqrt{8-\sqrt{55}}}{4}$,

$$
-\frac{\sqrt{8+\sqrt{55}}}{4}
$$

18. $-\frac{\sqrt{15}}{8},-\frac{7}{8}, \frac{\sqrt{10}}{4}, \frac{\sqrt{6}}{4}$
19. $\frac{\sqrt{35}}{18},-\frac{17}{18}, \frac{\sqrt{15}}{6}, \frac{\sqrt{21}}{6}$
20. $\frac{120}{169}, \frac{119}{169}, \frac{5 \sqrt{26}}{26},-\frac{\sqrt{26}}{26}$
21. $-\frac{4 \sqrt{2}}{9}, \frac{7}{9}, \frac{\sqrt{18-12 \sqrt{2}}}{6}$,
$-\frac{\sqrt{18-12 \sqrt{2}}}{6}$
22. $\frac{\sqrt{15}}{8}, \frac{7}{8}, \frac{\sqrt{8+2 \sqrt{15}}}{4}$,
$-\frac{\sqrt{8-2 \sqrt{15}}}{4}$
23. $\frac{4 \sqrt{5}}{9},-\frac{1}{9}, \frac{\sqrt{6}}{6}, \frac{\sqrt{30}}{6}$
24. $-\frac{4 \sqrt{21}}{5}, \frac{17}{25}, \frac{\sqrt{5 \sqrt{2}+10 \sqrt{21}}}{10}$,
$\frac{\sqrt{5 \sqrt{10}-10 \sqrt{21}}}{10}$

Reading to Learn Mathematics, p. 871

ELL

 Suppose that the equation for the second harmonic is $y=\sin a \theta$. Then what harmonic, fourth harmonic, and fifth harmonic?$y=\sin 0.5 a \theta ; y=\sin 1.5 a \theta ; y=\sin 2 a \theta ; y=\sin 2.5 a \theta$

the Lesson

1. Match each expression from the list on the
a. ${ }^{\beta}{ }_{v}$
$\cos ^{\beta}$ iv \longrightarrow
d. $\sin 2 \beta \mathrm{i} \quad$ iv. $\pm \sqrt{\frac{1+\cos \beta}{2}}$
v. $\pm \sqrt{\frac{1-\cos \beta}{2}}$
2. Determine whether you would use the positive or negative square root in the hal-angle identities for $\sin \frac{\alpha}{2}$ and $\cos \frac{\alpha}{2}$ in each of the following situations. (Do not actually
calculate $\sin \frac{\alpha}{2}$ and $\cos \frac{\alpha}{2}$) calculate $\sin \frac{\alpha}{2}$ and $\cos \frac{\alpha}{2}$.
b. $\cos \frac{\alpha}{2}$, if $\cos \alpha=-0.9$ and α is in Quadrant II positive
cos $\frac{\alpha}{\alpha}$ if $\sin =075$ and
d. $\sin \frac{\alpha}{2}$, if $\sin \alpha=-0.8$ and α is in Quadrant IV positive

Helping You Remembe

3. Many students find it difficult to remember a large number of identities. How can you Sythagorean identity? Sanst remember the identity $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$. Using the Pythagorean identity $\cos ^{2} \theta+\sin ^{2} \theta=1$, you can substitute ither $1-\sin ^{2} \theta$ for $\cos ^{2} \theta$ or identities for $\cos 2 \theta$.

4. $\frac{1 \pm \sqrt{\frac{1-\cos L}{1+\cos L}}}{1 \mp \sqrt{\frac{1-\cos L}{1+\cos L}}}$

Standardized Test Practice

GEOGRAPHY For Excercises 38 and

 39, use the following information. A Mercator projection map uses a flat projection of Earth in which the distance between the lines of latitude increases with their distance from the equator. The calculation of the location of a point on this projection uses the expression $\tan \left(45^{\circ}+\frac{L}{2}\right)$, where L is the latitude of the point.38. Write this expression in terms of a trigonometric function of L.
39. Find the exact value of the expression if $L=60^{\circ} .2+\sqrt{3}$

PHYSICS For Exercises 40 and 41, use the following information.
An object is propelled from ground level with an initial velocity of v at an angle of elevation θ. 40. See pp. 811A-811N.
40. The horizontal distance d it will travel can be determined using $d=\frac{v^{2} \sin 2 \theta}{g}$, where g is acceleration due to gravity. Verify that this expression is the same as $\frac{2}{g} v^{2}\left(\tan \theta-\tan \theta \sin ^{2} \theta\right)$.
41. The maximum height h the object will reach can be determined using the formula $h=\frac{v^{2} \sin ^{2} \theta}{2 g}$. Find the ratio of the maximum height attained to the horizontal distance traveled. $\frac{1}{4} \tan \theta$
CRITICAL THINKING For Exercises 42-46, use the following information.
Consider the functions $f(x)=\sin 2 x, g(x)=\sin ^{2} x, h(x)=-\cos ^{2} x$, and
$k(x)=-\frac{1}{2} \cos 2 x$. 42-46. See pp. 811A-811N.
42. Draw the graphs of $y=g(x), y=h(x)$, and $y=k(x)$ on the same coordinate plane on the interval from $x=-2 \pi$ to $x=2 \pi$. What do you notice about the graphs?
43. Where do the maxima and minima of g, h, and k occur?
44. Draw the graph of $y=f(x)$ on a separate coordinate plane.
45. What is the behavior of the graph of $f(x)$ at the locations found in Exercise 43?
46. Use what you know about transformations to determine c and d so that $g(x)=h(x)+c=k(x)+d$.
47. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How can trigonometric functions be used to describe music?
Include the following in your answer:

- a description of what happens to the graph of the function of a vibrating string as it moves from one harmonic to the next, and
- an explanation of what happens to the period of the function as you move from the nth harmonic to the $(n+1)$ th harmonic.

48. Find the exact value of $\cos 2 \theta$ if $\sin \theta=\frac{-\sqrt{5}}{3}$ and $180^{\circ}<\theta<270^{\circ}$. \mathbf{D}
(A) $\frac{-\sqrt{6}}{6}$
(B) $\frac{-\sqrt{30}}{6}$
(C) $\frac{-4 \sqrt{5}}{9}$
(D) $\frac{-1}{9}$
49. Find the exact value of $\sin \frac{\theta}{2}$ if $\cos \theta=\frac{\sqrt{3}}{2}$ and $0^{\circ}<\theta<90^{\circ}$. B
(A) $\frac{\sqrt{3}}{2}$
(B) $\frac{\sqrt{2-\sqrt{3}}}{2}$
(C) $\frac{\sqrt{2+\sqrt{3}}}{2}$
(D) $\frac{1}{2}$

796 Chapter 14 Trigonometric Graphs and Identities

796 Chapter 14 Trigonometric Graphs and Identities

Maintain Your Skills

Mixed Review

52. $-\frac{\sqrt{2}}{2}$
53. $-\frac{\sqrt{3}}{2}$
54. $\cos 15^{\circ} \sqrt{6}+\sqrt{2}$
55. $\sin 15^{\circ} \sqrt{6}-\sqrt{2}$
56. $\sin \left(-135^{\circ}\right){ }^{4}$
57. $\cos 150^{\circ}$
58. $\sin 105^{\circ} \frac{\sqrt{6}+\sqrt{2}}{4}$
59. $\cos \left(-300^{\circ}\right) \frac{1}{2}$

Verify that each of the following is an identity. (Lesson 14-4)
56. $\cot ^{2} \theta-\sin ^{2} \theta=\frac{\cos ^{2} \theta \csc ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta \csc ^{2} \theta}$ See pp. 811A-811N.
57. $\cos \theta(\cos \theta+\cot \theta)=\cot \theta \cos \theta(\sin \theta+1)$ See pp. 811A-811N.

EARTHQUAKE For Exercises 58 and 59 , use the following information. The magnitude of an earthquake M measured on the Richter scale is given by $M=\log _{10} x$, where x represents the amplitude of the seismic wave causing ground motion. (Lesson 10-2) 58. 10 ${ }^{1}$ or 10
58. How many times as great was the 1960 Chile earthquake as the 1938 Indonesia earthquake?
59. The largest aftershock of the 1964 Alaskan earthquake was 6.7 on the Richter scale. How many times as great was the main earthquake as this aftershock? $10^{2.5}$ or about 316 times as great

Strongest quakes in 20th century

Magnitude

Getting Ready for the Next Lesson

PREREQUISITE SKILL Solve each equation.
(To review solving equations using the Zero Product Property, see Lesson 6-3.)
60. $(x+6)(x-5)=0-6,5$
61. $(x-1)(x+1)=01,-1$
62. $x(x+2)=0$ 0, -2
63. $(2 x-5)(x+2)=0 \quad \frac{5}{2},-2$
65. $x^{2}(2 x+1)=0 \quad 0,-\frac{1}{2}$

Practice Quiz 2
Lessons 14-4 through 14-6
Verify that each of the following is an identity. (Lessons 14-5) 1-3. See pp. 811A-811N.

1. $\sin \theta \sec \theta=\tan \theta$
2. $\sec \theta-\cos \theta=\sin \theta \tan \theta$
3. $\sin \theta+\tan \theta=\frac{\sin \theta(\cos \theta+1)}{\cos \theta}$

Verify that each of the following is an identity. (Lessons 14-4 and 14-5) 4-6. See pp. 811A-811N.
4. $\sin \left(90^{\circ}+\theta\right)=\cos \theta$
5. $\cos \left(\frac{3 \pi}{2}-\theta\right)=-\sin \theta$
6. $\sin \left(\theta+30^{\circ}\right)+\cos \left(\theta+60^{\circ}\right)=\cos \theta$

Find the exact value of each expression by using the double-angle or half-angle formulas. (Lesson 14-6) 7. $\sin 2 \theta$ if $\cos \theta=-\frac{\sqrt{3}}{2} ; 180^{\circ}<\theta<270^{\circ} \frac{\sqrt{3}}{2}$
9. $\sin 165^{\circ} \frac{\sqrt{2-\sqrt{3}}}{2}$
8. $\cos \frac{\theta}{2}$ if $\sin \theta=-\frac{9}{41} ; 270^{\circ} \leq \theta<360^{\circ}-\frac{9 \sqrt{82}}{82}$
10. $\cos \frac{5 \pi}{8}-\frac{\sqrt{2-\sqrt{2}}}{2}$

4 Assess

Open-Ended Assessment

Writing Have students write their own problems like Examples 2 and 3, and have them write an explanation of how to use a double-angle or half-angle formula to solve their examples.

Getting Ready for Lesson 14-7

PREREQUISITE SKILL In Lesson 14-7, students will solve trigonometric equations using the Zero Product Property. Use Exercises 60-65 to determine your students' familiarity with the Zero Product Property.

Assessment Options

Practice Quiz 2 The quiz provides students with a brief review of the concepts and skills in Lessons 14-4 through 14-6. Lesson numbers are given to the right of the exercises or instruction lines so students can review concepts not yet mastered.
Quiz (Lessons 14-5 and 14-6) is available on $p .894$ of the Chapter 14 Resource Masters.

Answer (p. 796)
47. Sample answer: The sound waves associated with music can be modeled using trigonometric functions. Answers should include the following information.

- In moving from one harmonic to the next, the number of vibrations that appear as sine waves increases by 1.
- The period of the function as you move from the nth harmonic to the ($n+1$)th harmonic decreases from $\frac{2 \pi}{n}$ to $\frac{2 \pi}{n+1}$.

A Preview of Lesson 14-7

Getiong Started

Approximate Solutions In

Example 1, approximate solutions can also be found by using the Trace feature. In most situations however, the Intersect feature will give more accurate solutions.

Teach

- You might wish to demonstrate the technique shown in Example 1 by first using a simple quadratic equation like $x^{2}=9$, whose solutions students will readily know. Graph $y=x^{2}$ and $y=9$ to see that they intersect at two points, where $x=-3$ and $x=3$, just as students will expect.
- Remind students that the solutions of the equation are the x values of the points of intersection, not the y values.
- If the expression on the right side of an equation is just 0 (as in Exercises 3 and 6), you can graph the function for the left side of the equation and then just use the Zero feature on the CALC menu to find approximate solutions.

Assess

In Exercises 3-4, check to see that students can explain why there are no real solutions.
In Exercise 6, make sure students found all four possible values. Students who found fewer than four are not using the correct domain for x.

Solving Trigonometric Equations

The graph of a trigonometric function is made up of points that represent all values that satisfy the function. To solve a trigonometric equation, you need to find all values of the variable that satisfy the equation. You can use a TI-83 Plus to solve trigonometric equations by graphing each side of the equation as a function and then locating the points of intersection.

Example 1 Use a graphing calculator to solve $\sin x=0.2$ if $0^{\circ} \leq x<360^{\circ}$.
Rewrite the equation as two functions, $y=\sin x$ and $y=0.2$. Then graph the two functions. Look for the point of intersection.

Make sure that your calculator is in degree mode to get the correct viewing window.
Keystrokes: MODE $\boldsymbol{\nabla} \boldsymbol{\square}$ ENTER WINDOW 0 ENTER 360 ENTER 90 ENTER -2 ENTER 1 ENTER 1 ENTER $\mathrm{Y}=\mathrm{SIN}$ X,T, θ, n ENTER 0.2 ENTER GRAPH
Based on the graph, you can see that there are two points of

[0, 360] scl: 90 by $[-2,1]$ scl: 1 intersection in the interval $0^{\circ} \leq x<360^{\circ}$. Use Zoom or 2nd [CALC] 5 to approximate the solutions. The approximate solutions are 168.5° and 11.5°.

Like other equations you have studied, some trigonometric equations have no real solutions. Carefully examine the graphs over their respective periods for points of intersection. If there are no points of intersection, then the trigonometric equation has no real solutions.

Example 2 Use a graphing calculator to solve

 $\tan ^{2} x \cos x+5 \cos x=0$ if $0^{\circ} \leq x<360^{\circ}$.Because the tangent function is not continuous, place the calculator in Dot mode. The related functions to be graphed are $y=\tan ^{2} x \cos x+5 \cos x$ and $y=0$.
These two functions do not intersect. Therefore, the equation $\tan ^{2} x \cos x+5 \cos x=0$ has no real solutions.

[0,360] scl: 90 by $[-15,15]$ scl: 1
1-6. See pp. 811A-811N for graphs.
Exercises 1.53.1 ${ }^{\circ}, 126.9^{\circ}$ 3. no real solution 4. no real solution
Use a graphing calculator to solve each equation for the values of x indicated.

1. $\sin x=0.8$ if $0^{\circ} \leq x<360^{\circ}$
2. $\tan x=\sin x$ if $0^{\circ} \leq x<360^{\circ} \mathbf{0}^{\circ}, 180^{\circ}$
3. $2 \cos x+3=0$ if $0^{\circ} \leq x<360^{\circ}$
4. $0.5 \cos x=1.4$ if $-720^{\circ} \leq x<720^{\circ}$
5. $\sin 2 x=\sin x$ if $0^{\circ} \leq x<360^{\circ}$
6. $\sin 2 x-3 \sin x=0$ if $-360^{\circ} \leq x<360^{\circ}$ $-360^{\circ},-180^{\circ}, 0^{\circ}, 180^{\circ}$
$60^{\circ}, 180^{\circ}, 300^{\circ}$
www.algebra2.com/other_calculator_keystrokes

What You'll Learn

- Solve trigonometric equations.
- Use trigonometric equations to solve real-world problems.

Vocabulary

- trigonometric equation

How can trigonometric equations be used to predict temperature?

The average daily high temperature for a region can be described by a trigonometric function. For example, the average daily high temperature for each month in Orlando, Florida, can be modeled by the function $T=11.56 \sin (0.4516 x-1.641)+80.89$, where T represents the average daily high temperature in degrees Fahrenheit and x represents the month of the year. This equation can be used to predict the months in which the average temperature in Orlando will be at or above a desired temperature.

SOLVE TRIGONOMETRIC EQUATIONS You have seen that trigonometric identities are true for all values of the variable for which the equation is defined. However, most trigonometric equations like some algebraic equations, are true for some but not all values of the variable.

Example 1 Solve Equations for a Given Interval

Find all solutions of each equation for the given interval.
a. $\cos ^{2} \theta=1 ; 0^{\circ} \leq \theta<360^{\circ}$

$$
\begin{aligned}
\cos ^{2} \theta & =1 & & \text { Original equation } \\
\cos ^{2} \theta-1 & =0 & & \text { Solve for } 0 .
\end{aligned}
$$

$(\cos \theta+1)(\cos \theta-1)=0 \quad$ Factor.
Now use the Zero Product Property.

$$
\begin{aligned}
& \cos \theta+1=0 \quad \text { or } \quad \cos \theta-1=0 \\
& \cos \theta=-1 \quad \cos \theta=1 \\
& \theta=180^{\circ} \quad \theta=0^{\circ}
\end{aligned}
$$

The solutions are 0° and 180°.
b. $\sin 2 \theta=2 \cos \theta ; 0 \leq \theta<2 \pi$

$$
\begin{aligned}
\sin 2 \theta & =2 \cos \theta & & \text { Original equation } \\
2 \sin \theta \cos \theta & =2 \cos \theta & & \sin 2 \theta=2 \sin \theta \cos \theta \\
2 \sin \theta \cos \theta-2 \cos \theta & =0 & & \text { Solve for } 0 . \\
2 \cos \theta(\sin \theta-1) & =0 & & \text { Factor. }
\end{aligned}
$$

1 Focus

5-Minute Check
 Transparency 14-7 Use as

 a quiz or review of Lesson 14-6.Mathematical Background notes are available for this lesson on page 760D.

How

 can trigonometric equations be used to predict temperature?Ask students:

- Why would temperature not be modeled by a quadratic function? Sample answer: Temperature varies periodically and does not continue upward or downward to infinity. So temperature should be modeled by a trigonometric, not a quadratic, function.
- What can you tell about the range of temperatures by studying the function T ? The temperature varies 11.56 degrees (the amplitude of the function) above and below a temperature of $80.89^{\circ} \mathrm{F}$ (the midline of the function).
- What can you tell about the maximum temperature by studying the function? The maximum temperature is $11.56+80.89$, or $92.45^{\circ} \mathrm{F}$.

Workbook and Reproducible Masters

Chapter 14 Resource Masters

- Study Guide and Intervention, pp. 873-874
- Skills Practice, p. 875
- Practice, p. 876
- Reading to Learn Mathematics, p. 877
- Enrichment, p. 878
- Assessment, p. 894

School-to-Career Masters, p. 28
Science and Mathematics Lab Manual, pp. 145-148
Teaching Algebra With Manipulatives Masters, p. 304

Resource Manager

Transparencies

5-Minute Check Transparency 14-7
Answer Key Transparencies

[^0]
2 Teach

Building on Prior Knowledge

In Lesson 6-3, students learned to use the Zero Product Property to solve equations. In this lesson, students will use the Zero Product Property to solve trigonometric equations.

SOLVE TRIGONOMETRIC EQUATIONS

In-Class Examples

1 Find all solutions of each equation for the given interval.
a. $2 \cos ^{2} \theta-1=\sin \theta$; $0^{\circ}<\theta \leq 360^{\circ} 30^{\circ}, 150^{\circ}, 270^{\circ}$
b. $\sin \theta=\sin 2 \theta ; 0<\theta \leq 2 \pi$ $\frac{\pi}{3}, \pi, \frac{5 \pi}{3}, 2 \pi$
Teaching Tip In Example 2, show students how to look for patterns in the solution of part a. Students should look for pairs of solutions that differ by exactly π or 2π.
a. Solve $2 \sin \theta \cos \theta=\cos \theta$ for all values of θ if θ is measured in radians.
$\frac{\pi}{6}+2 k \pi, \frac{\pi}{2}+2 k \pi, \frac{5 \pi}{6}+2 k \pi$, $\frac{3 \pi}{2}+2 k \pi$, where k is any integer
b. Solve $\cos \theta=-\cos 2 \theta$ for all values of θ if θ is measured in degrees. $60^{\circ}+k \cdot 360^{\circ}$, $180^{\circ}+k \cdot 360^{\circ}, 300^{\circ}+k \cdot 360^{\circ}$, where k is any integer

Use the Zero Product Property.

$$
\begin{aligned}
& 2 \cos \theta=0 \quad \text { or } \sin \theta-1=0 \\
& \cos \theta=0 \quad \sin \theta=1 \\
& \theta=\frac{\pi}{2} \text { or } \frac{3 \pi}{2} \quad \theta=\frac{\pi}{2}
\end{aligned}
$$

The solutions are $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$.

Trigonometric equations are usually solved for values of the variable between 0° and 360° or 0 radians and 2π radians. There are solutions outside that interval. These other solutions differ by integral multiples of the period of the function.

Example 2 Solve Trigonometric Equations

a. Solve $2 \sin \theta=-1$ for all values of θ if θ is measured in radians.
$2 \sin \theta=-1 \quad$ Original equation
$\sin \theta=-\frac{1}{2} \quad$ Divide each side by 2.
Look at the graph of $y=\sin \theta$ to find solutions of $\sin \theta=-\frac{1}{2}$.

The solutions are $\frac{7 \pi}{6}, \frac{11 \pi}{6}, \frac{19 \pi}{6}, \frac{23 \pi}{6}$, and so on, and $-\frac{7 \pi}{6},-\frac{11 \pi}{6},-\frac{19 \pi}{6},-\frac{23 \pi}{6}$, and so on. The only solutions in the interval 0 to 2π are $\frac{7 \pi}{6}$ and $\frac{11 \pi}{6}$. The period of the sine function is 2π radians. So the solutions can be written as $\frac{7 \pi}{6}+2 k \pi$ and $\frac{11 \pi}{6}+2 k \pi$, where k is any integer.
b. Solve $\cos 2 \theta+\cos \theta+1=0$ for all values of θ if θ is measured in degrees.

$$
\begin{aligned}
\cos 2 \theta+\cos \theta+1=0 & \text { Original equation } \\
2 \cos ^{2} \theta-1+\cos \theta+1=0 & \cos 2 \theta=2 \cos ^{2} \theta-1 \\
2 \cos ^{2} \theta+\cos \theta=0 & \text { simplify. } \\
\cos \theta(2 \cos \theta+1)=0 & \text { Factor. }
\end{aligned}
$$

Solve for θ in the interval 0° to 360°.

$$
\begin{aligned}
& \cos \theta=0 \quad \text { or } 2 \cos \theta+1=0 \\
& \theta=90^{\circ} \text { or } 270^{\circ} \quad 2 \cos \theta=-1 \\
& \cos \theta=-\frac{1}{2} \\
& \theta=120^{\circ} \text { or } 240^{\circ}
\end{aligned}
$$

The solutions are $90^{\circ}+k \cdot 180^{\circ}, 120^{\circ}+k \cdot 360^{\circ}$, and $240^{\circ}+k \cdot 360^{\circ}$.

If an equation cannot be solved easily by factoring, try rewriting the expression using trigonometric identities. However, using identities and some algebraic operations, such as squaring, may result in extraneous solutions. So, it is necessary to check your solutions using the original equation.

800 Chapter 14 Trigonometric Graphs and Identities

Solve $\cos \theta \tan \theta-\sin ^{2} \theta=0$.

$$
\cos \theta \tan \theta-\sin ^{2} \theta=0 \quad \text { Original equation }
$$

$$
\cos \theta\left(\frac{\sin \theta}{\cos \theta}\right)-\sin ^{2} \theta=0 \quad \tan \theta=\frac{\sin \theta}{\cos \theta}
$$

$$
\sin \theta-\sin ^{2} \theta=0 \quad \text { Multiply. }
$$

$$
\sin \theta(1-\sin \theta)=0 \quad \text { Factor. }
$$

$$
\begin{aligned}
\sin \theta & =0 & \text { or } & 1-\sin \theta
\end{aligned}=0
$$

CHECK

$$
\begin{array}{rrrr}
\cos \theta \tan \theta-\sin ^{2} \theta & =0 & \cos \theta \tan \theta-\sin ^{2} \theta=0 \\
\cos 0^{\circ} \tan 0^{\circ}-\sin ^{2} 0^{\circ} \stackrel{?}{=} 0 & \theta=0^{\circ} & \cos 180^{\circ} \tan 180^{\circ}-\sin ^{2} 180^{\circ} \stackrel{?}{=} 0 \quad \theta=180^{\circ} \\
1 \cdot 0-0 \stackrel{?}{=} 0 & & -1 \cdot 0-0 \stackrel{?}{=} 0 \\
0=0 & \checkmark & \\
0 & \checkmark & \checkmark \\
\cos \theta \tan \theta-\sin ^{2} \theta & =0 & \cos \theta \tan \theta-\sin ^{2} \theta=0 & \\
\cos 360^{\circ} \tan 360^{\circ}-\sin ^{2} 360^{\circ} \stackrel{?}{=} 0 & \theta=360^{\circ} & \cos 90^{\circ} \tan 90^{\circ}-\sin ^{2} 90^{\circ} \stackrel{?}{=} 0 & \theta=90^{\circ} \\
1 \cdot 0-0 \stackrel{?}{=} 0 & \tan 90^{\circ} \text { is undefined. } \\
0 & =0 & \sqrt{ } & \text { Thus, } 90^{\circ} \text { is not a solution. }
\end{array}
$$

The solution is $0^{\circ}+k \cdot 180^{\circ}$.

Some trigonometric equations have no solution. For example, the equation $\cos x=4$ has no solution since all values of $\cos x$ are between -1 and 1 , inclusive. Thus, the solution set for $\cos x=4$ is empty.

Example 4 Determine Whether a Solution Exists

Solve $3 \cos 2 \theta-5 \cos \theta=1$.

$$
\begin{aligned}
& 3 \cos 2 \theta-5 \cos \theta=1 \text { Original equation } \\
& 3\left(2 \cos ^{2} \theta-1\right)-5 \cos \theta=1 \cos 2 \theta=2 \cos ^{2} \theta-1 \\
& 6 \cos ^{2} \theta-3-5 \cos \theta=1 \text { Multiply. } \\
& 6 \cos ^{2} \theta-5 \cos \theta-4=0 \text { Subtract } 1 \text { from each side. } \\
& \begin{array}{rl}
(3 \cos \theta-4)(2 \cos \theta+1)=0 & \text { Factor. } \\
3 \cos \theta-4=0 & \text { or } \\
3 \cos \theta=4 & 2 \cos \theta+1=0 \\
\cos \theta=\frac{4}{3} & \cos \theta=-\frac{1}{2}
\end{array} \\
& \begin{array}{ll}
\text { Not possible since } \\
\text { cos } \theta \text { cannot be greater than } 1 .
\end{array} \\
& \text { Thus, the solutions are } 120^{\circ}+k \cdot 360^{\circ} \text { and } 240^{\circ}+k \cdot 360^{\circ} .
\end{aligned}
$$

INIERVENIION

Differentiated Instruction

Interpersonal As students work through this lesson, have them create a class list on the chalkboard that identifies common errors they made. Encourage students to add suggestions for how to avoid their errors. For example, one common error is having one's calculator set to degrees when it needs to be set to radians for a problem, and vice versa.

USE TRIGONOMETRIC EQUATIONS

In-Class Example

Teaching Tip As students work Example 5, some of them may calculate $\sin ^{-1} 0.392$ as 23.079 . Point out that this result occurs when their calculator is set to degrees instead of radians.

GARDENING Refer to Example 5 in the Student Edition. If Rhonda decides to wait until there are 15 hours of daylight, on what day can she plant her flowers? around the 114th day of the year, or around April 24

3 Practice/Apply

Study Notebook

Have students-

- complete the definitions/examples for the remaining terms on their Vocabulary Builder worksheets for Chapter 14.
- summarize some techniques they used for solving trigonometric equations.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..
 Organization by Objective
 - Solve Trigonometric Equations: 15-40
 - Use Trigonometric Equations: 41-44
 Odd/Even Assignments

Exercises 15-40 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15-39 odd, 41-55
Average: 15-39 odd, 41-55
Advanced: 16-40 even, 41-55

USE TRIGONOMETRIC EQUATIONS Trigonometric equations are often used to solve real-world situations.

Example 5 Use a Trigonometric Equation

GARDENING Rhonda wants to wait to plant her flowers until there are at least 14 hours of daylight. The number of hours of daylight H in her town can be represented by $H=11.45+6.5 \sin (0.0168 d-1.333)$, where d is the day of the year and angle measures are in radians. On what day is it safe for Rhonda to plant her flowers?

$$
\begin{aligned}
H & =11.45+6.5 \sin (0.0168 d-1.333) & & \text { Original equation } \\
14 & =11.45+6.5 \sin (0.0168 d-1.333) & & H=14 \\
2.55 & =6.5 \sin (0.0168 d-1.333) & & \text { Subtract } 11.45 \text { from each side. } \\
0.392 & =\sin (0.0168 d-1.333) & & \text { Divide each side by } 6.5 . \\
0.403 & =0.0168 d-1.333 & & \operatorname{Sin}^{-1} 0.392=0.403 \\
1.736 & =0.0168 d & & \text { Add } 1.333 \text { to each side. } \\
103.333 & =d & & \text { Divide each side by } 0.0168 .
\end{aligned}
$$

Rhonda can safely plant her flowers around the 104th day of the year, or around April 14.

Check for Understanding

Concept Check

1. Tell why the equation $\sec \theta=0$ has no solutions.
$1-3$. See margin.
2. Explain why the number of solutions to the equation $\sin \theta=\frac{\sqrt{3}}{2}$ is infinite.
3. OPEN ENDED Write an example of a trigonometric equation that has no solution.
Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4-7$	1
$8-11$	2
12,13	3
14	5

12. $\frac{7 \pi}{6}+2 k \pi, \frac{11 \pi}{6}+$ $2 k \pi$ or $210^{\circ}+k$.
$360^{\circ}, 330^{\circ}+k \cdot 360^{\circ}$
Application
13. $\frac{\pi}{6}+2 k \pi, \frac{5 \pi}{6}+$
$2 k \pi, \frac{\pi}{2}+2 k \pi$ or 30°
$+k \cdot 360^{\circ}, 150^{\circ}+k$.
$360^{\circ}, 90^{\circ}+k \cdot 360^{\circ}$

Find all solutions of each equation for the given interval. 6. $\frac{\pi}{6}, \frac{\pi}{2}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
4. $4 \cos ^{2} \theta=1 ; 0^{\circ} \leq \theta<360^{\circ}$
$60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$
5. $2 \sin ^{2} \theta-1=0 ; 90^{\circ}<\theta<270^{\circ}$
6. $\sin 2 \theta=\cos \theta ; 0^{\prime} \leq \theta<2 \pi$
7. $3 \sin ^{2}{ }^{2} \theta-\cos ^{2} \theta=0 ; 0 \leq \theta<\frac{\pi}{2} \frac{\pi}{6}$

Solve each equation for all values of θ if θ is measured in radians.
8. $\cos 2 \theta=\cos \theta 0+\frac{2 k \pi}{3}$
9. $\sin \theta+\sin \theta \cos \theta=00+k \pi$

Solve each equation for all values of θ if θ is measured in degrees.
10. $\sin \theta=1+\cos \theta$
11. $2 \cos ^{2} \theta+2=5 \cos \theta$
$90^{\circ}+k \cdot 360^{\circ}, 180^{\circ}+k \cdot 360^{\circ}$ $60^{\circ}+k \cdot 360^{\circ}, 300+k \cdot 360^{\circ}$
Solve each equation for all values of θ.
13. $2 \cos ^{2} \theta+3 \sin \theta-3=0$
14. PHYSICS According to Snell's law, the angle at which light enters water α is related to the angle at which light travels in water β by the equation $\sin \alpha=1.33 \sin \beta$. At what angle does a beam of light enter the water if the beam travels at an angle of 23° through the water? 31.3°

802 Chapter 14 Trigonometric Graphs and Identities

Answers

1. Sample answer: If $\sec \theta=0$ then $\frac{1}{\cos \theta}=0$. Since no value of θ makes $\frac{1}{\cos \theta}=0$, there are no solutions.
2. Sample answer: The function is periodic with two solutions in each of its infinite number of periods.
3. Sample answer: $\sin \theta=2$
4. $\frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi$
5. $\pi+2 k \pi, \frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi$
$25 \frac{2 \pi}{3}+2 k \pi, \frac{4 \pi}{3}+2 k \pi$
$26.0+2 k \pi$
6. $\frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi$
$28.0+k \pi, \frac{\pi}{6}+2 k \pi, \frac{5 \pi}{6}+2 k \pi$

802 Chapter 14 Trigonometric Graphs and Identities

Practice and Apply

Homework Help

For Exercises	See Examples
$15-22$	1
$23-34$	2
$35-40$	3,4
$41-43$	5

Extra Practice

See page 861.
15. $60^{\circ}, 300^{\circ}$
16. $240^{\circ}, 300^{\circ}$
17. $210^{\circ}, 330^{\circ}$
18. $30^{\circ}, 150^{\circ}, 210^{\circ}$,
330°
19. $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{3 \pi}{2}$
20. $\frac{\pi}{2}$
21. $\frac{7 \pi}{6}, \frac{11 \pi}{6}$

Waves
In the oceans, the height and period of water waves are determined by wind velocity, the duration of the wind, and the distance the wind has blown across the water.
Source: mw.infoplease.com

Find all solutions of each equation for the given interval.
15. $2 \cos \theta-1=0 ; 0^{\circ} \leq \theta<360^{\circ}$
16. $2 \sin \theta=-\sqrt{3} ; 180^{\circ}<\theta<360^{\circ}$
17. $4 \sin ^{2} \theta=1 ; 180^{\circ}<\theta<360^{\circ}$
18. $4 \cos ^{2} \theta=3 ; 0^{\circ} \leq \theta<360^{\circ}$
19. $2 \cos ^{2} \theta=\sin \theta+1 ; 0 \leq \theta<2 \pi$
20. $\sin ^{2} \theta-1=\cos ^{2} \theta ; 0 \leq \theta<\pi$
21. $2 \sin ^{2} \theta+\sin \theta=0 ; \pi<\theta<2 \pi$
22. $2 \cos ^{2} \theta=-\cos \theta ; 0 \leq \theta<2 \pi$

Solve each equation for all values of θ if θ is measured in radians.

23. $\cos 2 \theta+3 \cos \theta-1=0$
24. $2 \sin ^{2} \theta-\cos \theta-1=0$
25. $\cos ^{2} \theta-\frac{5}{2} \cos \theta-\frac{3}{2}=0$
26. $\cos \theta=3 \cos \theta-2$
27. $4 \cos ^{2} \theta-4 \cos \theta+1=0$
28. $\cos 2 \theta=1-\sin \theta$

23-28. See margin.
Solve each equation for all values of θ if θ is measured in degrees.
22. $\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{2 \pi}{3}, \frac{4 \pi}{3}$
29. $\sin \theta=\cos \theta$
31. $\sin ^{2} \theta-2 \sin \theta-3=0$
33. $\tan ^{2} \theta-\sqrt{3} \tan \theta=0$ 29-34. See margin.

Solve each equation for all values of θ. 35-40. See pp. 811A-811N
35. $\sin ^{2} \theta+\cos 2 \theta-\cos \theta=0$
36. $2 \sin ^{2} \theta-3 \sin \theta-2=0$
37. $\sin ^{2} \theta=\cos ^{2} \theta-1$
38. $2 \cos ^{2} \theta+\cos \theta=0$
39. $\sin \frac{\theta}{2}+\cos \theta=1$
40. $\sin \frac{\theta}{2}+\cos \frac{\theta}{2}=\sqrt{2}$
41. $S=\frac{352}{\tan \theta}$ or $S=352 \cot \theta$

LIGHT For Exercises 41 and 42, use the information shown.
41. The length of the shadow S of the International Peace Memorial at Put-In-Bay, Ohio, depends upon the angle of inclination of the Sun, θ. Express S as a function of θ.
42. Find the angle of inclination θ that will produce a shadow 560 feet long. about 32°

- WAVES For Exercises 43 and 44, use the following information.

For a short time after a wave is created by a boat, the height of the wave can be modeled using $y=\frac{1}{2} h+\frac{1}{2} h \sin \frac{2 \pi t}{P}$, where h is the maximum height of the wave in feet, P is the period in seconds, and t is the propagation of the wave in seconds.
43. If $h=3$ and $P=2$ seconds, write the equation for the wave and draw its graph over a 10 -second interval. See pp. 811A-811N.
44. How many times over the first 10 seconds does the graph predict the wave to be one foot high? 10
www.algebra2.com/self_check_quiz
Lesson 14-7 Solving Trigonometric Equations 803

Answers

$29.45^{\circ}+k \cdot 180^{\circ}$
$30.0^{\circ}+k \cdot 180^{\circ}$
$31.270^{\circ}+k \cdot 360^{\circ}$
$32.30^{\circ}+k \cdot 360^{\circ}, 150^{\circ}+k \cdot 360^{\circ}$
$33.0^{\circ}+k \cdot 180^{\circ}, 60^{\circ}+k \cdot 180^{\circ}$
34. $120^{\circ}+k \cdot 360^{\circ}, 240^{\circ}+k \cdot 360^{\circ}$

Enrichment, p. 878	
Families of Curves	
Use these graphs for the problems below.	
The Family $y=x^{n}$	The Family $y=e^{\text {axx }}$
-	X 1 "
,	- H_{3} -
\square	1 团
${ }_{0}^{0.0}$	N^{2} +
0.4	
	-

Study Guide and Intervention,
p. 873 (shown) and p. 874 p. 873 (shown) and p. 874

Skills Practice, p. 875 and Practice, p. 876 (shown)	
Find all solutions of each equation for the given interval.	
$\begin{aligned} & \text { 1. } \sin 2 \theta=\cos \theta, 90^{\circ} \leq \theta<180^{\circ} \\ & 90^{\circ}, 150^{\circ} \end{aligned}$	$\begin{aligned} & \text { 2. } \sqrt{2} \cos \theta=\sin 2 \theta, 0^{\circ} \leq \theta<360^{\circ} \\ & 45^{\circ}, 90^{\circ}, 135^{\circ}, 270^{\circ} \end{aligned}$
$\begin{aligned} & \text { 3. } \cos 4 \theta=\cos 2 \theta, 180^{\circ} \leq \theta<360^{\circ} \\ & 180^{\circ}, 240^{\circ}, 300^{\circ} \end{aligned}$	$\begin{aligned} & \text { 4. } \cos \theta+\cos (90-\theta)=0,0 \leq \theta<2 \pi \\ & \frac{3 \pi}{4}, \frac{7 \pi}{4} \end{aligned}$
$\begin{aligned} & \text { 5. } 2+\cos \theta=2 \sin ^{2} \theta, \pi \leq \theta \leq \frac{3 \pi}{2} \\ & \frac{4 \pi}{3}, \frac{3 \pi}{2} \end{aligned}$	$\begin{aligned} & \text { 6. } \tan ^{2} \theta+\sec \theta=1, \frac{\pi}{2} \leq \theta<\pi \\ & \frac{2 \pi}{3} \end{aligned}$
Solve each equation for all values of θ if θ is measured in radians.	
$\begin{gathered} \text { 7. } \cos ^{2} \theta=\sin ^{2} \theta \\ \frac{\pi}{4}+k \frac{\pi}{2} \end{gathered}$	8. $\cot \theta=\cot ^{3} \theta$ $\frac{\pi}{2}+k \pi \text { and } \frac{\pi}{4}+k \frac{\pi}{2}$
9. $\sqrt{2} \sin ^{3} \theta=\sin ^{2} \theta$ $k \pi, \frac{\pi}{4}+2 k \pi, \text { and } \frac{3 \pi}{4}+2 k \pi$	$\begin{aligned} & \text { 10. } \cos ^{2} \theta \sin \theta=\sin \theta \\ & k \pi \end{aligned}$
$\begin{aligned} & \text { 11.2 } 2 \cos 2 \theta=1-2 \sin ^{2} \theta \\ & \frac{\pi}{4}+k \frac{\pi}{2} \end{aligned}$	$\begin{aligned} \text { 12. } \sec ^{2} \theta=2 \\ \frac{\pi}{4}+k \frac{\pi}{2} \end{aligned}$
Solve each equation for all values of θ if θ is measured in degrees.	
$\begin{gathered} \text { 13. } \sin ^{2} \theta \cos \theta=\cos \theta \\ 90^{\circ}+k \cdot 180^{\circ} \end{gathered}$	$\begin{aligned} & \text { 14. } \mathrm{css}^{2} \theta-3 \mathrm{csc} \theta+2=0 \\ & 30^{\circ}+k \cdot 360^{\circ}, 99^{\circ}+k \cdot 360^{\circ} \text {, and } \\ & 150^{\circ}+k \cdot 360^{\circ}+ \end{aligned}$
15. $\frac{3}{1+\cos \theta}=4(1-\cos \theta) \quad 180^{\circ}$ and $120^{\circ}+\boldsymbol{k} \cdot 180^{\circ}$	$\begin{aligned} & \text { 16. } \sqrt{2} \cos ^{2} \theta=\cos ^{2} \theta \\ & 90^{\circ}+k \cdot 180^{\circ} \text { and } 450^{\circ}+k \cdot 360^{\circ} \end{aligned}$
Solve each equation for all values of θ.	
17. $4 \sin ^{2} \theta=3 \frac{\pi}{3}+k \pi$ and $\frac{2 \pi}{3}+k \pi$, or $60^{\circ}+k \cdot 180^{\circ}$ and $120^{\circ}+k \cdot 180^{\circ}$	18. $4 \sin ^{2} \theta-1=0 \frac{\pi}{6}+k \pi$ and $\frac{5 \pi}{6}+k \pi$, or $30^{\circ}+k \cdot 180^{\circ}$ and $150^{\circ}+k \cdot 180^{\circ}$
$\begin{aligned} & \text { 19.2 } 2 \sin ^{2} \theta-3 \sin \theta=-1 \frac{\pi}{6}+\frac{\pi k}{3}, \\ & \text { or } 30^{\circ}+k \cdot 60^{\circ} \end{aligned}$	20. $\cos 2 \theta+\sin \theta-1=0 k \pi$ and $\frac{\pi}{6}+2 k \pi$, or $\boldsymbol{k} \cdot 180^{\circ}$ and $30^{\circ}+\boldsymbol{k} \cdot 360^{\circ}$
21. WAVES Waves are causing a buoy to float in a regular pattern in the water. The vertical position of the buoy can be described by the equation $h=2 \sin x$. Write an expression that describes the position of the buoy when its height is at its midline. $\boldsymbol{k \pi}$ or $\boldsymbol{k} \cdot 180^{\circ}$	
22. ELECTRICITY The electric current in a ce be described by the formula $a=3 \sin 240 t$ time in seconds. Write an expression that current. 0.75 kt	crtain circuit with an alternating current can t, where i is the current in amperes and t is the describes the times at which there is no

Reading to Learn

$$
\text { Mathematics, p. } 877
$$

ELL

Pre-Activity How can trigonometric equations be used to predict temperature? Read the introduction to Lesson $14-7$ at the top of page 799 in your textbok.
Describe how you could use a graphing calculator to determine the months in Describe how you could use a graphing calculator to determine the months in
which the average daily high temperature is above 80 8 F. Assume that $x=1$ represents January) Specify the praphing window that you would use. $y=11.56$ sin $(0.4515 x-1.641)+80.89$ (using radian mode)
and $y=80$ on the same screen. Use the window [1, 12] by and $y=80$ on the same screen. Use the window $[1,12]$ by
$[60,100]$ with Xscl $=1$ and Y scl $=4$. Note the x values for which the curve is above the horizontal line.

Reading the Lesson

1. Identify which equations have no solution. C, E, and G
$\begin{array}{lll}\text { A. } \sin \theta=1 & \text { B. } \tan \theta=0.001 & \text { C. } \sec \theta=\frac{1}{2} \\ \text { D. } \csc \theta=-3 & \text { E. } \cos \theta=1.01 & \text { F. } \cos \theta=-100\end{array}$
$\begin{array}{lll}\text { D. } \csc \theta=-3 & \text { E. } \cos \theta=1.01 & \text { F. } \cot \theta=-1000 \\ \text { G. } \cos \theta+2=-1 & \text { H. } \sec \theta-1.5=0 & \text { T. } \sin \theta-0\end{array}$
$\begin{array}{lll}\text { G. } \cos \theta+2=-1 & \text { H. } \sec \theta-1.5=0 \quad \text { I. } \sin \theta-0.009=0.99\end{array}$
2. Use a trigonometric identity to write the
equation. (Do not complete the solution.)
a. $\tan \theta=\cos ^{2} \theta+\sin ^{2} \theta, 0 \leq \theta<2 \pi \tan \theta=1$
b. $\sin ^{2} \theta-2 \sin \theta+1=0,0^{\circ} \leq \theta<360^{\circ}(\sin \theta-1)^{2}=0$
c. $\cos 2 \theta=\sin \theta, 0^{\circ} \leq \theta<360^{\circ} 1-2 \sin ^{2} \theta=\sin \theta$
d. $\sin 2 \theta=\cos \theta, 0 \leq \theta<2 \pi 2 \sin \theta \cos \theta=\cos \theta$
e. $2 \cos 2 \theta+3 \cos \theta=-1,0^{\circ} \leq \theta<360^{\circ} 2\left(2 \cos ^{2} \theta-1\right)+3 \cos \theta=-1$
f. $3 \tan ^{2} \theta+5 \tan \theta-2=0(3 \tan \theta-1)(\tan \theta+2)=0$

Helping You Remember
3. A good way to remember something is to explain it to someone else. How would you
 means showing that the two sides are equal for all values of the variab
for which the functions involved are defined This is done by transforming one or both sives until tefine same. experession is obtained on
both sides. Solving a trigonometric equation means finding the values of the variable for which both sides are equal. This process may require simplifying trigonometric expressions, but it also requires finding the
angles for which a trigonometric function has a particular value.

4 Assess

Open-Ended Assessment

Speaking Have students show you a trigonometric equation they solved and explain step by step how they performed each step of their computation.

Assessment Options

Quiz (Lesson 14-7) is available on p. 894 of the Chapter 14 Resource Masters.

Answer

46. Sample answer: Temperatures are cyclic and can be modeled by trigonometric functions. Answers should include the following information.

- A temperature could occur twice in a given period such as when the temperature rises in the spring and falls in autumn.

45. CRITICAL THINKING Computer games often use transformations to distort images on the screen. In one such transformation, an image is rotated counterclockwise using the equations $x^{\prime}=x \cos \theta-y \sin \theta$ and $y^{\prime}=x \sin \theta+y \cos \theta$. If the coordinates of an image point are $(3,4)$ after a 60° rotation, what are the coordinates of the preimage point? $(4.964,-0.598)$
46.

Answer the question that was posed at the beginning of the lesson. See margin.
How can trigonometric equations be used to predict temperature?
Include the following in your answer:

- an explanation of why the sine function can be used to model the average daily temperature, and
- an explanation of why, during one period, you might find a specific average temperature twice.

Standardized
Test Practice
(A) (B) C ©
47. Which of the following is not a possible solution of $0=\sin \theta+\cos \theta \tan ^{2} \theta$? \mathbf{D}
(A) $\frac{3 \pi}{4}$
(B) $\frac{7 \pi}{4}$
(C) 2π
(D) $\frac{5 \pi}{2}$
48. The graph of the equation $y=2 \cos \theta$ is shown. Which is a solution for $2 \cos \theta=1$? B
(A) $\frac{8 \pi}{3}$
(B) $\frac{13 \pi}{3}$
(C) $\frac{10 \pi}{3}$
(D) $\frac{15 \pi}{3}$

Maintain Your Skills

Mixed Review Find the exact value of $\sin 2 \theta, \cos 2 \theta, \sin \frac{\theta}{2}$, and $\cos \frac{\theta}{2}$ for each of the following.
49. $\frac{24}{25}, \frac{7}{25}, \frac{\sqrt{10}}{10}$, $3 \sqrt{10}$
49. $\sin \theta=\frac{3}{5} ; 0^{\circ}<\theta<90^{\circ} \quad$ 50. $\cos \theta=\frac{1}{2} ; 0^{\circ}<\theta<90^{\circ}$
51. $\cos \theta=\frac{5}{6} ; 0^{\circ}<\theta<90^{\circ}$
52. $\sin \theta=\frac{4}{5} ; 0^{\circ}<\theta<90^{\circ}$
50. $\frac{\sqrt{3}}{2},-\frac{1}{2}, \frac{1}{2}, \frac{\sqrt{3}}{2}$
51. $\frac{5 \sqrt{11}}{18}, \frac{7}{18}, \frac{\sqrt{3}}{6}$,
$\sqrt{33}$
Find the exact value of each expression. (Lesson 14-5)
53. $\sin 240^{\circ}-\frac{\sqrt{3}}{2}$
54. $\cos 315^{\circ} \frac{\sqrt{2}}{2}$
55. Solve $\triangle A B C$. Round measures of sides and angles to the nearest tenth. (Lesson 13-4) $b=11.0, c=12.2, m \angle C=78$

52. $\frac{24}{25},-\frac{7}{25}, \frac{\sqrt{5}}{5}$, $\frac{2 \sqrt{5}}{5}$

Web Q uest internet Project

Trig Class Angles for Lessons in Lit

It is time to complete your project. Use the information and data you have gathered about the applications of trigonometry to prepare a poster, report, or Web page. Be sure to include graphs, tables, or diagrams in the presentation.
www.algebra2.com/webquest

Vocabulary and Concept Check

amplitude (p. 763)

double-angle formula (p. 791)
half-angle formula (p. 793)

midline (p. 771)

phase shift (p. 769)
trigonometric equation (p. 799)

Choose the correct letter that best matches each phrase.

1. horizontal translation of a trigonometric function h
2. a reference line about which a graph oscillates \mathbf{b}
3. vertical translation of a trigonometric function d
4. the formula used to find $\cos 22 \frac{1}{2}$ 。 f
5. $\sin 2 \theta=2 \sin \theta \cos \theta$ e
6. a measure of how long it takes for a graph to repeat itself \mathbf{C}
7. $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta \mathrm{g}$
8. the absolute value of half the difference between the maximum and minimum values of a periodic function a
trigonometric identity (p. 777)
vertical shift (p. 771)

> a. amplitude
> b. midline
> c. period
> d. vertical shift
> e. double-angle formula
> f. half-angle formula
> g. difference of angles formula
> h. phase shift

Lesson-by-Lesson Review

14-1 Graphing Trigonometric Functions

See pages
 762-768.

Concept Summary

- For trigonometric functions of the form $y=a \sin b \theta$ and $y=a \cos b \theta$, the amplitude is $|a|$, and the period is $\frac{360^{\circ}}{|b|}$ or $\frac{2 \pi}{|b|}$.
- The period of $y=a \tan b \theta$ is $\frac{180^{\circ}}{|b|}$ or $\frac{\pi}{|b|}$.

Example Find the amplitude and period of $y=2 \cos 4 \theta$.

 Then graph the function.The amplitude is $|2|$ or 2 .
The period is $\frac{360^{\circ}}{|4|}$ or 90°.
Use the amplitude and period to graph the function.

Exercises Find the amplitude, if it exists, and period of each function. Then graph each function. See Example 1 on page 765. 9-14. See pp. 811A-811N.
9. $y=-\frac{1}{2} \cos \theta$
10. $y=4 \sin 2 \theta$
11. $y=\sin \frac{1}{2} \theta$
12. $y=5 \sec \theta$
13. $y=\frac{1}{2} \csc \frac{2}{3} \theta$
14. $y=\tan 4 \theta$

FOLDABLES

Study Organizer

For more information about Foldables, see Teaching Mathematics with Foldables.

Have students look through the chapter to make sure they have included notes and examples of graphs for each lesson in this chapter in their Foldable.
Encourage students to refer to their Foldables while completing the Study Guide and Review and to use them in preparing for the Chapter Test.

Vocabulary and
 Concept Check

- This alphabetical list of vocabulary terms in Chapter 14 includes a page reference where each term was introduced.
- Assessment A vocabulary test/review for Chapter 14 is available on p. 892 of the Chapter 14 Resource Masters.

Lesson-by-Lesson Review

For each lesson,

- the main ideas are summarized,
- additional examples review concepts, and
- practice exercises are provided.

Vocabulary PuzzleMaker

ELL The Vocabulary PuzzleMaker software improves students' mathematics vocabulary using four puzzle formatscrossword, scramble, word search using a word list, and word search using clues. Students can work on a computer screen or from a printed handout.

MindJogger Videoquizzes

ab

ELL MindJogger Videoquizzes provide an alternative review of concepts presented in this chapter. Students work in teams in a game show format to gain points for correct answers. The questions are presented in three rounds.
Round 1 Concepts (5 questions)
Round 2 Skills (4 questions)
Round 3 Problem Solving (4 questions)

Answers

15. $-1, \frac{1}{2}, 180^{\circ}, 60^{\circ}$

16. 3, does not exist, $720^{\circ}, 90^{\circ}$

17.1, does not exist, $4 \pi,-\frac{\pi}{4}$

17. $-2, \frac{1}{3}, 6 \pi, \frac{2 \pi}{3}$

Chapter 14 Study Guide and Review

14-2 Translations of Trigonometric Graphs

$\begin{array}{l:c}\text { See pages } & \text { Concept Summary } \\ 769-776 . & \end{array}$

- For trigonometric functions of the form $y=a \sin b(\theta-h), y=a \cos (\theta-h)$, and $y=a \tan (\theta-h)$, the phase shift is to the right when $h>0$ and to the left when $h<0$.
- For trigonometric functions of the form $y=a \sin b(\theta-h)+k, y=a \cos (\theta-h)+k$, and $y=a \tan (\theta-h)+k$, the vertical shift is up when $k>0$ and down when $k<0$.

Example State the vertical shift, amplitude, period, and phase shift of $y=3 \sin \left[2\left(\theta-\frac{\pi}{2}\right)\right]-2$. Then graph the function.
Identify the values of k, a, b, and h.
$k=-2$, so the vertical shift is -2 .
$a=3$, so the amplitude is 3 .
$b=2$, so the period is $\frac{2 \pi}{|2|}$ or π.
$h=\frac{\pi}{2}$, so the phase shift is $\frac{\pi}{2}$ to the right.

Exercises State the vertical shift, amplitude, period, and phase shift of each function. Then graph the function. See Example 3 on page 772. 15-18. See margin.
15. $y=\frac{1}{2} \sin \left[2\left(\theta-60^{\circ}\right)\right]-1$
16. $y=2 \tan \left[\frac{1}{4}\left(\theta-90^{\circ}\right)\right]+3$
17. $y=3 \sec \left[\frac{1}{2}\left(\theta+\frac{\pi}{4}\right)\right]+1$
18. $y=\frac{1}{3} \cos \left[\frac{1}{3}\left(\theta-\frac{2 \pi}{3}\right)\right]-2$

14-3 Trigonometric Identities

See pages
777-781.

Concept Summary

- Quotient Identities:
$\tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}$
- Reciprocal Identities:
$\csc \theta=\frac{1}{\sin \theta}, \sec \theta=\frac{1}{\cos \theta}, \cot \theta=\frac{1}{\tan \theta}$
- Pythagorean Identities: $\cos ^{2} \theta+\sin ^{2} \theta=1, \tan ^{2} \theta+1=\sec ^{2} \theta, \cot ^{2} \theta+1=\sec ^{2} \theta$

Example Simplify $\sin \theta \cot \theta \cos \theta$.

$\begin{aligned} \sin \theta \cot \theta \cos \theta & =\frac{\sin \theta}{1} \cdot \frac{\cos \theta}{\sin \theta} \cdot \frac{\cos \theta}{1} & & \cot \theta=\frac{\cos \theta}{\sin \theta} \\ & =\cos ^{2} \theta & & \text { Multiply. }\end{aligned}$

Exercises Find the value of each expression. See Example 1 on page 778.
19. $\cot \theta$, if $\csc \theta=-\frac{5}{3} ; 270^{\circ}<\theta<360^{\circ}-\frac{4}{3} 20$. $\sec \theta$, if $\sin \theta=\frac{1}{2} ; 0^{\circ} \leq \theta<90^{\circ} \frac{2 \sqrt{3}}{3}$

Simplify each expression. See Example 2 on page 778. 21. $\sin ^{2} \theta$ 22. $\cot \theta \quad$ 23. $\sec \theta$
21. $\sin \theta \csc \theta-\cos ^{2} \theta$
22. $\cos ^{2} \theta \sec \theta \csc \theta$
23. $\cos \theta+\sin \theta \tan \theta$

14-4 Verifying Trigonometric Identities

782-785

Concept Summary

- Use the basic trigonometric identities to transform one or both sides of a trigonometric equation into the same form.

Example Verify that $\tan \theta+\cot \theta=\sec \theta \csc \theta$.

$$
\begin{aligned}
& \tan \theta+\cot \theta \stackrel{?}{=} \sec \theta \csc \theta \quad \text { Original equation } \\
& \frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta} \stackrel{?}{=} \sec \theta \csc \theta \quad \tan \theta=\frac{\sin \theta}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta} \\
& \frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta} \stackrel{?}{=} \sec \theta \csc \theta \quad \text { Rewrite using the LCD, } \cos \theta \sin \theta \text {. } \\
& \frac{1}{\cos \theta \sin \theta} \stackrel{?}{=} \sec \theta \csc \theta \quad \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta} \stackrel{?}{=} \sec \theta \csc \theta \quad \text { Rewrite as the product of two expressions. } \\
& \sec \theta \csc \theta=\sec \theta \csc \theta \quad \frac{1}{\cos \theta}=\sec \theta, \frac{1}{\sin \theta}=\csc \theta
\end{aligned}
$$

Exercises Verify that each of the following is an identity. See Examples 1-3 on pages 782-783. 24-27. See margin.
24. $\frac{\sin \theta}{\tan \theta}+\frac{\cos \theta}{\cot \theta}=\cos \theta+\sin \theta$
25. $\frac{\sin \theta}{1-\cos \theta}=\csc \theta+\cot \theta$
26. $\cot ^{2} \theta \sec ^{2} \theta=1+\cot ^{2} \theta$
27. $\sec \theta(\sec \theta-\cos \theta)=\tan ^{2} \theta$

14-5 Sum and Difference of Angles Formulas

See pages

 786-790.
Concept Summary

$$
\begin{array}{ll}
\text { For all values of } \alpha \text { and } \beta: & \cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
& \sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta
\end{array}
$$

Example
Find the exact value of $\sin 195^{\circ}$.

$$
\begin{aligned}
\sin 195^{\circ} & =\sin \left(150^{\circ}+45^{\circ}\right) & & 195^{\circ}=150^{\circ}+45^{\circ} \\
& =\sin 150^{\circ} \cos 45^{\circ}+\cos 150^{\circ} \sin 45^{\circ} & & \alpha=150^{\circ}, \beta=45^{\circ} \\
& =\left(\frac{1}{2}\right)\left(\frac{\sqrt{2}}{2}\right)+\left(-\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{2}}{2}\right) & & \text { Evaluate each expression. } \\
& =\frac{\sqrt{2}-\sqrt{6}}{4} & & \text { Simplify. }
\end{aligned}
$$

Exercises Find the exact value of each expression. See Example 1 on page 787.
31.
28. $\cos 15^{\circ} \frac{\sqrt{6}+\sqrt{2}}{4}$
31. $\sin 195^{\circ}$
29. $\cos 285^{\circ} \sqrt{6}-\sqrt{2}$
30. $\sin 150^{\circ} \frac{1}{2}$
32. $\cos \left(-210^{\circ}\right)$
$-\frac{\sqrt[4]{3}}{2}$
33. $\sin \left(-105^{\circ}\right) \frac{-\sqrt{6}-\sqrt{2}}{4}$

Verify that each of the following is an identity. See Example 3 on page 788.

34-37. See

pp. 811A-811N.
35. $\sin \left(30^{\circ}-\theta\right)=\cos \left(60^{\circ}+\theta\right)$
36. $\sin (\theta+\pi)=-\sin \theta$
37. $-\cos \theta=\cos (\pi+\theta)$

Answers

25. $\frac{\sin \theta}{1-\cos \theta} \stackrel{?}{=} \csc \theta+\cot \theta$
$\frac{\sin \theta}{1-\cos \theta} \stackrel{?}{=} \frac{1}{\sin \theta}+\frac{\cos \theta}{\sin \theta}$
$\frac{\sin \theta}{1-\cos \theta} \stackrel{?}{=} \frac{1+\cos \theta}{\sin \theta}$
$\frac{\sin \theta}{1-\cos \theta} \stackrel{?}{=} \frac{1+\cos \theta}{\sin \theta} \cdot \frac{1-\cos \theta}{1-\cos \theta}$
$\frac{\sin \theta}{1-\cos \theta} \stackrel{?}{=} \frac{1-\cos ^{2} \theta}{\sin \theta(1-\cos \theta)}$
$\frac{\sin \theta}{1-\cos \theta} \stackrel{?}{\underline{?}} \frac{\sin ^{2} \theta}{\sin \theta(1-\cos \theta)}$
$\frac{\sin \theta}{1-\cos \theta}=\frac{\sin \theta}{1-\cos \theta}$
26. $\cot ^{2} \theta \sec ^{2} \theta \stackrel{?}{\underline{?}} 1+\cot ^{2} \theta$

$$
\begin{aligned}
& \frac{\cos ^{2} \theta}{\sin ^{2} \theta} \cdot \frac{1}{\cos ^{2} \theta} \stackrel{?}{=} 1+\cot ^{2} \theta \\
& \frac{1}{\sin ^{2} \theta} \stackrel{?}{=} 1+\cot ^{2} \theta \\
& \csc ^{2} \theta \stackrel{?}{=} 1+\cot ^{2} \theta \\
& 1+\cot ^{2} \theta=1+\cot ^{2} \theta
\end{aligned}
$$

27. $\sec \theta(\sec \theta-\cos \theta) \stackrel{?}{=} \tan ^{2} \theta$ $\frac{1}{\cos \theta}\left(\frac{1}{\cos \theta}-\cos \theta\right) \stackrel{?}{=} \tan ^{2} \theta$ $\frac{1}{\cos ^{2} \theta}-1 \stackrel{?}{\underline{?}} \tan ^{2} \theta$ $\sec ^{2} \theta-1 \stackrel{?}{\underline{?}} \tan ^{2} \theta$ $\tan ^{2} \theta=\tan ^{2} \theta$

Answer

24.

$$
\begin{aligned}
& \frac{\sin \theta}{\tan \theta}+\frac{\cos \theta}{\cot \theta} \stackrel{?}{=} \cos \theta+\sin \theta \\
& \frac{\sin \theta}{\frac{\sin \theta}{\cos \theta}}+\frac{\cos \theta}{\frac{\cos \theta}{\sin \theta}} \stackrel{?}{=} \cos \theta+\sin \theta \\
& \sin \theta \cdot \frac{\cos \theta}{\sin \theta}+\cos \theta \cdot \frac{\sin \theta}{\cos \theta} \stackrel{?}{=} \cos \theta+\sin \theta \\
& \cos \theta+\sin \theta=\cos \theta+\sin \theta
\end{aligned}
$$

Answers

38. $\frac{\sqrt{15}}{8}, \frac{7}{8}, \frac{\sqrt{8-2 \sqrt{15}}}{4}$, $\frac{\sqrt{8+2 \sqrt{15}}}{4}$
39. $\frac{120}{169}, \frac{119}{169}, \frac{\sqrt{26}}{26},-\frac{5 \sqrt{26}}{26}$
40. $-\frac{20 \sqrt{66}}{289},-\frac{239}{289}, \frac{\sqrt{187}}{17}, \frac{\sqrt{102}}{17}$
41. $-\frac{120}{169}, \frac{119}{169}, \frac{\sqrt{26}}{26},-\frac{5 \sqrt{26}}{26}$

Answers (p. 809)
$5.5, \frac{2}{3}, 180^{\circ}$, no phase shift

6. $-1,4,720^{\circ},-30^{\circ}$

14-6 Double-Angle and Half-Angle Formulas

See pages

791-797.

Concept Summary

- Double-angle formulas: $\sin 2 \theta=2 \sin \theta \cos \theta, \cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$, $\cos 2 \theta=1-2 \sin ^{2} \theta, \cos 2 \theta=2 \cos ^{2} \theta-1$
- Half-angle formulas: $\sin \frac{\alpha}{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}}, \cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}}$

Example Verify that $\csc 2 \theta=\frac{\sec \theta}{2 \sin \theta}$ is an identity.

$\csc 2 \theta \stackrel{?}{=} \frac{\sec \theta}{2 \sin \theta}$	Original equation
$\frac{1}{\sin 2 \theta} \stackrel{?}{=} \frac{\frac{1}{\cos \theta}}{2 \sin \theta}$	$\csc \theta=\frac{1}{\sin \theta}, \sec \theta=\frac{1}{\cos \theta}$
$\frac{1}{\sin 2 \theta} \stackrel{?}{=} \frac{1}{2 \sin \theta \cos \theta}$	Simplify the complex fraction.
$\frac{1}{\sin 2 \theta}=\frac{1}{\sin 2 \theta}$	$2 \sin \theta \cos \theta=\sin 2 \theta$

Exercises Find the exact values of $\sin 2 \theta, \cos 2 \theta, \sin \frac{\theta}{2}$, and $\cos \frac{\theta}{2}$ for each of the following. See Examples 1 and 2 on pages 792 and 793. 38-41. See margin.
38. $\sin \theta=\frac{1}{4} ; 0^{\circ}<\theta<90^{\circ}$
39. $\sin \theta=-\frac{5}{13} ; 180^{\circ}<\theta<270^{\circ}$
40. $\cos \theta=-\frac{5}{17} ; 90^{\circ}<\theta<180^{\circ}$
41. $\cos \theta=\frac{12}{13} ; 270^{\circ}<\theta<360^{\circ}$

14-7 Solving Trigonometric Equations

See pages Concept Summary
 799-804.

- Solve trigonometric equations by factoring or by using trigonometric identities.

Example Solve $\sin 2 \theta+\sin \theta=0$ if $0^{\circ} \leq \theta<360^{\circ}$.

$$
\sin 2 \theta+\sin \theta=0 \quad \text { Original equation }
$$

$2 \sin \theta \cos \theta+\sin \theta=0 \quad \sin 2 \theta=2 \sin \theta \cos \theta$
$\sin \theta(2 \cos \theta+1)=0 \quad$ Factor.

$$
\begin{aligned}
\sin \theta & =0 & \text { or } & 2 \cos \theta+1 & =0 \\
\theta & =0^{\circ} \text { or } 180^{\circ} & & \theta & =120^{\circ} \text { or } 240^{\circ}
\end{aligned}
$$

Exercises Find all solutions of each equation for the interval $0^{\circ} \leq \theta<360^{\circ}$.
See Example 1 on page 799.
42. $2 \sin 2 \theta=15^{\circ}, 75^{\circ}, 195^{\circ}, 255^{\circ} \quad$ 43. $2 \cos ^{2} \theta+\sin ^{2} \theta=2 \cos \theta 0^{\circ}$

Solve each equation for all values of θ if θ is measured in radians.

14. Practice Test

Vocabulary and Concepts

Choose the correct term to complete each sentence.

1. The (period, phase shift) of $y=3 \sin 2\left(\theta-60^{\circ}\right)+2$ is 120°.
2. A midline is used with a (phase shift, vertical shift) of a trigonometric function.
3. The amplitude of $y=\frac{1}{3} \cos [3(\theta+4)]-1$ is $\left(\frac{1}{3}, 3\right)$.
4. The (cosine, cosecant) has no amplitude.

Skills and Applications

State the vertical shift, amplitude, period, and phase shift of each function. Then graph the function. 5-6. See margin.
5. $y=\frac{2}{3} \sin 2 \theta+5$
6. $y=4 \cos \left[\frac{1}{2}\left(\theta+30^{\circ}\right)\right]-1$

Find the value of each expression.
7. $\tan \theta$, if $\sin \theta=\frac{1}{2} ; 90^{\circ}<\theta<180^{\circ}-\frac{\sqrt{3}}{3}$
8. $\sec \theta$, if $\cot \theta=\frac{3}{4} ; 180^{\circ}<\theta<270^{\circ}-\frac{5}{3}$

Verify that each of the following is an identity. 9-12. See pp. 811A-811N.
9. $(\sin \theta-\cos \theta)^{2}=1-\sin 2 \theta$
10. $\frac{\cos \theta}{1-\sin ^{2} \theta}=\sec \theta$
11. $\frac{\sec \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta}=\cot \theta$
12. $\frac{1+\tan ^{2} \theta}{\cos ^{2} \theta}=\sec ^{4} \theta$

Find the exact value of each expression. 13. $\frac{\sqrt{6}-\sqrt{2}}{4} \quad$ 14. $\frac{\sqrt{2}-\sqrt{6}}{4} \quad$ 15. $\frac{\sqrt{2}}{2}$
13. $\cos 285^{\circ}$
16. $\cos 480^{\circ}-\frac{1}{2}$
14. $\sin 345^{\circ}$
16. $\cos 480^{\circ}-\frac{1}{2} \quad$ 17. $\cos 67.5^{\circ} \frac{2}{2}$
Solve each equation for all values of θ if θ is measured in degrees.
15. $\sin \left(-225^{\circ}\right)$

Solve each equation for all values of θ if θ is measured in degrees. $\quad 0^{\circ}+k \cdot 360^{\circ}, 120^{\circ}+k \cdot 360^{\circ}$,
19. $\sec \theta=1+\tan \theta 0^{\circ}+k \cdot 360^{\circ}$
20. $\cos 2 \theta=\cos \theta 240^{\circ}+k \cdot 360^{\circ}$
21. $\cos 2 \theta+\sin \theta=1 \begin{aligned} & 0^{\circ}+k \cdot 180^{\circ}, 30^{\circ} \\ & 150^{\circ}+k \cdot 360^{\circ}\end{aligned}$
,

GOLF For Exercises 23 and 24, use the following information.
A golf ball is hit with an initial velocity of 100 feet per second. The distance the ball
travels is found by the formula $d=\frac{v_{0}{ }^{2}}{g} \sin 2 \theta$, where v_{0} is the initial velocity, g is the
acceleration due to gravity, 32 feet per second squared, and θ is the measurement of
the angle that the path of the ball makes with the ground.
23. Find the distance that the ball travels if the angle between the path of the ball and the ground measures $60^{\circ} .270 .6 \mathrm{ft}$
24. If a ball travels 312.5 feet, what was the angle the path of the ball made with the ground to the nearest degree? 45°
25. STANDARDIZED TEST PRACTICE Identify the equation of the graphed function. B
(A) $y=3 \cos 2 \theta$
(B) $y=\frac{1}{3} \cos 2 \theta$
(C) $y=3 \cos \frac{1}{2} \theta$
(D) $y=\frac{1}{3} \cos \frac{1}{2} \theta$

wwww.algebra2.com/chapter_test
Chapter 14 Practice Test 809

Portfolio Suggestion

Introduction In mathematics, trigonometric functions can be used to model real-world problems.
Ask Students Find a real-world problem modeled in this chapter that interests you and show how you solved it. Explain how the function models the real-world problem and what could be gained by understanding the real-world problem better. Place your work in your portfolio.

Assessment Options
Vocabulary Test A vocabulary test/review for Chapter 14 can be found on p. 892 of the Chapter 14 Resource Masters.

Chapter Tests There are six Chapter 14 Tests and an Open-Ended Assessment task available in the Chapter 14 Resource Masters.

Chapter 14 Tests			
Form	Type	Level	Pages
1	MC	basic	$879-880$
2A	MC	average	$881-882$
2B	MC	average	$883-884$
2C	FR	average	$885-886$
2D	FR	average	$887-888$
3	FR	advanced	$889-890$

MC = multiple-choice questions
FR = free-response questions

Open-Ended Assessment

Performance tasks for Chapter 14 can be found on p. 891 of the Chapter 14 Resource Masters. A sample scoring rubric for these tasks appears on p. A28.
Unit 5 Test A unit test/review can be found on pp. 899-900 of the Chapter 14 Resource Masters.

End-of-Year Tests A Second Semester Test for Chapters 8-14 and a Final Test for Chapters 1-14 can be found on pp. 901-910 of the Chapter 14 Resource Masters.

TestCheck and Worksheet Builder

This networkable software has three modules for assessment.

- Worksheet Builder to make worksheets and tests.
- Student Module to take tests on-screen.
- Management System to keep student records.

14. Standardized Test Practice

These two pages contain practice questions in the various formats that can be found on the most frequently given standardized tests.

A practice answer sheet for these two pages can be found on p. A1 of the Chapter 14 Resource Masters.

Part 3 quantiafive Comparison
select the best answer from the choices given and fill in the corresponding oval.

Additional Practice

See pp. 897-898 in the Chapter 14 Resource Masters for additional standardized test practice.

Part 1 Multiple Choice

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. Which of the following is not equal to 3.5×10^{-2} ? D
(A) $\frac{35}{1000}$
(B) 0.035
(C) $\frac{7}{200}$
(D) $(0.5)(0.007)$
2. The sum of five consecutive odd integers is 55 . What is the sum of the greatest and least of these integers? B
(A) 11
(B) 22
(C) 26
(D) 30
3. If 8 bananas cost a cents and 6 oranges cost b cents, what is the cost of 2 bananas and 2 oranges in terms of a and b ? D
(A) $\frac{a b}{12}$
(B) $3 a+\frac{b}{3}$
(C) $3 a+4 \mathrm{~b}$
(D) $\frac{3 a+4 b}{12}$
4. A bag contains 16 peppermint candies, 10 butterscotch candies, and 8 cherry candies. Emma chooses one piece at random, puts it in her pocket, and then repeats the process. If she has chosen 3 peppermint candies, 2 butterscotch candies, and 1 cherry candy, what is the probability that the next piece of candy she chooses will be cherry? C
(A) $\frac{7}{34}$
(B) $\frac{8}{34}$
(C) $\frac{1}{4}$
(D) $\frac{3}{4}$
5. What is the value of $\frac{\sin \frac{\pi}{6}}{\cos \frac{2 \pi}{3}}$? B

$$
\text { (A) }-\sqrt{3} \text { (B) }-1 \quad \text { (C) }-\frac{\sqrt{3}}{3} \text { (D) } 1
$$

6. In right triangle $Q R S$, what is the value of $\tan R$? D

(A) $\frac{7}{25}$
(B) $\frac{7}{24}$
(C) $\frac{25}{24}$
(D) $\frac{24}{7}$
7. What is the value of $\sin \left(\cos ^{-1} \frac{1}{3}\right)$? \mathbf{B}
(A) $\frac{2}{3}$
(B) $\frac{2 \sqrt{2}}{3}$
(C) $\frac{\sqrt{2}}{3}$
(D) $\frac{\sqrt{6}}{3}$
8. What is the least positive value for x where $y=\sin 2 x$ reaches its minimum? C
(A) $\frac{\pi}{2}$
(B) π
(C) $\frac{3 \pi}{4}$
(D) $\frac{3 \pi}{2}$
9. Which of the following is equivalent to $\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sec ^{2} \theta}$? \mathbf{A}
(A) $\cos ^{2} \theta$
(B) $\sin ^{2} \theta$
(C) $\tan ^{2} \theta$
(D) $\sin ^{2} \theta+1$
10. If $\cos \theta=-\frac{1}{2}$ and θ is in Quadrant II, what is the value of $\sin 2 \theta$? D
(A) $\frac{1}{2}$
(B) $-\frac{1}{2}$
(C) $\frac{\sqrt{3}}{2}$
(D) $-\frac{\sqrt{3}}{2}$

TestCheck and
 Worksheet Builder

Special banks of standardized test questions similar to those on the SAT, ACT, TIMSS 8, NAEP 8, and Algebra 1 End-of-Course tests can be found on this CD-ROM.

Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.
11. If k is a positive integer, and $7 k+3$ equals a prime number that is less than 50 , then what is one possible value of $7 k+3$? 17 or 31
12. It costs $\$ 8$ to make a book. The selling price will include an additional 200%. What will be the selling price? \$24
13. The mean of seven numbers is 0 . The sum of three of the numbers is -9 . What is the sum of the remaining four numbers? 9
14. If $4 a-6 b=0$ and $c=9 b$, what is the ratio of a to c ? $1 / 6$
15. What is the value of x if $\frac{3^{3} \cdot 3}{\sqrt{81}}=3^{x}$? 2
16. The ages of children at a party are $6,7,6,6$, $7,7,8,6,7,8,9,7$, and 7 . Let N represent the median of their ages and m represent the mode. What is $N-m$? 0
17. In the figure below, $C E F G$ is a square, $A B D$ is a right triangle, D is the midpoint of side $C E$, H is the midpoint of side $C G$, and C is the midpoint of side $B D . B C D E$ is a line segment, and $A H D$ is a line segment. If the measure of the area of square CEFG is 16, what is the measure of the area of quadrilateral $A B C H$? 6

The

Princeton
Test-Taking Tip
Always write down your calculations on scrap paper or in the test booklet, even if you think you can do the calculations in your head. Writing down your calculations will help you avoid making simple mistakes.
wwww.algebra2.com/standardized_test
18. A line with a slope of $\frac{3}{8}$ passes through points $(6,4 n)$ and $(0, n)$. What is the value of n ? 3/4
19. If $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$, what is the value of $\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ} ? 1$

Part 3 Quantitive Comparison

Compare the quantity in Column A and the quantity in Column B. Then determine whether:
(A) the quantity in Column A is greater,
(B) the quantity in Column B is greater,
(C) the two quantities are equal, or
(D) the relationship cannot be determined from the information given.
20.

Column A	Column B
the length of a diagonal of a square whose area is 100	the length of a diagonal of a 6×8 rectangle

21. $\{c\rangle=c^{2}+\frac{2}{c}-2$

B

22. $w=2 x, x=\frac{1}{2} w$

C | w | x |
| :--- | :--- |

23.

$(a+b)^{2}=a^{2}+b^{2}$
C

$(a-b)^{2}$	$a^{2}+b^{2}$

24.

B

Pages 767-768, Lesson 14-1

4. amplitude: $\frac{1}{2}$; period 360° or 2π

5. amplitude: 2 ; period: 360° or 2π

6. amplitude: $\frac{2}{3}$; period: 360° or 2π

7. amplitude: does not exist; period: 180° or π

8. amplitude: does not exist; period: 180° or π

9. amplitude: 4; period: 180° or π

10. amplitude: 4 ; period: 480° or $\frac{8 \pi}{3}$

11. amplitude: does not exist; period: 120° or $\frac{2 \pi}{3}$

12. amplitude: $\frac{3}{4}$; period: 720° or 4π

13. amplitude: 3 ; period: 360° or 2π

14. amplitude: 5 ; period: 360° or 2π

15. amplitude: does not exist; period: 360° or 2π

16. amplitude: does not exist; period: 180° or π

17. amplitude: $\frac{1}{5}$; period: 360° or 2π

18. amplitude: does not exist; period: 360° or 2π

19. amplitude: 1 ; period 90° or $\frac{\pi}{2}$

20. amplitude: 1; period: 180° or π

21. amplitude: does not exist; period: 120° or $\frac{2 \pi}{3}$

22. amplitude: does not exist; period: 36° or $\frac{\pi}{5}$

23. amplitude: does not exist; period: 540° or 3π

24. amplitude: does not exist; period: 360° or 2π

25. amplitude: 6 ; period: 540° or 3π

26. amplitude: 3 ; period: 720° or 4π

27. amplitude: does not exist; period: 720° or 4π

28. amplitude: does not exist; period: 90° or $\frac{\pi}{2}$

29. amplitude: does not exist; period: 180° or π

30. amplitude: $\frac{8}{9}$; period: 600° or $\frac{10 \pi}{3}$

31.

34.

38.

53.

55.

54.

56.

Page 769, Lesson 14-2 Graphing Calculator Investigation
4.

[$-360,360$] scl: 90 by $[-5,5]$ scl: 1

Pages 774-776, Lesson 14-2
4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

33. 1; 2; $120^{\circ} ; 45^{\circ}$

34. $-5 ; 4 ; 180^{\circ} ;-30^{\circ}$

35. -3.5 ; does not exist; $720^{\circ} ;-60^{\circ}$

36. 0.75 ; does not exist; $270^{\circ} ; 90^{\circ}$

37. $1 ; \frac{1}{4} ; 180^{\circ} ; 75^{\circ}$

38. -4 ; does not exist; $30^{\circ} ;-22.5^{\circ}$

39. $3 ; 2 ; \pi ;-\frac{\pi}{4}$

40. 4; does not exist; $6 \pi ;-\frac{2 \pi}{3}$

41.

The graphs are identical.
42.

49. Sample answer: You can use changes in amplitude and period along with vertical and horizontal shifts to show an animal population's starting point and display changes to that population over a period of time.
Answers should include the following information.

- The equation shows a rabbit population that begins at 1200, increases to a maximum of 1450 then decreases to a minimum of 950 over a period of 4 years.
- Relative to $y=a \cos b x, y=a \cos b x+k$ would have a vertical shift of k units, while $y=a \cos [b(x-h)]$ has a horizontal shift of h units.

Page 781, Lesson 14-3

50. amplitude: does not exist; period: 180° or π

51. amplitude: 1 ; period: 120° or $\frac{2 \pi}{3}$

52. amplitude: does not exist; period: 36° or $\frac{\pi}{5}$

Page 781, Practice Quiz 1
1.

2.

Pages 784-785, Lesson 14-4

1. $\sin \theta \tan \theta \stackrel{?}{=} \sec \theta-\cos \theta$
$\sin \theta \tan \theta \stackrel{?}{=} \frac{1}{\cos \theta}-\cos \theta \quad \sec \theta=\frac{1}{\cos \theta}$
$\sin \theta \tan \theta \stackrel{?}{=} \frac{1}{\cos \theta}-\frac{\cos ^{2} \theta}{\cos \theta} \quad$ Multiply by the LCD, $\cos \theta$.
$\sin \theta \tan \theta \stackrel{?}{=} \frac{1-\cos ^{2} \theta}{\cos \theta} \quad$ Subtract.
$\sin \theta \tan \theta \stackrel{?}{=} \frac{\sin ^{2} \theta}{\cos \theta} \quad 1-\cos ^{2} \theta=\sin ^{2} \theta$
$\sin \theta \tan \theta \stackrel{?}{=} \sin \theta \cdot \frac{\sin \theta}{\cos \theta} \quad$ Factor.
$\sin \theta \tan \theta=\sin \theta \tan \theta \quad \frac{\sin \theta}{\cos \theta}=\tan \theta$
2. Sample answer: Use various identities, multiply or divide terms to form an equivalent expression, factor, and simplify rational expressions.
3. Sample answer: $\sin ^{2} \theta=1+\cos ^{2} \theta$; it is not an identity because $\sin ^{2} \theta=1-\cos ^{2} \theta$.
4. $\tan \theta(\cot \theta+\tan \theta) \stackrel{?}{=} \sec ^{2} \theta$

$$
\begin{aligned}
1+\tan ^{2} \theta & \stackrel{?}{=} \sec ^{2} \theta \\
\sec ^{2} \theta & =\sec ^{2} \theta
\end{aligned}
$$

5. $\tan ^{2} \theta \cos ^{2} \theta \stackrel{?}{=} 1-\cos ^{2} \theta$
$\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \cos ^{2} \theta \stackrel{?}{=} \sin ^{2} \theta$

$$
\sin ^{2} \theta=\sin ^{2} \theta
$$

6. $\frac{\cos ^{2} \theta}{1-\sin \theta} \stackrel{?}{=} 1+\sin \theta$

$$
\frac{1-\sin ^{2} \theta}{1-\sin \theta} \stackrel{?}{=} 1+\sin \theta
$$

$$
\frac{(1-\sin \theta)(1+\sin \theta)}{1-\sin \theta} \stackrel{?}{=} 1+\sin \theta
$$

$$
1+\sin \theta=1+\sin \theta
$$

7. $\frac{1+\tan ^{2} \theta}{\csc ^{2} \theta} \stackrel{?}{=} \tan ^{2} \theta$

$$
\frac{\sec ^{2} \theta}{\csc ^{2} \theta} \stackrel{?}{=} \tan ^{2} \theta
$$

$$
\frac{\frac{1}{\cos ^{2} \theta}}{\frac{1}{\sin ^{2} \theta}} \stackrel{?}{=} \tan ^{2} \theta
$$

$\frac{1}{\cos ^{2} \theta} \cdot \sin ^{2} \theta \stackrel{?}{=} \tan ^{2} \theta$

$$
\tan ^{2} \theta=\tan ^{2} \theta
$$

8. $\frac{\sin \theta}{\sec \theta} \stackrel{?}{=} \frac{1}{\tan \theta+\cot \theta}$
$\frac{\sin \theta}{\sec \theta} \stackrel{?}{=} \frac{1}{\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}}$
$\frac{\sin \theta}{\sec \theta} \stackrel{?}{=} \frac{1}{\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\sin \theta \cos \theta}}$
$\frac{\sin \theta}{\sec \theta} \stackrel{?}{=} \frac{\sin \theta \cos \theta}{\sin ^{2} \theta+\cos ^{2} \theta}$
$\frac{\sin \theta}{\sec \theta} \stackrel{?}{=} \frac{\sin \theta \cos \theta}{1}$
$\frac{\sin \theta}{\sec \theta}=\frac{\sin \theta}{\sec \theta}$
9. $\frac{\sec \theta+1}{\tan \theta} \stackrel{?}{=} \frac{\tan \theta}{\sec \theta-1}$
$\frac{\sec \theta+1}{\tan \theta} \stackrel{?}{=} \frac{\tan \theta}{\sec \theta-1} \cdot \frac{\sec \theta+1}{\sec \theta+1}$
$\frac{\sec \theta+1}{\tan \theta} \stackrel{?}{=} \frac{\tan \theta \cdot(\sec \theta+1)}{\sec ^{2} \theta-1}$
$\frac{\sec \theta+1}{\tan \theta} \stackrel{?}{=} \frac{\tan \theta \cdot(\sec \theta+1)}{\tan ^{2} \theta}$
$\frac{\sec \theta+1}{\tan \theta}=\frac{\sec \theta+1}{\tan \theta}$
10. $\cos ^{2} \theta+\tan ^{2} \theta \cos ^{2} \theta \stackrel{?}{\underline{=}} 1$

$$
\begin{aligned}
\cos ^{2} \theta+\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \cos ^{2} \theta & \stackrel{?}{=} 1 \\
\cos ^{2} \theta+\sin ^{2} \theta & \stackrel{?}{=} 1 \\
1 & =1
\end{aligned}
$$

12. $\cot \theta(\cot \theta+\tan \theta) \stackrel{?}{=} \csc ^{2} \theta$

$$
\cot ^{2} \theta+\cot \theta \tan \theta \stackrel{?}{=} \csc ^{2} \theta
$$

$\cot ^{2} \theta+\frac{\sin \theta}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} \stackrel{?}{=} \csc ^{2} \theta$

$$
\cot ^{2} \theta+1 \stackrel{?}{=} \csc ^{2} \theta
$$

$$
\csc ^{2} \theta=\csc ^{2} \theta
$$

13. $1+\sec ^{2} \theta \sin ^{2} \theta \stackrel{?}{\underline{=}} \sec ^{2} \theta$

$$
\begin{array}{r}
1+\frac{1}{\cos ^{2} \theta} \cdot \sin ^{2} \theta \stackrel{?}{=} \sec ^{2} \theta \\
1+\tan ^{2} \theta \stackrel{?}{=} \sec ^{2} \theta \\
\sec ^{2} \theta
\end{array}=\sec ^{2} \theta, ~ \$
$$

14. $\sin \theta \sec \theta \cot \theta \stackrel{?}{=} 1$
$\sin \theta \cdot \frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} \stackrel{?}{=} 1$

$$
1=1
$$

15. $\frac{1-\cos \theta}{1+\cos \theta} \stackrel{?}{=}(\csc \theta-\cot \theta)^{2}$
$\frac{1-\cos \theta}{1+\cos \theta} \stackrel{?}{=} \csc ^{2} \theta-2 \cot \theta \csc \theta+\cot ^{2} \theta$
$\frac{1-\cos \theta}{1+\cos \theta} \stackrel{?}{=} \frac{1}{\sin ^{2} \theta}-2 \cdot \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$\frac{1-\cos \theta}{1+\cos \theta} \stackrel{?}{=} \frac{1}{\sin ^{2} \theta}-\frac{2 \cos \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}$
$\frac{1-\cos \theta}{1+\cos \theta} \stackrel{?}{=} \frac{1-2 \cos \theta+\cos ^{2} \theta}{\sin ^{2} \theta}$
$\frac{1-\cos \theta}{1+\cos \theta} \stackrel{?}{=} \frac{(1-\cos \theta)(1-\cos \theta)}{1-\cos ^{2} \theta}$
$\frac{1-\cos \theta}{1+\cos \theta} \stackrel{?}{=} \frac{(1-\cos \theta)(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)}$
$\frac{1-\cos \theta}{1+\cos \theta}=\frac{1-\cos \theta}{1+\cos \theta}$
16.

$$
\frac{1-2 \cos ^{2} \theta}{\sin \theta \cos \theta} \stackrel{?}{=} \tan \theta-\cot \theta
$$

$$
\begin{aligned}
\frac{\left(1-\cos ^{2} \theta\right)-\cos ^{2} \theta}{\sin \theta \cos \theta} & \stackrel{?}{=} \tan \theta-\cot \theta \\
\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta \cos \theta} & \stackrel{?}{=} \tan \theta-\cot \theta
\end{aligned}
$$

$$
\frac{\sin ^{2} \theta}{\sin \theta \cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta \cos \theta} \stackrel{?}{=} \tan \theta-\cot \theta
$$

$$
\begin{aligned}
& \frac{\sin \theta}{\cos \theta}-\frac{\cos \theta}{\sin \theta} \stackrel{?}{=} \tan \theta-\cot \theta \\
& \tan \theta-\cot \theta=\tan \theta-\cot \theta
\end{aligned}
$$

17. $\cot \theta \csc \theta \stackrel{?}{=} \frac{\cot \theta+\csc \theta}{\sin \theta+\tan \theta}$
$\cot \theta \csc \theta \stackrel{?}{=} \frac{\frac{\cos \theta}{\sin \theta}+\frac{1}{\sin \theta}}{\sin \theta+\frac{\sin \theta}{\cos \theta}}$
$\cot \theta \csc \theta \stackrel{?}{\stackrel{\cos \theta+1}{\sin \theta}} \frac{\sin \theta \cos \theta+\sin \theta}{\cos \theta}$
$\cot \theta \csc \theta \stackrel{?}{=} \frac{\frac{\cos \theta+1}{\sin \theta}}{\frac{\sin \theta(\cos \theta+1)}{\cos \theta}}$
$\cot \theta \csc \theta \stackrel{?}{=} \frac{\cos \theta+1}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta(\cos \theta+1)}$
$\cot \theta \csc \theta \stackrel{?}{=} \frac{\cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta}$
$\cot \theta \csc \theta=\cot \theta \csc \theta$
18. $\sin \theta+\cos \theta \stackrel{?}{=} \frac{1+\tan \theta}{\sec \theta}$
$\sin \theta+\cos \theta \stackrel{?}{=} \frac{1+\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}}$
$\sin \theta+\cos \theta \stackrel{?}{\underline{?}} \frac{\frac{\sin \theta+\cos \theta}{\cos \theta}}{\frac{1}{\cos \theta}}$
$\sin \theta+\cos \theta \stackrel{?}{\underline{=}} \frac{\sin \theta+\cos \theta}{\cos \theta} \cdot \cos \theta$
$\sin \theta+\cos \theta=\sin \theta+\cos \theta$
19. $\frac{\sec \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \stackrel{?}{=} \cot \theta$

$$
\begin{aligned}
& \frac{\frac{1}{\cos \theta}}{\sin \theta}-\frac{\sin \theta}{\cos \theta} \stackrel{?}{=} \cot \theta \\
& \frac{1}{\sin \theta \cos \theta}-\frac{\sin ^{2} \theta}{\sin \theta \cos \theta} \stackrel{?}{=} \cot \theta \\
& \frac{1-\sin ^{2} \theta}{\sin \theta \cos \theta} \stackrel{?}{=} \cot \theta \\
& \frac{\cos ^{2} \theta}{\sin \theta \cos \theta} \stackrel{?}{=} \cot \theta \\
& \frac{\cos \theta}{\sin \theta} \stackrel{?}{=} \cot \theta \\
& \cot \theta=\cot \theta
\end{aligned}
$$

20.

$$
\frac{\sin \theta}{1-\cos \theta}+\frac{1-\cos \theta}{\sin \theta} \stackrel{?}{=} 2 \csc \theta
$$

$\frac{\sin \theta}{\sin \theta} \cdot \frac{\sin \theta}{1-\cos \theta}+\frac{1-\cos \theta}{1-\cos \theta} \cdot \frac{1-\cos \theta}{\sin \theta} \stackrel{?}{=} 2 \csc \theta$ $\frac{\sin ^{2} \theta}{\sin \theta(1-\cos \theta)}+\frac{1-2 \cos \theta+\cos ^{2} \theta}{\sin \theta(1-\cos \theta)} \stackrel{?}{=} 2 \csc \theta$ $\frac{\sin ^{2} \theta+\cos ^{2} \theta+1-2 \cos \theta}{\sin \theta(1-\cos \theta)} \stackrel{?}{=} 2 \csc \theta$

$$
\begin{array}{r}
\frac{2-2 \cos \theta}{\sin \theta(1-\cos \theta)} \stackrel{?}{=} 2 \csc \theta \\
\frac{2(1-\cos \theta)}{\sin \theta(1-\cos \theta)} \stackrel{?}{=} 2 \csc \theta \\
\frac{2}{\sin \theta} \stackrel{?}{=} 2 \csc \theta \\
2 \csc \theta=2 \csc \theta
\end{array}
$$

21. $\frac{1+\sin \theta}{\sin \theta} \stackrel{?}{=} \frac{\cot ^{2} \theta}{\csc \theta-1}$
$\frac{1+\sin \theta}{\sin \theta} \stackrel{?}{=} \frac{\cot ^{2} \theta}{\csc \theta-1} \cdot \frac{\csc \theta+1}{\csc \theta+1}$
$\frac{1+\sin \theta}{\sin \theta} \stackrel{?}{=} \frac{\cot ^{2} \theta(\csc \theta+1)}{\csc ^{2} \theta-1}$
$\frac{1+\sin \theta}{\sin \theta} \stackrel{?}{=} \frac{\cot ^{2} \theta(\csc \theta+1)}{\cot ^{2} \theta}$
$\frac{1+\sin \theta}{\sin \theta} \stackrel{?}{=} \csc \theta+1$
$\frac{1+\sin \theta}{\sin \theta} \stackrel{?}{=} \frac{1}{\sin \theta}+\frac{\sin \theta}{\sin \theta}$
$\frac{1+\sin \theta}{\sin \theta}=\frac{1+\sin \theta}{\sin \theta}$
22.

$$
\begin{array}{r}
\frac{1+\tan \theta}{1+\cot \theta} \\
\stackrel{?}{=} \frac{\sin \theta}{\cos \theta} \\
\frac{1+\frac{\sin \theta}{\cos \theta}}{1+\frac{\cos \theta}{\sin \theta}}
\end{array} \stackrel{?}{=} \frac{\sin \theta}{\cos \theta}
$$

23. $\frac{1}{\sec ^{2} \theta}+\frac{1}{\csc ^{2} \theta} \stackrel{?}{=} 1$
$\cos ^{2} \theta+\sin ^{2} \theta \stackrel{?}{=} 1$

$$
1=1
$$

24. $1+\frac{1}{\cos \theta} \stackrel{?}{=} \frac{\tan ^{2} \theta}{\sec \theta-1}$
$1+\frac{1}{\cos \theta} \stackrel{?}{=} \frac{\tan ^{2} \theta}{\sec \theta-1} \cdot \frac{\sec \theta+1}{\sec \theta+1}$
$1+\frac{1}{\cos \theta} \stackrel{?}{=} \frac{\tan ^{2} \theta(\sec \theta+1)}{\sec ^{2} \theta-1}$
$1+\frac{1}{\cos \theta} \stackrel{?}{=} \frac{\tan ^{2} \theta(\sec \theta+1)}{\tan ^{2} \theta}$
$1+\frac{1}{\cos \theta} \stackrel{?}{=} \sec \theta+1$
$1+\frac{1}{\cos \theta}=1+\frac{1}{\cos \theta}$
25. $\quad 1-\tan ^{4} \theta \stackrel{?}{=} 2 \sec ^{2} \theta-\sec ^{4} \theta$

$$
\left(1-\tan ^{2} \theta\right)\left(1+\tan ^{2} \theta\right) \stackrel{?}{=} \sec ^{2} \theta\left(2-\sec ^{2} \theta\right)
$$

$$
\left[\left(1-\left(\sec ^{2} \theta-1\right)\right]\left(\sec ^{2} \theta\right) \stackrel{?}{=}\left(2-\sec ^{2} \theta\right)\left(\sec ^{2} \theta\right)\right.
$$

$$
\left(2-\sec ^{2} \theta\right)\left(\sec ^{2} \theta\right)=\left(2-\sec ^{2} \theta\right)\left(\sec ^{2} \theta\right)
$$

26.

$$
\cos ^{4} \theta-\sin ^{4} \theta \stackrel{?}{=} \cos ^{2} \theta-\sin ^{2} \theta
$$

$\left(\cos ^{2} \theta-\sin ^{2} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \stackrel{?}{=} \cos ^{2} \theta-\sin ^{2} \theta$ $\left(\cos ^{2} \theta-\sin ^{2} \theta\right) \cdot 1 \stackrel{?}{=} \cos ^{2} \theta-\sin ^{2} \theta$

$$
\cos ^{2} \theta-\sin ^{2} \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

27.

$$
\frac{1-\cos \theta}{\sin \theta} \stackrel{?}{=} \frac{\sin \theta}{1+\cos \theta}
$$

$\frac{1-\cos \theta}{\sin \theta} \cdot \frac{1+\cos \theta}{1+\cos \theta} \stackrel{?}{=} \frac{\sin \theta}{1+\cos \theta}$

$$
\begin{aligned}
& \frac{1-\cos ^{2} \theta}{\sin \theta(1+\cos \theta)} \stackrel{?}{=} \\
& \frac{\sin \theta}{1+\cos \theta} \\
& \frac{\sin ^{2} \theta}{\sin \theta(1+\cos \theta)} \stackrel{?}{=} \frac{\sin \theta}{1+\cos \theta} \\
& \frac{\sin \theta}{1+\cos \theta}=\frac{\sin \theta}{1+\cos \theta}
\end{aligned}
$$

28.

$$
\frac{\cos \theta}{1+\sin \theta}+\frac{\cos \theta}{1-\sin \theta} \stackrel{?}{=} 2 \sec \theta
$$

$$
\frac{\cos \theta}{1+\sin \theta} \cdot \frac{1-\sin \theta}{1-\sin \theta}+\frac{\cos \theta}{1-\sin \theta} \cdot \frac{1+\sin \theta}{1+\sin \theta} \stackrel{?}{=} 2 \sec \theta
$$

$$
\frac{\cos \theta(1-\sin \theta)+\cos \theta(1+\sin \theta)}{(1+\sin \theta)(1-\sin \theta)} \stackrel{?}{=} 2 \sec \theta
$$

$\frac{\cos \theta-\sin \theta \cos \theta+\cos \theta+\sin \theta \cos \theta}{1-\sin ^{2} \theta} \stackrel{?}{=} 2 \sec \theta$

$$
\begin{aligned}
\frac{2 \cos \theta}{\cos ^{2} \theta} & \stackrel{?}{=} 2 \sec \theta \\
\frac{2}{\cos \theta} & \stackrel{?}{=} 2 \sec \theta \\
2 \sec \theta & =2 \sec \theta
\end{aligned}
$$

29. $\tan \theta \sin \theta \cos \theta \csc ^{2} \theta \stackrel{?}{=} 1$
$\frac{\sin \theta}{\cos \theta} \cdot \sin \theta \cdot \cos \theta \cdot \frac{1}{\sin ^{2} \theta} \stackrel{?}{=} 1$

$$
1=1
$$

30. $\frac{\sin ^{2} \theta}{1-\cos \theta} \stackrel{?}{=} 1+\cos \theta$

$$
\begin{aligned}
\frac{\sin ^{2} \theta}{1-\cos \theta} \cdot \frac{1+\cos \theta}{1+\cos \theta} & \stackrel{?}{=} 1+\cos \theta \\
\frac{\sin ^{2} \theta(1+\cos \theta)}{1-\cos ^{2} \theta} & \stackrel{?}{=} 1+\cos \theta \\
\frac{\sin ^{2} \theta(1+\cos \theta)}{\sin ^{2} \theta} & \stackrel{?}{=} 1+\cos \theta \\
1+\cos \theta & =1+\cos \theta
\end{aligned}
$$

31. $\frac{v^{2} \tan ^{2} \theta}{2 g \sec ^{2} \theta} \stackrel{?}{\stackrel{ }{2}} \frac{v^{2} \frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{2 g \frac{1}{\cos ^{2} \theta}}$

$$
\begin{aligned}
& \stackrel{?}{=} \frac{v^{2}}{2 g} \cdot \frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \frac{\cos ^{2} \theta}{1} \\
& =\frac{v^{2} \sin ^{2} \theta}{2 g}
\end{aligned}
$$

34. Sample answer: Trigonometric identities are verified in a similar manner to proving theorems in geometry before using them. Answers should include the following.

- The expressions have not yet been shown to be equal, so you could not use the properties of equality on them.
- To show two expressions you must transform one, or both independently.
- Graphing two expressions could result in identical graphs for a set interval, that are different elsewhere.

37.

[-360, 360] scl: 90 by $[-5,5]$ scl: 1
39.

[$-360,360]$ scl: 90 by $[-5,5]$ scl: 1
41.

[$-360,360]$ scl: 90 by $[-5,5]$ scl: 1
38.

[-360, 360] scl: 90 by $[-5,5]$ scl: 1
40.

[$-360,360]$ scl: 90 by $[-5,5]$ scl: 1
42.

[$-360,360]$ scl: 90 by $[-5,5]$ scl: 1
47.

48.

49.

Pages 788-790, Lesson 14-5
10. $\cos \left(270^{\circ}-\theta\right) \stackrel{?}{=} \cos 270^{\circ} \cos \theta+\sin 270^{\circ} \sin \theta$

$$
\begin{aligned}
& \stackrel{?}{=} 0+(-1 \sin \theta) \\
& =-\sin \theta
\end{aligned}
$$

11.

$$
\sin \left(\theta+\frac{\pi}{2}\right) \stackrel{?}{=} \cos \theta
$$

$\sin \theta \cos \frac{\pi}{2}+\cos \theta \sin \frac{\pi}{2} \stackrel{?}{=} \cos \theta$

$$
\begin{aligned}
\sin \theta \cdot 0+\cos \theta \cdot 1 & \stackrel{?}{=} \cos \theta \\
\cos \theta & =\cos \theta
\end{aligned}
$$

12. $\sin \left(\theta+30^{\circ}\right)+\cos \left(\theta+60^{\circ}\right)$
$\stackrel{?}{\underline{?}} \sin \theta \cos 30^{\circ}+\cos \theta \sin 30^{\circ}+\cos \theta \cos 60^{\circ}-$ $\sin \theta \sin 60^{\circ}$
$\stackrel{?}{=} \frac{\sqrt{3}}{2} \sin \theta+\frac{1}{2} \cos \theta+\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta$
$\stackrel{?}{=} \frac{1}{2} \cos \theta+\frac{1}{2} \cos \theta$
$=\cos \theta$
13. $\sin \left(270^{\circ}-\theta\right) \stackrel{?}{=} \sin 270^{\circ} \cos \theta-\cos 270^{\circ} \sin \theta$

$$
\begin{aligned}
& \stackrel{?}{=}-1 \cos \theta-0 \\
& =-\cos \theta
\end{aligned}
$$

29. $\cos \left(90^{\circ}+\theta\right) \stackrel{?}{=} \cos 90^{\circ} \cos \theta-\sin 90^{\circ} \sin \theta$

$$
\begin{aligned}
& \stackrel{?}{=} 0-1 \sin \theta \\
& =-\sin \theta
\end{aligned}
$$

30. $\cos \left(90^{\circ}-\theta\right) \stackrel{?}{=} \cos 90^{\circ} \cos \theta+\sin 90^{\circ} \sin \theta$

$$
\begin{aligned}
& \stackrel{?}{=} 0 \cdot \cos \theta+1 \cdot \sin \theta \\
& =\sin \theta
\end{aligned}
$$

31.

$$
\sin \left(90^{\circ}-\theta\right) \stackrel{?}{=} \cos \theta
$$

$\sin 90^{\circ} \cos \theta-\cos 90^{\circ} \sin \theta \stackrel{?}{=} \cos \theta$ $1 \cdot \cos \theta-0 \cdot \sin \theta \stackrel{?}{\underline{?}} \cos \theta$

$$
\cos \theta-0 \stackrel{?}{=} \cos \theta
$$

$$
\cos \theta=\cos \theta
$$

32.

$$
\sin \left(\theta+\frac{3 \pi}{2}\right) \stackrel{?}{=}-\cos \theta
$$

$\sin \theta \cos \frac{3 \pi}{2}+\cos \theta \sin \frac{3 \pi}{2} \stackrel{?}{\underline{?}}-\cos \theta$

$$
\sin \theta \cdot 0+\cos \theta \cdot(-1) \stackrel{?}{\underline{?}}-\cos \theta
$$

$$
0+(-\cos \theta) \stackrel{?}{\underline{?}}-\cos \theta
$$

$$
-\cos \theta=-\cos \theta
$$

33.

$\cos \pi \cos \theta+\sin \pi \sin \theta \stackrel{?}{\underline{?}}-\cos \theta$
$-1 \cdot \cos \theta+0 \cdot \sin \theta \stackrel{?}{\underline{?}}-\cos \theta$
34.

$$
-\cos \theta=-\cos \theta
$$

34. $\quad \cos (2 \pi+\theta) \stackrel{?}{=} \cos \theta$
$\cos 2 \pi \cos \theta-[\sin 2 \pi \sin \theta] \stackrel{?}{\underline{?}} \cos \theta$

$$
\begin{aligned}
1 \cdot \cos \theta-[0 \cdot \sin \theta] & \stackrel{?}{=} \cos \theta \\
1 \cdot \cos \theta-0 & \stackrel{?}{=} \cos \theta \\
\cos \theta & =\cos \theta
\end{aligned}
$$

35.

$$
\sin (\pi-\theta) \stackrel{?}{=} \sin \theta
$$

$\sin \pi \cos \theta-[\cos \pi \sin \theta] \stackrel{?}{=} \sin \theta$
$0 \cdot \cos \theta-[-1 \cdot \sin \theta] \stackrel{?}{=} \sin \theta$

$$
\begin{aligned}
0-[-\sin \theta] & \stackrel{?}{=} \sin \theta \\
\sin \theta & =\sin \theta
\end{aligned}
$$

36. $\sin \left(60^{\circ}+\theta\right)+\sin \left(60^{\circ}-\theta\right)$
$\stackrel{?}{\underline{=}} \sin 60^{\circ} \cos \theta+\cos 60^{\circ} \sin \theta+\sin 60^{\circ} \cos \theta-$ $\cos 60^{\circ} \sin \theta$
$\stackrel{?}{=} \frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta+\frac{\sqrt{3}}{2} \cos \theta-\frac{1}{2} \sin \theta$
$=\sqrt{3} \cos \theta$
37. $\sin \left(\theta+\frac{\pi}{3}\right)-\cos \left(\theta+\frac{\pi}{6}\right)$
$\stackrel{?}{\underline{?}} \sin \theta \cos \frac{\pi}{3}+\cos \theta \sin \frac{\pi}{3}-\cos \theta \cos \frac{\pi}{6}+\sin \theta \sin \frac{\pi}{6}$
$\stackrel{?}{=} \frac{1}{2} \sin \theta+\frac{\sqrt{3}}{2} \cos \theta-\frac{\sqrt{3}}{2} \cos \theta+\frac{1}{2} \sin \theta$
$\stackrel{?}{=} \frac{1}{2} \sin \theta+\frac{1}{2} \sin \theta$
$=\sin \theta$
38. $\sin (\alpha+\beta) \sin (\alpha-\beta) \stackrel{?}{=} \sin ^{2} \alpha-\sin ^{2} \beta$
$\stackrel{?}{\underline{?}}(\sin \alpha \cos \beta+\cos \alpha \sin \beta)(\sin \alpha \cos \beta-\cos \alpha \sin \beta)$
$\stackrel{?}{=} \sin ^{2} \alpha \cos ^{2} \beta-\cos ^{2} \alpha \sin ^{2} \beta$
$\stackrel{?}{=} \sin ^{2} \alpha\left(1-\sin ^{2} \beta\right)-\left(1-\sin ^{2} \alpha\right) \sin ^{2} \beta$
$\stackrel{?}{=} \sin ^{2} \alpha-\sin ^{2} \alpha \sin ^{2} \beta-\sin ^{2} \beta+\sin ^{2} \alpha \sin ^{2} \beta$
$=\sin ^{2} \alpha-\sin ^{2} \beta$
39. $\cos (\alpha+\beta) \stackrel{?}{=} \frac{1-\tan \alpha \tan \beta}{\sec \alpha \sec \beta}$
$\cos (\alpha+\beta) \stackrel{?}{=} \frac{1-\frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}}{\frac{1}{\cos \alpha} \cdot \frac{1}{\cos \beta}}$
$\cos (\alpha+\beta) \stackrel{?}{=} \frac{1-\frac{\sin \alpha}{\cos \alpha} \cdot \frac{\sin \beta}{\cos \beta}}{\frac{1}{\cos \alpha} \cdot \frac{1}{\cos \beta}} \cdot \frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta}$
$\cos (\alpha+\beta) \stackrel{?}{=} \frac{\cos \alpha \cos \beta-\sin \alpha \sin \beta}{1}$
$\cos (\alpha+\beta)=\cos (\alpha+\beta)$
40. $\tan (\alpha+\beta) \stackrel{?}{=} \frac{\sin (\alpha+\beta)}{\cos (\alpha+\beta)}$

$$
\begin{aligned}
& \stackrel{?}{=} \frac{\sin \alpha \cos \beta+\cos \alpha \sin \beta}{\cos \alpha \cos \beta-\sin \alpha \sin \beta} \\
& \stackrel{?}{=} \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta}+\frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta}-\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} \\
& =\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}
\end{aligned}
$$

$\tan (\alpha-\beta) \stackrel{?}{=} \frac{\sin (\alpha-\beta)}{\cos (\alpha-\beta)}$

$$
\begin{aligned}
& \stackrel{?}{=} \frac{\sin \alpha \cos \beta-\cos \alpha \sin \beta}{\cos \alpha \cos \beta+\sin \alpha \sin \beta} \\
& \stackrel{?}{=} \frac{\frac{\sin \alpha \cos \beta}{\cos \alpha \cos \beta}-\frac{\cos \alpha \sin \beta}{\cos \alpha \cos \beta}}{\frac{\cos \alpha \cos \beta}{\cos \alpha \cos \beta}+\frac{\sin \alpha \sin \beta}{\cos \alpha \cos \beta}} \\
& =\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta}
\end{aligned}
$$

50. $\cot \theta+\sec \theta \stackrel{?}{=} \frac{\cos ^{2} \theta+\sin \theta}{\sin \theta \cos \theta}$
$\cot \theta+\sec \theta \stackrel{?}{=} \frac{\cos ^{2} \theta}{\sin \theta \cos \theta}+\frac{\sin \theta}{\sin \theta \cos \theta}$
$\cot \theta+\sec \theta \stackrel{?}{\underline{=}} \frac{\cos \theta}{\sin \theta}+\frac{1}{\cos \theta}$
$\cot \theta+\sec \theta=\cot \theta+\sec \theta$
51. $\sin ^{2} \theta+\tan ^{2} \theta \stackrel{?}{=}\left(1-\cos ^{2} \theta\right)+\frac{\sec ^{2} \theta}{\csc ^{2} \theta}$

$$
\begin{aligned}
& \sin ^{2} \theta+\tan ^{2} \theta \stackrel{?}{=} \sin ^{2} \theta+\frac{\sec ^{2} \theta}{\csc ^{2} \theta} \\
& \sin ^{2} \theta+\tan ^{2} \theta \stackrel{?}{=} \sin ^{2} \theta+\frac{1}{\cos ^{2} \theta} \div \frac{1}{\sin ^{2} \theta} \\
& \sin ^{2} \theta+\tan ^{2} \theta \stackrel{?}{=} \sin ^{2} \theta+\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \\
& \sin ^{2} \theta+\tan ^{2} \theta=\sin ^{2} \theta+\tan ^{2} \theta
\end{aligned}
$$

52. $\sin \theta(\sin \theta+\csc \theta) \stackrel{?}{=} 2-\cos ^{2} \theta$

$$
\sin ^{2} \theta+1 \stackrel{?}{=} 2-\cos ^{2} \theta
$$

$$
1-\cos ^{2} \theta+1 \stackrel{?}{=} 2-\cos ^{2} \theta
$$

$$
2-\cos ^{2} \theta=2-\cos ^{2} \theta
$$

53. $\frac{\sec \theta}{\tan \theta} \stackrel{?}{=} \csc \theta$

$$
\begin{aligned}
& \frac{1}{\cos \theta} \div \frac{\sin \theta}{\cos \theta} \stackrel{?}{=} \csc \theta \\
& \frac{1}{\cos \theta} \cdot \frac{\cos \theta}{\sin \theta} \stackrel{?}{=} \csc \theta \\
& \frac{1}{\sin \theta} \stackrel{?}{=} \csc \theta \\
& \csc \theta=\csc \theta
\end{aligned}
$$

Pages 795-797, Lesson 14-6

31. $\sin 2 x \stackrel{?}{=} 2 \cot x \sin ^{2} x$ $2 \sin x \cos x \stackrel{?}{=} 2 \cdot \frac{\cos x}{\sin x} \cdot \sin ^{2} x$
$2 \sin x \cos x=2 \sin x \cos x$
32. $2 \cos ^{2} \frac{x}{2} \stackrel{?}{=} 1+\cos x$

$$
\begin{aligned}
2\left(\pm \sqrt{\frac{1+\cos x}{2}}\right)^{2} & \stackrel{?}{=} 1+\cos x \\
2\left(\frac{1+\cos x}{2}\right) & \stackrel{?}{=} 1+\cos x \\
1+\cos x & =1+\cos x
\end{aligned}
$$

33. $\sin ^{4} x-\cos ^{4} x \stackrel{?}{=} 2 \sin ^{2} x-1$
$\left(\sin ^{2} x-\cos ^{2} x\right)\left(\sin ^{2} x+\cos ^{2} x\right) \stackrel{?}{=} 2 \sin ^{2} x-1$
$\left(\sin ^{2} x-\cos ^{2} x\right) \cdot 1 \stackrel{?}{=} 2 \sin ^{2} x-1$
$\left[\sin ^{2} x-\left(1-\sin ^{2} x\right)\right] \cdot 1 \stackrel{?}{=} 2 \sin ^{2} x-1$

$$
\begin{array}{r}
\sin ^{2} x-1+\sin ^{2} x \stackrel{?}{\underline{2}} 2 \sin ^{2} x-1 \\
2 \sin ^{2} x-1=2 \sin ^{2} x-1
\end{array}
$$

34. $\sin ^{2} x \stackrel{?}{=} \frac{1}{2}(1-\cos 2 x)$

$$
\begin{aligned}
& \sin ^{2} x \stackrel{?}{=} \frac{1}{2}\left[1-\left(1-2 \sin ^{2} x\right)\right] \\
& \sin ^{2} x \stackrel{?}{=} \frac{1}{2}\left(2 \sin ^{2} x\right) \\
& \sin ^{2} x=\sin ^{2} x
\end{aligned}
$$

35. $\tan ^{2} \frac{x}{2} \stackrel{?}{=} \frac{1-\cos x}{1+\cos x}$

$$
\frac{\sin ^{2} \frac{x}{2}}{\cos ^{2} \frac{x}{2}} \stackrel{?}{=} \frac{1-\cos x}{1+\cos x}
$$

$$
\frac{\left(\pm \sqrt{\frac{1-\cos x}{2}}\right)^{2}}{\left(\pm \sqrt{\frac{1+\cos x}{2}}\right)^{2}} \stackrel{?}{=} \frac{1-\cos x}{1+\cos x}
$$

$$
\frac{1-\cos x}{1+\cos x}=\frac{1-\cos x}{1+\cos x}
$$

36. $\frac{1}{\sin x \cos x}-\frac{\cos x}{\sin x} \stackrel{?}{=} \tan x$

$$
\begin{array}{r}
\frac{1-\cos ^{2} x}{\sin x \cos x} \stackrel{?}{=} \tan x \\
\frac{\sin ^{2} x}{\sin x \cos x} \stackrel{?}{=} \tan x \\
\frac{\sin x}{\cos x} \stackrel{?}{=} \tan x \\
\tan x=\tan x
\end{array}
$$

40. $\frac{2}{g} v^{2}\left(\tan \theta-\tan \theta \sin ^{2} \theta\right) \stackrel{?}{=} \frac{2}{g} v^{2} \tan \theta\left(1-\sin ^{2} \theta\right)$

$$
\begin{aligned}
& \stackrel{?}{=} \frac{2}{g} v^{2} \tan \theta \cos ^{2} \theta \\
& \stackrel{?}{=} \frac{2}{g} v^{2} \sin \theta \cos \theta \\
& =\frac{v^{2} \sin 2 \theta}{g}
\end{aligned}
$$

42.

43. The maxima occur at $\pm \frac{\pi}{2}$ and $\pm \frac{3 \pi}{2}$. The minima occur at $x=0, \pm \pi$, and $\pm 2 \pi$.
44.

45. The graph of $f(x)$ crosses the x-axis at the points specified in Exercise 43.
46. $c=1$ and $d=0.5$
56. $\cot ^{2} \theta-\sin ^{2} \theta \stackrel{?}{=} \frac{\cos ^{2} \theta \csc ^{2} \theta-\sin ^{2} \theta}{\sin ^{2} \theta \csc ^{2} \theta}$
$\cot ^{2} \theta-\sin ^{2} \theta \stackrel{?}{\underline{ }} \frac{\cos ^{2} \theta \frac{1}{\sin ^{2} \theta}-\sin ^{2} \theta}{\sin ^{2} \theta \frac{1}{\sin ^{2} \theta}}$
$\cot ^{2} \theta-\sin ^{2} \theta \stackrel{?}{\underline{=}} \frac{\cot ^{2} \theta-\sin ^{2} \theta}{1}$
$\cot ^{2} \theta-\sin ^{2} \theta=\cot ^{2} \theta-\sin ^{2} \theta$
57. $\cos \theta(\cos \theta+\cot \theta) \stackrel{?}{=} \cot \theta \cos \theta(\sin \theta+1)$
$\cos \theta(\cos \theta+\cot \theta) \stackrel{?}{=} \frac{\cos \theta}{\sin \theta} \cos \theta \sin \theta+\cot \theta \cos \theta$
$\cos \theta(\cos \theta+\cot \theta) \stackrel{?}{=} \cos ^{2} \theta+\cot \theta \cos \theta$
$\cos \theta(\cos \theta+\cot \theta)=\cos \theta(\cos \theta+\cot \theta)$

Page 797, Practice Quiz 2

1. $\sin \theta \sec \theta \stackrel{?}{\stackrel{?}{2}} \tan \theta$
$\sin \theta \cdot \frac{1}{\cos \theta} \stackrel{?}{=} \tan \theta$
$\frac{\sin \theta}{\cos \theta} \stackrel{?}{=} \tan \theta$
$\tan \theta=\boldsymbol{\operatorname { t a n }} \theta$
2. $\sec \theta-\cos \theta \stackrel{?}{\underline{~}} \sin \theta \tan \theta$
$\frac{1}{\cos \theta}-\cos \theta \cdot \frac{\cos \theta}{\cos \theta} \stackrel{?}{=} \sin \theta \tan \theta$ $\frac{1}{\cos \theta}-\frac{\cos ^{2} \theta}{\cos \theta} \stackrel{?}{=} \sin \theta \tan \theta$
$\frac{1-\cos ^{2} \theta}{\cos \theta} \stackrel{?}{=} \sin \theta \tan \theta$
$\frac{\sin ^{2} \theta}{\cos \theta} \stackrel{?}{=} \sin \theta \tan \theta$
$\sin \theta \frac{\sin \theta}{\cos \theta} \stackrel{?}{=} \sin \theta \tan \theta$
$\sin \theta \tan \theta=\sin \theta \tan \theta$
3. $\sin \theta+\tan \theta \stackrel{?}{=} \frac{\sin \theta(\cos \theta+1)}{\cos \theta}$
$\sin \theta+\tan \theta \stackrel{?}{\underline{?}} \frac{\sin \theta \cos \theta+\sin \theta}{\cos \theta}$
$\sin \theta+\tan \theta \stackrel{?}{\underline{\rho}} \frac{\sin \theta \cos \theta}{\cos \theta}+\frac{\sin \theta}{\cos \theta}$
$\sin \theta+\tan \theta=\sin \theta+\tan \theta$
4.

$$
\sin \left(90^{\circ}+\theta\right) \stackrel{?}{=} \cos \theta
$$

$\sin 90^{\circ} \cos \theta+\cos 90^{\circ} \sin \theta \stackrel{?}{=} \cos \theta$
$\cos \theta+0 \stackrel{?}{=} \cos \theta$
$\cos \theta=\boldsymbol{\operatorname { c o s }} \theta$
5.

$$
\cos \left(\frac{3 \pi}{2}-\theta\right) \stackrel{?}{=}-\sin \theta
$$

$\cos \frac{3 \pi}{2} \cos \theta+\sin \frac{3 \pi}{2} \sin \theta \stackrel{?}{=}-\sin \theta$

$$
\begin{aligned}
0+(-1 \cdot \sin \theta) & \stackrel{?}{=}-\sin \theta \\
-\sin \theta & =-\sin \theta
\end{aligned}
$$

6. $\sin \left(\theta+30^{\circ}\right)+\cos \left(\theta+60^{\circ}\right)$

$$
\stackrel{?}{\underline{?}}\left(\sin \theta \cos 30^{\circ}+\cos \theta \sin 30^{\circ}\right)+
$$

$$
\left(\cos \theta \cos 60^{\circ}-\sin \theta \sin 60^{\circ}\right)
$$

$$
\stackrel{?}{=}\left(\frac{\sqrt{3}}{2} \sin \theta+\frac{1}{2} \cos \theta\right)+\left(\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta\right)
$$

$$
\stackrel{?}{=} \frac{1}{2} \cos \theta+\frac{1}{2} \cos \theta
$$

$$
=\cos \theta
$$

Page 798, Preview of Lesson 14-7 Graphing Calculator Investigation
1.

[0,360$]$ scl: 45 by [$-2,2]$ scl: 1
3.

$[0,360]$ scl: 45 by $[-5,10]$ scl: 1
5.

[0,360$]$ scl: 45 by [$-2,2]$ scl: 1
2.

[0,360] scl: 45 by [$-2,2]$ scl: 1
4.

[-720, 720] scl: 90 by [-2, 2] scl: 1
6.

[$-360,360]$ scl: 45 by $[-5,5]$ scl: 1

Page 803, Lesson 14-7

35. $0+2 k \pi, \frac{\pi}{2}+2 k \pi, \frac{3 \pi}{2}+2 k \pi$ or $0^{\circ}+k \cdot 360^{\circ}$, $90^{\circ}+k \cdot 360^{\circ}, 270^{\circ}+k \cdot 360^{\circ}$
36. $\frac{7 \pi}{6}+2 k \pi, \frac{11 \pi}{6}+2 k \pi$ or $210^{\circ}+k \cdot 360^{\circ}$,
$330^{\circ}+k \cdot 360^{\circ}$
37. $0+k \pi$ or $0^{\circ}+k \cdot 180^{\circ}$
38. $\frac{\pi}{2}+k \pi, \frac{2 \pi}{3}+2 k \pi, \frac{4 \pi}{3}+2 k \pi$ or $90^{\circ}+k \cdot 180^{\circ}$, $120^{\circ}+k \cdot 360^{\circ}, 240^{\circ}+k \cdot 360^{\circ}$
39. $0+2 k \pi, \frac{\pi}{3}+2 k \pi, \frac{5 \pi}{3}+2 k \pi$ or $0^{\circ}+k \cdot 360^{\circ}$, $60^{\circ}+k \cdot 360^{\circ}, 300^{\circ}+k \cdot 360^{\circ}$
40. $\frac{\pi}{2}+4 k \pi$ or $90^{\circ}+k \cdot 720^{\circ}$
41. $y=\frac{3}{2}+\frac{3}{2} \sin (\pi t)$

Pages 805-807, Chapter 14 Study Guide and Review
9. amplitude: $\frac{1}{2}$; period: 360° or 2π

10. amplitude: 4; period: 180° or π

11. amplitude: 1 ; period: 720° or 4π

12. amplitude: does not exist; period: 360° or 2π

13. amplitude: does not exist; period: 540° or 3π

14. amplitude: does not exist; period: 45° or $\frac{\pi}{4}$

34. $\quad \cos \left(90^{\circ}+\theta\right) \stackrel{?}{=}-\sin \theta$ $\cos 90^{\circ} \cos \theta-\sin 90^{\circ} \sin \theta \stackrel{?}{=}-\sin \theta$

$$
\begin{aligned}
0 \cdot \cos \theta-1 \cdot \sin \theta & \stackrel{?}{=}-\sin \theta \\
-\sin \theta & =-\sin \theta
\end{aligned}
$$

35.

$$
\sin \left(30^{\circ}-\theta\right) \stackrel{?}{=} \cos \left(60^{\circ}+\theta\right)
$$

$\sin 30^{\circ} \cos \theta-\cos 30^{\circ} \sin \theta \stackrel{?}{=} \cos 60^{\circ} \cos \theta-\sin 60^{\circ} \sin \theta$ $\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta=\frac{1}{2} \cos \theta-\frac{\sqrt{3}}{2} \sin \theta$
36.

$$
\sin (\theta+\pi) \stackrel{?}{=}-\sin \theta
$$

$\sin \theta \cos \pi+\cos \theta \sin \pi \stackrel{?}{\underline{?}}-\sin \theta$
$(\sin \theta)(-1)+(\cos \theta)(0) \stackrel{?}{=}-\sin \theta$

$$
-\sin \theta=-\sin \theta
$$

37. $-\cos \theta \stackrel{?}{=} \cos (\pi+\theta)$
$-\cos \theta \stackrel{?}{=} \cos \pi \cos \theta-\sin \pi \sin \theta$
$-\cos \theta \stackrel{?}{\underline{=}}-1 \cdot \cos \theta-0 \cdot \sin \theta$
$-\cos \theta=-\cos \theta$

Page 809, Chapter 14 Practice Test

9.

$(\sin \theta-\cos \theta)^{2} \stackrel{?}{=} 1-\sin 2 \theta$
$\sin ^{2} \theta-2 \sin \theta \cos \theta+\cos ^{2} \theta \stackrel{?}{\underline{=}} 1-\sin 2 \theta$
$\left(\sin ^{2} \theta+\cos ^{2} \theta\right)-2 \sin \theta \cos \theta \stackrel{?}{=} 1-\sin 2 \theta$

$$
1-\sin 2 \theta=1-\sin 2 \theta
$$

10. $\frac{\cos \theta}{1-\sin ^{2} \theta} \stackrel{?}{=} \sec \theta$

$$
\begin{aligned}
& \frac{\cos \theta}{\cos ^{2} \theta} \stackrel{?}{=} \sec \theta \\
& \frac{1}{\cos \theta} \theta ? \\
& \sec \theta \sec \theta \\
& \sec \theta
\end{aligned}
$$

11.

$$
\begin{aligned}
\frac{\sec \theta}{\sin \theta}-\frac{\sin \theta}{\cos \theta} & \stackrel{?}{=} \cot \theta \\
\frac{1}{\sin \theta \cos \theta}-\frac{\sin \theta}{\cos \theta} & \stackrel{?}{=} \cot \theta \\
\frac{1}{\sin \theta \cos \theta}-\frac{\sin ^{2} \theta}{\sin \theta \cos \theta} & \stackrel{?}{=} \cot \theta \\
\frac{\cos ^{2} \theta}{\sin \theta \cos \theta} & \stackrel{?}{=} \cot \theta \\
\frac{\cos \theta}{\sin \theta} & \stackrel{?}{=} \cot \theta \\
\cot \theta & =\cot \theta
\end{aligned}
$$

12. $\frac{1+\tan ^{2} \theta}{\cos ^{2} \theta} \stackrel{?}{=} \sec ^{4} \theta$

$$
\frac{\sec ^{2} \theta}{\cos ^{2} \theta} \stackrel{?}{=} \sec ^{4} \theta
$$

$\sec ^{2} \theta \sec ^{2} \theta \stackrel{?}{\underline{?}} \sec ^{4} \theta$

$$
\sec ^{4} \theta=\sec ^{4} \theta
$$

[^0]: - Technology

 Interactive Chalkboard

