Rational Expressions and Equations
 Chapter Overview and Pacing

Pacing suggestions for the entire year can be found on pages T20-T21.

Chapter Resource Manager

All-In-One Planner and Resource Center

517-518	519-520	521	522		SC 17	9-1	9-1	17	
523-524	525-526	527	528	567		9-2	9-2	18	
529-530	531-532	533	534	567, 569	GCS 43	9-3	9-3		balance, metric measuring cup, graph paper (Follow-Up: graphing calculator)
535-536	537-538	539	540		$\begin{gathered} \text { GCS } 44, \\ \text { SC } 18, \\ \text { SM } 123-126 \end{gathered}$	9-4	9-4		
541-542	543-544	545	546	568		9-5	9-5		string, grid paper
547-548	549-550	551	552	568		9-6	9-6		(Follow-Up: graphing calculator)
				$\begin{aligned} & 553-566, \\ & 570-572 \end{aligned}$					

*Key to Abbreviations: GCS = Graphing Calculator and Speadsheet Masters,
$\begin{aligned} \text { SC } & =\text { School-to-Career Masters, } \\ \text { SM } & =\text { Science and Mathematics Lab Manual }\end{aligned}$

Continuity of Instruction

Prior Knowledge

Students have simplified rational numbers, written equivalent rational numbers, and found least common denominators. They have graphed functions from tables of values and they have explored functions whose graphs are lines or other shapes. Also, they have solved linear and polynomial equations.

This Chapter

Students extend basic arithmetic operations to rational expressions and extend solving equations to rational equations and inequalities. They graph rational functions and identify discontinuities in the graphs. They investigate equations that represent direct, inverse, and joint variation. They look at graphs of various shapes, including continuous curves, discontinuous curves, and lines, and associate each graph with a specific kind of function.

Future Connections

Students will extend operations on rational expressions to finding powers and roots of rational expressions. They will continue to study situations involving direct or inverse variation, and they will extend the study of joint variation to variables with exponents. Also, they will continue to see how the shape of a graph is used to classify the function represented by the graph.

9-1 Multiplying and Dividing Rational Expressions

In this lesson students look at some familiar ideas from fractions and apply them to rational expressions. One idea is that a fraction is undefined if the denominator is zero. To extend that idea, students examine polynomials that are the denominators of rational expressions and use their skill in factoring to identify values of variables for which the denominator would be zero. Students extend another idea to rational expressions, simplifying fractions, by finding common factors in the numerator and denominator, and replacing the quotient of those factors with 1 . As another extension of simplifying, students identify factors of the form $a-b$ and $b-a$ in the numerator and denominator of a rational expression, and replace the quotient of those factors with -1 . The ideas of multiplying or dividing fractions and simplifying complex fractions have direct extensions. To multiply two rational expressions, students divide the product of the numerators by the product of the denominators; to divide by a rational expression, they multiply by the reciprocal of that expression; and to simplify a complex fraction involving rational expressions, they rewrite it and treat it as a division expression.

9-2 Adding and Subtracting Rational Expressions

Students continue to look at familiar ideas from fractions and extend those ideas to rational expressions. For the idea of a least common multiple, students factor two or more polynomials. They write each factor of either of the given polynomials, with each factor having an exponent that indicates the maximum number of times that factor appears in any one of the given polynomials. Another familiar idea is writing two fractions as equivalent fractions with a common denominator. To extend this idea to rational expressions, students find the LCM of the given denominators and rewrite each rational expression as an equivalent expression whose denominator is that LCM. The ideas of adding and subtracting fractions are extended to rational expressions by writing the rational expressions with a common denominator (again, the common denominator is the LCM of the given denominators) and then adding or subtracting the numerators.

9-3 Graphing Rational Functions

In this lesson (and the next two) students use graphs to examine properties of functions. This lesson introduces graphs of rational functions, which are functions whose numerator and denominator are both polynomials. To look at values of x for which the denominator and thus the function is undefined, students study two kinds of rational functions. In one kind, the denominator is a factor of the numerator; for example, $f(x)=\frac{(x+1)^{5}}{x+1}$ or $g(x)=\frac{(2 x+1)(3 x-2)(5 x+3)}{(2 x+1)(5 x+3)}$. These functions can be simplified, and the graph of the simplified function is a continuous curve. However, there are one or more values of the variable for which the denominator of the original polynomial is zero. These values, called point discontinuities, represent places when the function is undefined. Students explore these types of functions by reducing the function, graphing the reduced function, and identifying the "holes" in the graph. Another kind of rational expression is one in which the entire denominator is not a factor of the numerator. For these functions, each value of the variable for which the denominator is zero is associated with a vertical asymptote on the graph. Students explore these functions by identifying all the vertical asymptotes, and then using tables of values and the asymptotes to graph the function.

9-4 Direct, Joint, and Inverse Variation

In this lesson students examine graphs for two-variable equations that represent two types of relationships. For variables x and y and constant k, the relationship $y=k x$ (also written as $\frac{y}{x}=k$) is called direct variation. The graph of a direct variation is a line; the line goes through the origin $(0,0)$ and has slope k. The relationship $y=\frac{k}{x}$ (or $x y=k$) is called inverse variation; its graph is a hyperbola. Students explore direct and inverse variation by finding the constant or a missing value of a variable for a given type of variation or by stating the type of variation for a given graph or set of values. Students also explore the relationship $y=k x z$ among the variables x, y, and z and constant k. Students explore this type of variation, called joint variation, by using given values to find the value of the constant or a missing value of a variable.

9-5 Classes of Functions

In this lesson students organize information learned previously about graphs and functions. Given the graph of a line, they describe that line as the graph of a constant function, a direct variation function, or the identity function; if a line has a hole, they identify it as the graph of one type of rational function. Given a graph that is a continuous curve, they describe that curve as the graph of a quadratic function or a square root function. Also, they relate V-shaped graphs to absolute value functions and relate discontinuous graphs to greatest integer functions, inverse variation functions, and rational functions.

9-6 Solving Rational Equations and Inequalities

In this lesson students return to the topics of the chapter's first two lessons and solve equations involving rational expressions. In general, the first step is to multiply both sides of the equation by the least common denominator of all the denominators. The result is to rewrite the original equation as an equation with no denominators; the new equation can be solved using familiar methods for solving linear or polynomial equations. Students apply these methods to several kinds of word problems. One kind is "work problems," in which one complete job is the sum of partial jobs, each partial job being the quotient of some number of time units divided by a per-unit rate. Another kind is "rate problems," in which a total duration is the sum of two smaller durations, each one being the quotient of distance divided by rate. Also in this lesson students explore rational inequalities by finding values that make the denominator equal to 0 , solving a related equation, and identifying intervals on the number line.

wwww.algebra2.com/key_concepts

Additional mathematical information and teaching notes are available in Glencoe's Algebra 2 Key Concepts: Mathematical Background and Teaching Notes, which is available at www.algebra2.com/key_concepts. The lessons appropriate for this chapter are as follows.

- Simplifying Rational Expressions (Lesson 35)
- Multiplying Rational Expressions (Lesson 36)
- Dividing Rational Expressions (Lesson 37)
- Rational Expressions with Unlike Denominators (Lesson 38)

	Type	Student Edition	Teacher Resources	Technology/Internet
	Ongoing	$\begin{aligned} & \text { Prerequisite Skills, pp. 471, 478, } \\ & \text { 484, 490, 498, } 504 \\ & \text { Practice Quiz 1, p. } 484 \\ & \text { Practice Quiz 2, p. } 498 \end{aligned}$	5-Minute Check Transparencies Quizzes, CRM pp. 567-568 Mid-Chapter Test, CRM p. 569 Study Guide and Intervention, CRM pp. 517-518, $523-524,529-530,535-536,541-542,547-548$	Alge2PASS: Tutorial Plus www.algebra2.com/self_check_quiz www.algebra2.com/extra_examples
	Mixed Review	pp. 478, 484, 490, 498, 504, 511	Cumulative Review, CRM p. 570	
	Error Analysis	Find the Error, pp. 481, 509	Find the Error, TWE pp. 481, 509 Unlocking Misconceptions, TWE pp. 474, 486, 494 Tips for New Teachers, TWE pp. 478, 484, 487, 498, 504, 511	
	Standardized Test Practice	$\begin{aligned} & \text { pp. 473, 476, 478, 484, 490, } \\ & \text { 498, 503, 504, 511, 517, } \\ & 518-519 \end{aligned}$	TWE p. 473 Standardized Test Practice, CRM pp. 571-572	Standardized Test Practice CD-ROM www.algebra2.com/ standardized_test
	Open-Ended Assessment	$\begin{aligned} & \text { Writing in Math, pp. 477, 484, } \\ & \text { 490, 498, 503, 511 } \\ & \text { Open Ended, pp. 476, 478, 482, } \\ & \text { 488, 495, 501, 509 } \end{aligned}$	Modeling: TWE pp. 498, 504 Speaking: TWE p. 478 Writing: TWE pp. 484, 490, 511 Open-Ended Assessment, CRM p. 565	
	Chapter Assessment	Study Guide, pp. 513-516 Practice Test, p. 517	Multiple-Choice Tests (Forms 1, 2A, 2B), CRM pp. 553-558 Free-Response Tests (Forms 2C, 2D, 3), CRM pp. 559-564 Vocabulary Test/Review, CRM p. 566	TestCheck and Worksheet Builder (see below) MindJogger Videoquizzes www.algebra2.com/ vocabulary_review www.algebra2.com/chapter_test

Key to Abbreviations: TWE $=$ Teacher Wraparound Edition; CRM $=$ Chapter Resource Masters

Additional Intervention Resources

The Princeton Review's Cracking the SAT \& PSAT The Princeton Review's Cracking the ACT

ALEKS

TestCheck and Worksheet Builder

This networkable software has three modules for intervention and assessment flexibility:

- Worksheet Builder to make worksheet and tests
- Student Module to take tests on screen (optional)
- Management System to keep student records (optional)

Special banks are included for SAT, ACT, TIMSS, NAEP, and End-of-Course tests.

Intervention Technology

Alge2PASS: Tutorial Plus CD-ROM offers a complete, self-paced algebra curriculum.

Algebra 2 Lesson	Alge2PASS Lesson
$9-1$	$17 \quad$ Simplifying Rational Expressions
$9-2$	$18 \quad$ Operations with Rational Functions

ALEKS is an online mathematics learning system that adapts assessment and tutoring to the student's needs. Subscribe at www.k12aleks.com.

Intervention at Home

Log on for student study help.

- For each lesson in the Student Edition, there are Extra Examples and Self-Check Quizzes. www.algebra2.com/extra_examples www.algebra2.com/self_check_quiz
- For chapter review, there is vocabulary review, test practice, and standardized test practice.
www.algebra2.com/vocabulary_review
www.algebra2.com/chapter_test www.algebra2.com/standardized_test

For more information on Intervention and

 Assessment, see pp. T8-T11.
Reading and Writing in Mathematics

Glencoe Algebra 2 provides numerous opportunities to incorporate reading and writing into the mathematics classroom.

Student Edition

- Foldables Study Organizer, p. 471
- Concept Check questions require students to verbalize and write about what they have learned in the lesson. (pp. 476, 481, 488, 495, 501, 509, 513)
- Writing in Math questions in every lesson, pp. 477, 484, 490, 498, 503, 511
- WebQuest, p. 502

Teacher Wraparound Edition

- Foldables Study Organizer, pp. 471, 513
- Study Notebook suggestions, pp. 476, 481, 488, 495, 501, 509
- Modeling activities, pp. 498, 504
- Speaking activities, p. 478
- Writing activities, pp. 484, 490, 511
- ELL Resources, pp. 470, 477, 483, 489, 496, 503, 510, 513

Additional Resources

- Vocabulary Builder worksheets require students to define and give examples for key vocabulary terms as they progress through the chapter. (Chapter 9 Resource Masters, pp. vii-viii)
- Reading to Learn Mathematics master for each lesson (Chapter 9 Resource Masters, pp. 521, 527, 533, 539, 545, 551)
- Vocabulary PuzzleMaker software creates crossword, jumble, and word search puzzles using vocabulary lists that you can customize.
- Teaching Mathematics with Foldables provides suggestions for promoting cognition and language.
- Reading and Writing in the Mathematics Classroom
- WebQuest and Project Resources

[^0]
What You'll Learn

Have students read over the list of objectives and make a list of any words with which they are not familiar.

Why It's Important

Point out to students that this is only one of many reasons why each objective is important. Others are provided in the introduction to each lesson.

Lesson	NCTM Standards	Local Objectives
$9-1$	$2,6,8,9,10$	
$9-2$	$2,6,8,9,10$	
$9-3$	$2,6,8,9,10$	
$9-3$ Follow-Up	$2,6,8$	
$9-4$	$1,2,6,8,9,10$	
$9-5$	$2,6,8,9,10$	
$9-6$	$2,6,8,9,10$	
$9-6$ Follow-Up	2,6	

Key to NCTM Standards:

1=Number \& Operations, $2=$ Algebra,
3=Geometry, 4=Measurement,
5=Data Analysis \& Probability, 6=Problem Solving, 7=Reasoning \& Proof,
$8=$ Communication, $9=$ Connections, 10=Representation

Rational Expressions and Equations

What You'll Learn

- Lessons 9-1 and 9-2 Simplify rational expressions.
- Lesson 9-3 Graph rational functions.
- Lesson 9-4 Solve direct, joint, and inverse variation problems.
- Lesson 9-5 Identify graphs and equations as different types of functions.
- Lesson 9-6 Solve rational equations and inequalities.

Why It's Important

Rational expressions, functions, and equations can be used to solve problems involving mixtures, photography, electricity, medicine, and travel, to name a few. Direct, joint, and inverse variation are important applications of rational expressions. For example, scuba divers can use direct variation to determine the amount of pressure at various depths. You will learn how to determine the amount of pressure exerted on the ears of a diver in Lesson 9-4.

Key Vocabulary

- rational expression (p. 472)
- asymptote (p. 485)
- point discontinuity (p. 485)
- direct variation (p. 492)
- inverse variation (p. 493)

Getting Started

Prerequisite Skills To be successful in this chapter, you'll need to master these skills and be able to apply them in problem-solving situations. Review these skills before beginning Chapter 9 .

For Lesson 9-1
Solve Equations with Rational Numbers
Solve each equation. Write your answer in simplest form. (For review, see Lesson 1-3.)

1. $\frac{8}{5} x=\frac{4}{15} \frac{1}{6}$
2. $\frac{27}{14} t=\frac{6}{7} \frac{4}{9}$
3. $\frac{3}{10}=\frac{12}{25} a \frac{5}{8}$
4. $\frac{6}{7}=9 m \frac{2}{21}$
5. $\frac{9}{8} b=1816$
6. $\frac{6}{7} s=\frac{3}{4} \frac{7}{8}$
7. $\frac{1}{3} r=\frac{5}{6} 2 \frac{1}{2}$
8. $\frac{2}{3} n=710 \frac{1}{2}$
9. $\frac{4}{5} r=\frac{5}{6} 1 \frac{1}{24}$

For Lesson 9-3

Determine Asymptotes and Graph Equations
Draw the asymptotes and graph each hyperbola. (For review, see Lesson 8-5.)
10. $\frac{(x-3)^{2}}{4}-\frac{(y+5)^{2}}{9}=1$
11. $\frac{y^{2}}{4}-\frac{(x+4)^{2}}{1}=1$
12. $\frac{(x+2)}{4}-\frac{(y-3)^{2}}{25}=1$
10-12. See margin.

For Lesson 9-4

Solve Proportions
Solve each proportion.
13. $\frac{3}{4}=\frac{r}{16} 12$
14. $\frac{8}{16}=\frac{5}{y} 10$
15. $\frac{6}{8}=\frac{m}{20} 15$
16. $\frac{t}{3}=\frac{5}{24} \frac{5}{8}$
17. $\frac{5}{a}=\frac{6}{18} 15$
18. $\frac{3}{4}=\frac{b}{6} 4 \frac{1}{2}$
19. $\frac{v}{9}=\frac{12}{18} 6$
20. $\frac{7}{p}=\frac{1}{4} 28$
21. $\frac{2}{5}=\frac{3}{z} 7 \frac{1}{2}$

COLDABLES'
 Study Organizer

Make this Foldable to help you organize what you learn about rational expressions and equations. Begin with a sheet of plain $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ paper.

Step 2 Cut and Label

$$
\text { sep } 4 \text { Cut and Laver }
$$

Reading and Writing As you read and study the chapter, write notes and examples for each concept under the tabs.

FOLDABLES

Study Organizer

For more information about Foldables, see Teaching Mathematics with Foldables.

Organization of Data with a Concept Map Concept maps are visual study guides that allow students to view main ideas or key words and use them to recall and organize what they know and what they have learned. Begin by writing Rational on the base of the Foldable and the words Expressions, Functions, and Equations on the tabs of the concept map. Under the tabs of their Foldable, have students take notes, define terms, record concepts, and write examples. Students can check their responses and memory by reviewing their notes under the tabs.

Getting Started

This section provides a review of the basic concepts needed before beginning Chapter 9. Page references are included for additional student help.

Prerequisite Skills in the Getting Ready for the Next Lesson section at the end of each exercise set review a skill needed in the next lesson.

For Lesson	Prerequisite Scill
$9-2$	Solving Equations (p. 478)
$9-3$	Graphing Hyperbolas (p. 484)
$9-4$	Solving Proportions (p. 490)
$9-5$	Special Functions (p. 498)
$9-6$	Least Common Multiples of Polynomials (p. 504)

Answers

10.

11.

12.

1 Focus

5-Minute Check

Transparency 9-1 Use as a quiz or review of Chapter 8.

Mathematical Background notes

 are available for this lesson on p. 470 C
How
 are rational expressions used in mixtures?

Ask students:

- How can the term rational expression help you recall what it means? The word "rational" contains the word "ratio."
- What does it mean to say that 6 is the GCF of 12 and 30 ? It is the greatest integer that divides into both 12 and 30 without a remainder.

Multiplying and Dividing Rational Expressions

What You'll Learn

- Simplify rational expressions.

Vocabulary

rational expression
complex fraction

- Simplify complex fractions.

How are rational expressions used in mixtures?

The Goodie Shoppe sells candy and nuts by the pound. One of their items is a mixture of peanuts and cashews. This mixture is made with 8 pounds of peanuts and 5 pounds of cashews.
Therefore, $\frac{8}{8+5}$ or $\frac{8}{13}$ of the mixture is peanuts. If the store manager adds an additional x pounds of peanuts to the mixture, then $\frac{8+x}{13+x}$ of the mixture will be peanuts.

SIMPLIFY RATIONAL EXPRESSIONS A ratio of two polynomial expressions

 such as $\frac{8+x}{13+x}$ is called a rational expression. Because variables in algebra represent real numbers, operations with rational numbers and rational expressions are similarTo write a fraction in simplest form, you divide both the numerator and denominator by their greatest common factor (GCF). To simplify a rational expression, you use similar properties.

Example 1 Simplify a Rational Expression

a. Simplify $\frac{2 x(x-5)}{(x-5)\left(x^{2}-1\right)}$.

Look for common factors.

$$
\begin{aligned}
& \frac{2 x(x-5)}{(x-5)\left(x^{2}-1\right)}=\frac{2 x}{x^{2}-1} \cdot \frac{x-5}{x-5} \\
&=\frac{2 x}{x^{2}-1} \quad \text { How is this similar to simplifying } \frac{10}{15} ? \\
& \text { Simplify. }
\end{aligned}
$$

b. Under what conditions is this expression undefined?

Just as with a fraction, a rational expression is undefined if the denominator is equal to 0 . To find when this expression is undefined, completely factor the original denominator.
$\frac{2 x(x-5)}{(x-5)\left(x^{2}-1\right)}=\frac{2 x(x-5)}{(x-5)(x-1)(x+1)} \quad x^{2}-1=(x-1)(x+1)$
The values that would make the denominator equal to 0 are 5,1 , or -1 . So the expression is undefined when $x=5, x=1$, or $x=-1$. These numbers are called excluded values.

Resource Manager

Workbook and Reproducible Masters

Chapter 9 Resource Masters

- Study Guide and Intervention, pp. 517-518
- Skills Practice, p. 519
- Practice, p. 520
- Reading to Learn Mathematics, p. 521
- Enrichment, p. 522

School-to-Career Masters, p. 17 Teaching Algebra With Manipulatives Masters, p. 272

Transparencies

5-Minute Check Transparency 9-1
Answer Key Transparencies

- Technology

Alge2PASS: Tutorial Plus, Lesson 17
Interactive Chalkboard

Standardized Example 2 Use the Process of Elimination

Test Practice
(A) (B) C D

The
 Princeton

 Test-Taking TipSometimes you can save time by looking at the possible answers and eliminating choices, rather than actually evaluating an expression or solving an equation.

Multiple-Choice Test Item

For what value(s) of x is $\frac{x^{2}+x-12}{x^{2}+7 x+12}$ undefined?
(A) $-4,-3$
(B) -4
(C) 0
(D) $-4,3$

Read the Test Item

You want to determine which values of x make the denominator equal to 0

Solve the Test Item

Look at the possible answers. Notice that if x equals 0 or a positive number, $x^{2}+7 x+12$ must be greater than 0 . Therefore, you can eliminate choices C and D . Since both choices A and B contain -4, determine whether the denominator equals 0 when $x=-3$.

$$
\begin{aligned}
x^{2}+7 x+12 & =(-3)^{2}+7(-3)+12 & & x=-3 \\
& =9-21+12 & & \text { Multiply. } \\
& =0 & & \text { Simplify. }
\end{aligned}
$$

Since the denominator equals 0 when $x=-3$, the answer is A .

Sometimes you can factor out -1 in the numerator or denominator to help simplify rational expressions.

Example 3 Simplify by Factoring Out -1 Simplify $\frac{z^{2} w-z^{2}}{z^{3}-z^{3} w}$.

$$
\begin{array}{rlrl}
\frac{z^{2} w-z^{2}}{z^{3}-z^{3} w} & =\frac{z^{2}(w-1)}{z^{3}(1-w)} & & \text { Factor the numerator and the denominator. } \\
& =\frac{z^{2}(-1)(1-w)}{z^{3}(1-w)} & w-1=-(-w+1) \text { or }-1(1-w) \\
& =\frac{-1}{z} \text { or }-\frac{1}{z} & & \text { Simplify. }
\end{array}
$$

Remember that to multiply two fractions, you first multiply the numerators and then multiply the denominators. To divide two fractions, you multiply by the multiplicative inverse, or reciprocal, of the divisor.

$$
\begin{aligned}
& \text { Multiplication } \\
& \begin{aligned}
\frac{5}{6} \cdot \frac{4}{15} & =\frac{1}{2 \cdot 3 \cdot 2 \cdot 2} \\
& =\frac{2}{3 \cdot 3 \cdot 3} \text { or } \frac{2}{9}
\end{aligned}
\end{aligned}
$$

Division

$$
\begin{aligned}
\frac{3}{7} \div \frac{9}{14} & =\frac{3}{7} \cdot \frac{14}{9} \\
& =\frac{1}{7 \cdot 2 \cdot \frac{1}{7} \cdot 3 \cdot 3} \\
& =\frac{2}{3}
\end{aligned}
$$

The same procedures are used for multiplying and dividing rational expressions.

Example 2 Make sure students know to study only the denominator to determine the values that make the expression undefined. In this example, the numerator is irrelevant.

2 Teach

SIMPLIFY RATIONAL EXPRESSIONS

In-Class Examples

Power
 Point ${ }^{\circledR}$

1
a. Simplify $\frac{3 y(y+7)}{(y+7)\left(y^{2}-9\right)}$. $\frac{3 y}{y^{2}-9}$
b. Under what conditions is this expression undefined? when $y=-7, y=-3$, or $y=3$

Teaching Tip Ask students to explain why division by zero is undefined.
2 For what value(s) of p is $\frac{p^{2}+2 p-3}{p^{2}-2 p-15}$ undefined? \mathbf{B}
A 5
B $-3,5$
C $3,-5$
D 5, 1, - 3

3 Simplify $\frac{a^{4} b-2 a^{4}}{2 a^{3}-a^{3} b}$. $-a$

Teaching Tip Point out that

 rational expressions are usually used without specifically excluding those values that make the expression undefined. It is understood that only those values for which the expression has meaning are included.

This CD-ROM is a customizable Microsoft $®$ PowerPoint $®$ presentation that includes:

- Step-by-step, dynamic solutions of each In-Class Example from the Teacher Wraparound Edition
- Additional, Your Turn exercises for each example
- The 5-Minute Check Transparencies
- Hot links to Glencoe Online Study Tools

4 Simplify each expression
a. $\frac{8 x}{21 y^{3}} \cdot \frac{7 y^{2}}{16 x^{3}} \frac{1}{6 x^{2} y}$
b. $\frac{5 a^{4} c}{12 b} \cdot \frac{24 b c^{2}}{15 a^{3} b^{2}} \frac{2 a c^{3}}{3 b^{2}}$

5 Simplify $\frac{10 p s^{2}}{3 c^{2} d} \div \frac{5 p s}{6 c^{2} d^{2}}$. $4 d s$
Teaching Tip To help students understand why division is equivalent to multiplying by the reciprocal, discuss simple examples such as this: dividing 18 marbles between 2 people means that each person gets one-half, or 9 , of the marbles.

Key Concept

Multiplying Rational Expressions

- Words To multiply two rational expressions, multiply the numerators and the denominators.
- Symbols For all rational expressions $\frac{a}{b}$ and $\frac{c}{d^{\prime}} \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d^{\prime}}$, if $b \neq 0$ and $d \neq 0$.

Dividing Rational Expressions

- Words To divide two rational expressions, multiply by the reciprocal of the divisor.
- Symbols For all rational expressions $\frac{a}{b}$ and $\frac{c}{d^{\prime}} \frac{a}{b} \div \frac{c}{d}=\frac{a}{b} \cdot \frac{d}{c}=\frac{a d}{b c^{\prime}}$

$$
\text { if } b \neq 0, c \neq 0 \text {, and } d \neq 0 .
$$

The following examples show how these rules are used with rational expressions.

Study Tip

Alternative Method When multiplying rational expressions, you can multiply first and then divide by the common factors. For instance, in Example 4,
$\frac{4 a}{5 b} \cdot \frac{15 b^{2}}{}=60 a b^{2}$
$5 b \cdot \frac{16 a^{3}}{16}=\frac{60 b^{3}}{80 a^{3} b}$
Now divide the numerator and denominator by the common factors.
$\begin{aligned} & \frac{3}{} 1 b^{b} \cdot \\ & 80 a b^{2} \\ & 80 a^{3} b b\end{aligned}=\frac{3 b}{4 a^{2}}$

Example 4 Multiply Rational Expressions

Simplify each expression.
a. $\frac{4 a}{5 b} \cdot \frac{15 b^{2}}{16 a^{3}}$

$$
\begin{array}{rlrl}
\frac{4 a}{5 b} \cdot \frac{15 b^{2}}{16 a^{3}} & =\frac{1}{2 \cdot{ }_{2}^{2} \cdot a \cdot a \cdot \frac{1}{5} \cdot \frac{1}{b \cdot b} \cdot b} \\
& =\frac{3 \cdot b \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot a \cdot a \cdot a}{1} & & \text { Factor. } \\
& =2 \cdot a \cdot a & & \text { Simplify. } \\
& =\frac{3 b}{4 a^{2}} & & \text { Simplify. }
\end{array}
$$

b. $\frac{8 t^{2} s}{5 r^{2}} \cdot \frac{15 s r}{12 t^{3} s^{2}}$

$$
\begin{aligned}
& =\frac{2}{r t} \quad \text { Simplify. }
\end{aligned}
$$

Example 5 Divide Rational Expressions

$$
\begin{aligned}
& \text { Simplify } \frac{4 x^{2} y}{15 a^{3} b^{3}} \div \frac{2 x y^{2}}{5 a b^{3}} \text {. } \\
& \frac{4 x^{2} y}{15 a^{3} b^{3}} \div \frac{2 x y^{2}}{5 a b^{3}}=\frac{4 x^{2} y}{15 a^{3} b^{3}} \cdot \frac{5 a b^{3}}{2 x y^{2}} \quad \text { Multiply by the reciprocal of the divisor. }
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{2 \cdot x}{3 \cdot a \cdot a \cdot y} \quad \text { Simplify. } \\
& =\frac{2 x}{3 a^{2} y} \quad \text { Simplify. }
\end{aligned}
$$

D A I L Y INIERVENTION

Unlocking Misconceptions

- Simplifying the Quotient of Opposites Help students understand why the quotient of $(x-y)$ and $(y-x)$ is -1 by pointing out that these two expressions are opposites (or additive inverses) just as are 2 and -2 .
- Division by Zero By definition, $\frac{a}{b}=c$ if $a=b c$. If students think $\frac{6}{0}=0$, use the definition to show $\frac{6}{0}=0$ if $6=0 \cdot 0$, which is false.

These same steps are followed when the rational expressions contain numerators and denominators that are polynomials.

6 Simplify each expression.
a. $\frac{k-3}{k+1} \div \frac{k^{2}-4 k+3}{1-k^{2}} .-1$
b. $\frac{2 d+6}{d^{2}+d-2} \div \frac{d+3}{d^{2}+3 d+2}$
$\frac{2(d+1)}{d-1}$

SIMPLIFY COMPLEX FRACTIONS

In-Class Example

7 Simplify $\frac{\frac{x^{2}}{9 x^{2}-4 y^{2}}}{\frac{x^{3}}{2 y-3 x}}$
$-\frac{1}{x(3 x+2 y)}$ or $\frac{-1}{x(3 x+2 y)}$
SIMPLIFY COMPLEX FRACTIONS A complex fraction is a rational
Point

Have students replace a with a value such as 2. Then simplify both $\frac{a+2}{a+3} \div \frac{a^{2}+a-12}{a^{2}-9}$ and $\frac{a+2}{a+4}$. The values are the same.

$$
\begin{array}{ll}
=\frac{(a+2)(a+3)(a-3)}{(a+3)(a+4)(a-3)} & \text { Factor. } \\
=\frac{a+2}{a+4} & \text { Simplify. }
\end{array}
$$

expression whose numerator and/or denominator contains a rational expression. The expressions below are complex fractions.

$$
\frac{\frac{a}{5}}{3 b} \quad \frac{\frac{3}{t}}{t+5} \quad \frac{\frac{m^{2}-9}{8}}{\frac{3-m}{12}} \quad \frac{\frac{1}{p}+2}{\frac{3}{p}-4}
$$

Remember that a fraction is nothing more than a way to express a division problem. For example, $\frac{2}{5}$ can be expressed as $2 \div 5$. So to simplify any complex fraction,
rewrite it as a division expression and use the rules for division.
Example 7 Simplify a Complex Fraction

$$
\begin{aligned}
& \text { Simplify } \frac{\frac{r^{2}}{r^{2}-25 s^{2}}}{\frac{r}{5 s-r}} \text {. } \\
& \begin{aligned}
& \frac{r^{2}}{r^{2}-25 s^{2}} \\
& \frac{r}{5 s-r}=\frac{r^{2}}{r^{2}-25 s^{2}} \div \frac{r}{5 s-r} \quad \text { Express as a division expression. } \\
&=\frac{r^{2}}{r^{2}-25 s^{2}} \cdot \frac{5 s-r}{r} \quad \text { Multiply by the reciprocal of the divisor. } \\
&=\frac{1}{(r+5 s)\left(\frac{r-5 s) r}{1}\right.} \quad \text { Factor. } \\
&=\frac{-r}{r+5 s} \text { or }-\frac{r}{r+5 s} \quad \text { Simplify. }
\end{aligned}
\end{aligned}
$$

Example 6 Polynomials in the Numerator and Denominator

Simplify each expression.
a. $\frac{x^{2}+2 x-8}{x^{2}+4 x+3} \cdot \frac{3 x+3}{x-2}$

$$
\begin{array}{rlrl}
\frac{x^{2}+2 x-8}{x^{2}+4 x+3} \cdot \frac{3 x+3}{x-2} & =\frac{(x+4)(x-2)}{(x+3)(x+1)} \cdot \frac{3(x+1)}{(x-2)} & \text { Factor. } \\
& =\frac{3(x+4)}{(x+3)} & & \text { Simplify. } \\
& =\frac{3 x+12}{x+3} & & \text { Simplify. }
\end{array}
$$

b. $\frac{a+2}{a+3} \div \frac{a^{2}+a-12}{a^{2}-9}$

$$
\frac{a+2}{a+3} \div \frac{a^{2}+a-12}{a^{2}-9}=\frac{a+2}{a+3} \cdot \frac{a^{2}-9}{a^{2}+a-12} \quad \text { Multiply by the reciprocal of the divisor. }
$$

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 9.
- add the Key Concepts in this lesson to their notebook, adding their own examples for each one. - add the Test-Taking Tip to their list of test-taking tips for review as they prepare for standardized tests.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..
 Organization by Objective
 - Simplify Rational
 Expressions: 14-35

- Simplify Complex Fractions: 36-41

Odd/Even Assignments

Exercises 14-43 and 46-47 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15-37 odd, 43, 47-70
Average: $15-43$ odd, 44,45 , 47-70
Advanced: 14-42 even, 44-46, 48-64 (optional: 65-70)

Answer

2. To multiply rational numbers or rational expressions, you multiply the numerators and multiply the denominators. To divide rational numbers or rational expressions, you multiply by the reciprocal of the divisor. In either case, you can reduce your answer by dividing the numerator and the denominator of the results by any common factors.

Check for Understanding
Concept Check 1. OPEN ENDED Write two rational expressions that are equivalent.

1. Sample answer:

4 4(x+2)
6, $6(x+2)$

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4-6$	1,3
$7-10$	$4-6$
11,12	7
13	2

2. Explain how multiplication and division of rational expressions are similar to multiplication and division of rational numbers. See margin.
3. Determine whether $\frac{2 d+5}{3 d+5}=\frac{2}{3}$ is sometimes, always, or never true. Explain. Never; solving the equation using cross products leads to $15=10$, which is never true.
Simplify each expression.
4. $\frac{45 m n^{3}}{20 n^{7}} \frac{9 m}{4 n^{4}}$
5. $\frac{a+b}{a^{2}-b^{2}} \frac{1}{a-b}$
6. $\frac{6 y^{3}-9 y^{2}}{2 y^{2}+5 y-12} \frac{3 y^{2}}{y+4}$
7. $\frac{2 a^{2}}{5 b^{2} c} \cdot \frac{3 b c^{2}}{8 a^{2}} \frac{3 c}{20 b}$
8. $\frac{35}{16 x^{2}} \div \frac{21}{4 x} \frac{5}{12 x}$
9. $\frac{3 t+6}{7 t-7} \cdot \frac{14 t-14}{5 t+10} \frac{6}{5}$
10. $\frac{12 p^{2}+6 p-6}{4(p+1)^{2}} \div \frac{6 p-3}{2 p+10}$ $\frac{p+5}{p+1}$
11. $\frac{\frac{c^{3} d^{3}}{a}}{\frac{x c^{2} d}{a x^{2}}} \operatorname{cd}^{2} \boldsymbol{X}$
12. $\frac{\frac{2 y}{y^{2}-4}}{\frac{3}{y^{2}-4 y+4}} \frac{2 y(y-2)}{3(y+2)}$
13. Identify all of the values of y for which the expression $\frac{y-4}{y^{2}-4 y-12}$ is undefined. D
(A) $-2,4,6$
(B) $-6,-4,2$
(C) $-2,0,6$
(D) $-2,6$

夫 indicates increased difficulty

Practice and Apply

Homework Help

For Exercises	See Examples
$14-21$	1,3
$22-35$	$4-6$
$36-41$	7
$42,43,50$	2

Extra Practice See page 847.
32. $\frac{5(x-3)}{2(x+1)}$

Standardized
Test Practice
(A) B C C

Simplify each expression.
14. $\frac{30 b c}{12 b^{2}} \frac{5 c}{2 b}$
15. $\frac{-3 m n^{4}}{21 m^{2} n^{2}} \frac{-n^{2}}{7 m}$
16. $\frac{\left(-3 x^{2} y\right)^{3}}{9 x^{2} y^{2}}-3 x^{4} y$
17. $\frac{\left(-2 r s^{2}\right)^{2}}{12 r^{2} s^{3}} \frac{s}{3}$
18. $\frac{5 t-5}{t^{2}-1} \frac{5}{t+1}$
19. $\frac{c+5}{2 c+10} \frac{1}{2}$
20. $\frac{y^{2}+4 y+4}{3 y^{2}+5 y-2} \frac{y+2}{3 y-1}$
21. $\frac{a^{2}+2 a+1}{2 a^{2}+3 a+1} \frac{a+1}{2 a+1}$
22. $\frac{3 x y z}{4 x z} \cdot \frac{6 x^{2}}{3 y^{2}} \frac{3 x^{2}}{2 y}$
23. $\frac{-4 a b}{21 c} \cdot \frac{14 c^{2}}{18 a^{2}}-\frac{4 b c}{27 a}$
24. $\frac{3}{5 d} \div\left(\frac{-9}{15 d f}\right)-f$
25. $\frac{p^{3}}{2 q} \div \frac{-p}{4 q}-2 p^{2}$
26. $\frac{2 x^{3} y}{z^{5}} \div\left(\frac{4 x y}{z^{3}}\right)^{2} \frac{x z}{8 y}$
27. $\frac{x y}{a^{3}} \div\left(\frac{x y}{a b}\right)^{3} \frac{b^{3}}{x^{2} y^{2}}$
28. $\frac{3 t^{2}}{t+2} \cdot \frac{t+2}{t^{2}} 3$
29. $\frac{4 w+4}{3} \cdot \frac{1}{w+1} \frac{4}{3}$
30. $\frac{4 t^{2}-4}{9(t+1)^{2}} \cdot \frac{3 t+3}{2 t-2} \frac{2}{3}$
32. $\frac{5 x^{2}+10 x-75}{4 x^{2}-24 x-28} \cdot \frac{2 x^{2}-10 x-28}{x^{2}+7 x+10}$
34. $\frac{r^{2}+2 r-8}{r^{2}+4 r+3} \div \frac{r-2}{3 r+3} \frac{3(r+4)}{r+3}$
31. $\frac{3 p-21}{p^{2}-49} \cdot \frac{p^{2}+7 p}{3 p} 1$
33. $\frac{w^{2}-11 w+24}{w^{2}-18 w+80} \cdot \frac{w^{2}-15 w+50}{w^{2}-9 w+20} \frac{w-3}{w-4}$
35. $\frac{a^{2}+2 a-15}{a-3} \div \frac{a^{2}-4}{2} \frac{2(a+5)}{(a-2)(a+2)}$

476 Chapter 9 Rational Expressions and Equations

D A \| L Y

INIERVENIION

Differentiated Instruction

Intrapersonal Have students think about what aspects of multiplying and dividing rational expressions they find most challenging. Have them write a paragraph explaining why, and what steps they can take to help their challenges or confusions.

* 36. $\frac{\frac{m^{3}}{3 n}}{-\frac{m^{4}}{9 n^{2}}}-\frac{3 n}{m}$

37. $\frac{\frac{p^{3}}{2 q}}{\frac{-p^{2}}{4 q}}-2 p$
38. $\frac{\frac{m+n}{5}}{\frac{m^{2}+n^{2}}{5}} \frac{m+n}{m^{2}+n^{2}}$
*39. $\frac{\frac{x+y}{2 x-y}}{\frac{x+y}{2 x+y}} \frac{2 x+y}{2 x-y}$
39. $\frac{\frac{6 y^{2}-6}{8 y^{2}+8 y}}{\frac{3 y-3}{4 y^{2}+4 y}} y+1$
40. $\frac{\frac{5 x^{2}-5 x-30}{45-15 x}}{\frac{6+x-x^{2}}{4 x-12}} \frac{4}{3}$
41. Under what conditions is $\frac{2 d(d+1)}{(d+1)\left(d^{2}-4\right)}$ undefined? $d=-2,-1$, or 2
42. Under what conditions is $\frac{a^{2}+a b+b^{2}}{a^{2}-b^{2}}$ undefined? $\boldsymbol{a}=-\boldsymbol{b}$ or \boldsymbol{b}

More About.

Basketball .
After graduating from the U.S. Naval Academy, David Robinson became the NBA Rookie of the Year in 1990. He has played basketball in 3 different Olympic Games. Source: NBA

- BASKETBALL For Exercises 44 and 45, use the following information.

At the end of the 2000-2001 season, David Robinson had made 6827 field goals out of 13,129 attempts during his NBA career.
44. Write a fraction to represent the ratio of the number of career field goals made to career field goals attempted by David Robinson at the end of the 2000-2001 season. $\frac{6827}{13129}$
45. Suppose David Robinson attempted a field goals and made m field goals during the 2001-2002 season. Write a rational expression to represent the number of career field goals made to the number of career field goals attempted at the end of the 2001-2002 season. $\frac{6827+m}{13,129+m}$

$13,129+a$

Online Research Data Update What are the current scoring statistics of your favorite NBA player? Visit www.algebra2.com/data_update to learn more.
46. GEOMETRY A parallelogram with an area of $6 x^{2}-7 x-5$ square units has a base of $3 x-5$ units. Determine the height of the parallelogram. $2 x+1$ units
47. GEOMETRY Parallelogram L has an area of $3 x^{2}+10 x+3$ square meters and a height of $3 x+1$ meters. Parallelogram M has an area of $2 x^{2}-13 x+20$ square meters and a height of $x-4$ meters. Find the area of rectangle N.
$\left(2 x^{2}+x-15\right) m^{2}$

48. CRITICAL THINKING Simplify $\frac{\left(a^{2}-5 a+6\right)^{-1}}{(a-2)^{-2}} \div \frac{(a-3)^{-1}}{(a-2)^{-2}} \cdot \frac{1}{a-2}$
49.

Answer the question that was posed at the beginning of the lesson. See pp. 519A-519D.

How are rational expressions used in mixtures?
Include the following in your answer:

- an explanation of how to determine whether the rational expression representing the nut mixture is in simplest form, and
- an example of a mixture problem that could be represented by $\frac{8+x}{13+x+y}$.

Enrichment, p. 522

Reading Algebra
In mathematics, the term group has a special meaning. The following numbered s.
of a group.
01 To be a group, a set of elements and a binary operation must satisfy four
conditions: the set must be closed under the operation the oreration conditions: the set must be closed under the operation, the operatio
must be associative, there must be an identity element, and every must be associative, there must
element must have an inverse.
02 The following six functions form a group under the operation of composition of functions: $f_{1}(x)=x, f_{2}(x)=\frac{1}{x}, f_{3}(x)=1-x$, $f_{4}(x)=\frac{(x-1)}{x}, f_{5}(x)=\frac{x}{(x-1)}$, and $f_{6}(x)=\frac{1}{(1-x)}$
${ }^{03} \begin{aligned} & \text { This group is an example of } \\ & f_{3} \circ f_{2}=f_{4}, \text { but } f_{2}{ }^{\circ}{ }_{3}=f_{6} \text {. }\end{aligned}$
$f_{3} \circ f_{2}=f_{4}$, but $f_{2} \circ \circ_{3}=f_{6}$.
.
04 Some experimentation with this group will show that the identity
element is $f_{\text {. }}$.

Study Guide and Intervention, p. 517 (shown) and p. 518

a. $\frac{244^{5} b^{2}}{(2 a b)^{4}}$

b. $\frac{3 r^{2} s^{3}}{5 t^{2}} \cdot \frac{20 t^{2}}{9 r^{-1}}$

c. $\frac{x^{2}+8 x+16}{2 x-2} \div \frac{x^{2}+2 x-8}{x-1}$
$\frac{x^{2}+8 x+16}{2 x-2} \div \frac{x^{2}+2 x-8}{x-1}=\frac{x^{2}+8 x+16}{2 x-2} \cdot \frac{x-1}{x^{2}+2 x-8}$
$=\frac{(x+4(x+4) x-1)}{2(x-1 \pi x-2)(x)}=\frac{x+4}{2(x-2)}$

Exercises

$\begin{aligned} & \text { Simplify each expression. } \\ & \text { 1. } \frac{\left(-2 a b b^{3}\right)^{3}}{20 a b^{4}}-\frac{2 a^{2} b^{2}}{5}\end{aligned}$ 2. $\frac{4 x^{2}-12 x+9}{9-6 x} \frac{3-2 x}{3}$ 3. $\frac{x^{2}+x-6}{x^{2}-6 x-27} \frac{x-2}{x-9}$
4. $\frac{3 m^{3}-3 m}{6 m^{4}} \cdot \frac{4 m^{5}}{m+1} 2 m^{2}(m-1) \quad$ 5. $\frac{c^{2}-3 c}{c^{2}-25} \cdot \frac{c^{2}+4 c-5}{c^{2}-4 c+3} \frac{c}{c-5}$
6. $\frac{(m-3)^{2}}{m^{2}-6 m+9} \cdot \frac{m^{3}-9 m}{m^{2}-9} m \quad$ 7. $\frac{6 y^{4}}{25 z^{4}}+\frac{18 x z^{2}}{5 y} \frac{y^{5}}{15 z^{5}}$
8. $\frac{16 p^{2}-8 p+1}{14 p p^{4}} \div \frac{4 p^{2}+7 p-2}{7 p^{5}} \quad$ 9. $\frac{2 m-1}{m^{2}-3 m-10} \div \frac{4 m^{2}-1}{4 m+8}$
$\frac{p(4 p-1)}{2(p+2)} \quad \frac{4}{(2 m+1)(m-5)}$

Skils Practice, P. 519 and Practice, P. 520 (shown)

volume of the rectangular pyramid. $\frac{x+5}{6} \mathrm{~cm}^{3}$

Reading to Learn ELL
Mathematics, p. 521

Read the introduction to Lesson $9-1$ at the top of page 472 in your textbook
Suppose that the Goodie Shoppe also sells a candy mixt
Suppose that the Goodie Shoppe also sells a candy mixture of choocolate
mints and caramels. If this mixture is made with 4 pounds of chocolate
mints and 3 pounds of caramels, then $-\frac{4}{7}$ of the mixture is
mints and $\frac{3}{7}$ of the mixture is caramels.
If the store manager adds another y pounds of mints to the mixture, what
Ifthe
fraction of the mixture will be mints?
$4+y$
$\frac{4+y}{7+y}$
Reading the Lesson

1. a. In order to simplify a rational number or rational expression, factor the greatest common factor
b. A rational expression is undefined when its denominator is equal to 0 To find the values that make the expression undefined, completely factor the original denominator and set each factor equal to - 0
2. a. To multiply two rational expressions, multiply the numerators and b. To divide two rational expressions, multiply ${ }^{\text {by }}$ the reciprocal of the divisor
3. a. Which of the following exprex fractions? ii, iv, v,

How is multitiplication used inenss a multitiplication or division problem? division
To divivide the numerato of the fraction? Sample answe To divide the numerator of the complex fraction by the denominator, ping You Remember 4. One way to remember something new is to see how it is similar to something you
already know How can your knowledge of ofvision of fraction in aritmentic help you to
understand how to divide rational expressions? Sample answer: To divide rational expressions, multiply the first expression by the reciprocal of the
second This is the same in second. This is the same "invert and multiply" process that is used when
dividing arithmetic fractions.

4 Assess

Open-Ended Assessment

Speaking Have students explain the procedures and cautions for multiplying and dividing rational expressions, demonstrating with examples.

Tips for New Teachers

 Intervention Encourage students who are having difficulty with these problems to use several steps, writing each one below the previous one, and keeping each line equivalent to the one above. Caution them to make only one change per step.
Getting Ready for
 Lesson 9-2

PREREQUISITE SKILL Students will add and subtract rational expressions in Lesson 9-2. As with equations containing fractions, students will find common denominators, combine like terms, and simplify equations. Use Exercises 65-70 to determine your students' familiarity with solving equations containing fractions.

Answers

54.

55.

Standardized
Test Practice
(A) B (C) D
50. For what value(s) of x is the expression $\frac{4 x}{x^{2}-x}$ undefined? \mathbf{C}
(A) $-1,1$
(B) $-1,0,1$
(C) 0,1
(D) 0
(E) 1,2
51. Compare the quantity in Column A and the quantity in Column B. Then determine whether: A
(A) the quantity in Column A is greater,
(B) the quantity in Column B is greater,
(C) the two quantities are equal, or
(D) the relationship cannot be determined from the information given.

Column A	Column B
$\frac{a^{2}+3 a-10}{a-2}$	$\frac{a^{2}+a-6}{a+3}$

Maintain Your Skills

Mixed Review

Find the exact solution(s) of each system of equations. (Lesson 8-7)
52. $x^{2}+2 y^{2}=33$
53. $x^{2}+2 y^{2}=33$

$$
\begin{aligned}
& x^{2}+y^{2}-19=2 x \\
& (-1, \pm 4),(5, \pm 2)
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-y^{2}=9 \\
& (\pm \sqrt{17}, \pm 2 \sqrt{2})
\end{aligned}
$$

Write each equation in standard form. State whether the graph of the equation is a parabola, circle, ellipse, or hyperbola. Then graph the equation. (Lesson 8-6)
54. $x=\frac{1}{3}(y+3)^{2}+$ 1; parabola
55. $\frac{(x-7)^{2}}{9}-$ $\frac{(y-2)^{2}}{1}=1$;
hyperbola

Getting Ready for the Next Lesson
54. $y^{2}-3 x+6 y+12=0$
55. $x^{2}-14 x+4=9 y^{2}-36 y$

54-55. See margin for graphs.
Determine whether each graph represents an odd-degree function or an evendegree function. Then state how many real zeros each function has. (Lesson 7-1)
56.

even; 2
57.

odd; 3

even; 0

Solve each equation by factoring. (Lesson 6-3)
59. $r^{2}-3 r=4-1,4$
60. $18 u^{2}-3 u=1-\frac{1}{6}, \frac{1}{3}$
61. $d^{2}-5 d=00,5$
62. ASTRONOMY Earth is an average 1.496×10^{8} kilometers from the Sun. If light travels 3×10^{5} kilometers per second, how long does it take sunlight to reach Earth? (Lesson 5-1) 4.99×10^{2} s or about 8 min 19 s

Solve each equation. (Lesson 1-4)
63. $|2 x+7|+5=0 \varnothing$
64. $5|3 x-4|=x+1 \frac{3}{2}, \frac{19}{16}$

PREREQUISITE SKILL Solve each equation. (To review solving equations, see Lesson 1-3.)
65. $\frac{2}{3}+x=-\frac{4}{9}-1 \frac{1}{9}$
66. $x+\frac{5}{8}=-\frac{5}{6}-1 \frac{11}{24}$
67. $x-\frac{3}{5}=\frac{2}{3} 1 \frac{4}{15}$
68. $x+\frac{3}{16}=-\frac{1}{2}-\frac{11}{16}$
69. $x-\frac{1}{6}=-\frac{7}{9}-\frac{11}{18}$
70. $x-\frac{3}{8}=-\frac{5}{24} \frac{1}{6}$

478 Chapter 9 Rational Expressions and Equations

What You'll Learn

- Determine the LCM of polynomials.
- Add and subtract rational expressions.

How is subtraction of rational expressions used in photography?

To take sharp, clear pictures, a photographer must focus the camera precisely. The distance from the object to the lens p and the distance from the lens to the film q must be accurately calculated to ensure a sharp image. The focal length of the lens is f.

The formula
$\frac{1}{q}=\frac{1}{f}-\frac{1}{p}$ can be used to determine how far the film should be placed from the lens to create a perfect photograph.

LCM OF POLYNOMIALS To find $\frac{5}{6}-\frac{1}{4}$ or $\frac{1}{f}-\frac{1}{p}$, you must first find the least common denominator (LCD). The LCD is the least common multiple (LCM) of the denominators.

To find the LCM of two or more numbers or polynomials, factor each number or polynomial. The LCM contains each factor the greatest number of times it appears as a factor.

LCM of 6 and 4
$6=2 \cdot 3$
$4=2^{2}$
$\mathrm{LCM}=2^{2} \cdot 3$ or 12

$$
\begin{aligned}
& \text { LCM of } a^{2}-6 a+9 \text { and } a^{2}+a-12 \\
& a^{2}-6 a+9=(a-3)^{2} \\
& a^{2}+a-12=(a-3)(a+4) \\
& \operatorname{LCM}=(a-3)^{2}(a+4)
\end{aligned}
$$

1 Focus

5-Minute Check

Transparency 9-2 Use as a quiz or review of Lesson 9-1.

Mathematical Background notes are available for this lesson on p. 470 C .

How
 is subtraction of rational expressions used in photography?

Ask students:

- If you drew a box to represent the camera, which of the variables shown would describe dimensions within the camera? f and q
- In a camera, what is a typical value for q ? Sample answer: 0.5 in .

Example 1 LCM of Monomials

Find the LCM of $18 r^{2} s^{5}, 24 r^{3} s t^{2}$, and $15 s^{3} t$.

$$
\begin{array}{llrl}
18 r^{2} s^{5} & =2 \cdot 3^{2} \cdot r^{2} \cdot s^{5} & & \text { Factor the first monomial. } \\
24 r^{3} s t^{2} & =2^{3} \cdot 3 \cdot r^{3} \cdot s \cdot t^{2} & & \text { Factor the second monomial. } \\
15 s^{3} t & =3 \cdot 5 \cdot s^{3} \cdot t & & \text { Factor the third monomial. } \\
\begin{array}{rlr}
\text { LCM } & =2^{3} \cdot 3^{2} \cdot 5 \cdot r^{3} \cdot s^{5} \cdot t^{2} & \\
& =360 r^{3} s^{5} t^{2} & \\
\text { ise each factor the greatest numbers of times }
\end{array}
\end{array}
$$

Resource Manager

Workbook and Reproducible Masters

Chapter 9 Resource Masters

- Study Guide and Intervention, pp. 523-524
- Skills Practice, p. 525
- Practice, p. 526
- Reading to Learn Mathematics, p. 527
- Enrichment, p. 528
- Assessment, p. 567

Transparencies

5-Minute Check Transparency 9-2
Answer Key Transparencies

- Technology

Alge2PASS: Tutorial Plus, Lesson 18
Interactive Chalkboard

2 Teach

LCM OF POLYNOMIALS

In-Class Examples

Power
 Point ${ }^{\circledR}$

Example 2 LCM of Polynomials

Find the LCM of $p^{3}+5 p^{2}+6 p$ and $p^{2}+6 p+9$.
$p^{3}+5 p^{2}+6 p=p(p+2)(p+3) \quad$ Factor the first polynomial.
$p^{2}+6 p+9=(p+3)^{2} \quad$ Factor the second polynomial.
LCM $=p(p+2)(p+3)^{2} \quad$ Use each factor the greatest number of times it appears as a factor.

1 Find the LCM of $15 a^{2} b c^{3}$, $16 b^{5} c^{2}$, and $20 a^{3} c^{6} .240 a^{3} b^{5} c^{6}$

2 Find the LCM of $x^{3}-x^{2}-2 x$ and $x^{2}-4 x+4$. $x(x+1)(x-2)^{2}$

ADD AND SUBTRACT RATIONAL EXPRESSIONS

In-Class Examples

(3) Simplify $\frac{5 a^{2}}{6 b}+\frac{9}{14 a^{2} b^{2}}$. $\frac{35 a^{4} b+27}{42 a^{2} b^{2}}$

Teaching Tip Have students discuss the differences between procedures for adding and multiplying fractions.
4 Simplify $\frac{x+10}{3 x-15}-\frac{3 x+15}{6 x-30}$. $-\frac{1}{6}$

Common Factors Sometimes when you simplify the numerator, the polynomial contains a factor common to the denominator. Thus, the rational expression can be further simplified.

ADD AND SUBTRACT RATIONAL EXPRESSIONS
As with fractions, to
add or subtract rational expressions, you must have common denominators.
Specific Case

General Case

$$
\begin{array}{rlrlrl}
\frac{2}{3}+\frac{3}{5} & =\frac{2 \cdot 5}{3 \cdot 5}+\frac{3 \cdot 3}{5 \cdot 3} & \begin{array}{c}
\text { Find equivalent fractions that } \\
\text { have a common denominator. }
\end{array} & \frac{a}{c}+\frac{b}{d} & =\frac{a \cdot d}{c \cdot d}+\frac{b \cdot c}{d \cdot c} \\
& =\frac{10}{15}+\frac{9}{15} & \begin{array}{c}
\text { Simplify each numerator } \\
\text { and denominator. }
\end{array} & & =\frac{a d}{c d}+\frac{b c}{c d} \\
& =\frac{19}{15} & & \text { Add the numerators. } & & =\frac{a d+b c}{c d}
\end{array}
$$

Example 3 Monomial Denominators

Simplify $\frac{7 x}{15 y^{2}}+\frac{y}{18 x y}$.
$\frac{7 x}{15 y^{2}}+\frac{y}{18 x y}=\frac{7 x \cdot 6 x}{15 y^{2} \cdot 6 x}+\frac{y \cdot 5 y}{18 x y \cdot 5 y}$
The LCD is $90 x y^{2}$. Find equivalent fractions that have this denominator

$$
=\frac{42 x^{2}}{90 x y^{2}}+\frac{5 y^{2}}{90 x y^{2}}
$$ Simplify each numerator and denominator.

$$
=\frac{42 x^{2}+5 y^{2}}{90 x y^{2}} \quad \text { Add the numerators. }
$$

Example 4 Polynomial Denominators

$$
\begin{aligned}
\text { Simplify } \frac{w+12}{4 w-16} & -\frac{w+4}{2 w-8} & & \\
\frac{w+12}{4 w-16}-\frac{w+4}{2 w-8} & =\frac{w+12}{4(w-4)}-\frac{w+4}{2(w-4)} & & \text { Factor the denominators. } \\
& =\frac{w+12}{4(w-4)}-\frac{(w+4)(2)}{2(w-4)(2)} & & \text { The LCD is } 4(w-4) . \\
& =\frac{(w+12)-(2)(w+4)}{4(w-4)} & & \text { Subtract the numerators. } \\
& =\frac{w+12-2 w-8}{4(w-4)} & & \text { Distributive Property } \\
& =\frac{-w+4}{4(w-4)} & & \text { Combine like terms. } \\
& =\frac{-1(w-4)}{4(w-4)} \text { or }-\frac{1}{4} & & \text { Simplify. }
\end{aligned}
$$

Sometimes simplifying complex fractions involves adding or subtracting rational expressions. One way to simplify a complex fraction is to simplify the numerator and the denominator separately, and then simplify the resulting expressions.

480 Chapter 9 Rational Expressions and Equations

TEACHING TIP

Simplify $\frac{\frac{1}{x}-\frac{1}{y}}{1+\frac{1}{x}}$.
$\frac{\frac{1}{x}-\frac{1}{y}}{1+\frac{1}{x}}=\frac{\frac{y}{x y}-\frac{x}{x y}}{\frac{x}{x}+\frac{1}{x}}$
The LCD of the numerator is $x y$. The LCD of the denominator is x.

$$
=\frac{\frac{y-x}{x y}}{\frac{x+1}{x}}
$$

Simplify the numerator and denominator.
$=\frac{y-x}{x y} \div \frac{x+1}{x} \quad$ Write as a division expression.

$$
=\frac{y-x}{x y} \cdot \frac{{ }_{1}^{x}}{x+1} \quad \text { Multiply by the reciprocal of the divisor. }
$$

$$
=\frac{y-x}{y(x+1)} \text { or } \frac{y-x}{x y+y} \quad \text { Simplify. }
$$

Example 6 Use a Complex Fraction to Solve a Problem

COORDINATE GEOMETRY Find the slope of the line that passes through
$A\left(\frac{2}{p}, \frac{1}{2}\right)$ and $B\left(\frac{1}{3}, \frac{3}{p}\right)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \quad$ Definition of slope
$=\frac{\frac{3}{p}-\frac{1}{2}}{\frac{1}{3}-\frac{2}{p}} \quad y_{2}=\frac{3}{p}, y_{1}=\frac{1}{2}, x_{2}=\frac{1}{3}$, and $x_{1}=\frac{2}{p}$
$=\frac{\frac{6-p}{2 p}}{\frac{p-6}{3 p}} \quad \begin{aligned} & \text { The LCD of the numerator is } 2 p . \\ & \text { The LCD of the denominator is } 3 p .\end{aligned}$
$=\frac{6-p}{2 p} \div \frac{p-6}{3 p} \quad$ Write as a division expression.
$=\frac{6-1}{2 \not p} \cdot \frac{3 \not q^{-1}}{p-6}$ or $-\frac{3}{2}$ The slope is $-\frac{3}{2}$.

Check for Understanding

Concept Check

1. Catalina; you need a common denominator, not a common numerator, to subtract two rational expressions.
2. FIND THE ERROR Catalina and Yong-Chan are simplifying $\frac{x}{a}-\frac{x}{b}$.

$$
\begin{array}{ll}
\text { Catalina } & \text { Yong-Chan } \\
\begin{aligned}
\frac{x}{a}-\frac{x}{b} & =\frac{b x}{a b}-\frac{a x}{a b} \\
& =\frac{b x-a x}{a b}
\end{aligned} & \frac{x}{a}-\frac{x}{b}=\frac{x}{a-b}
\end{array}
$$

Who is correct? Explain your reasoning.
www.algebra2.com/extra_examples
Lesson 9-2 Adding and Subtracting Rational Expressions 481

D A \| L Y

INIERVENTION

Differentiated Instruction

Interpersonal Have students work with a partner, one in the role of coach and the other in the role of athlete. The athlete works the problem, using steps and explaining the thinking, while the coach listens and watches for errors, correcting as necessary. Then the partners exchange roles.

5 Simplify $\frac{\frac{1}{a}+\frac{1}{b}}{\frac{1}{b}-1}$
$\frac{a+b}{a(1-b)}$ or $\frac{a+b}{a-a b}$
6 COORDINATE GEOMETRY
Find the slope of the line that passes through $P\left(\frac{3}{k}, \frac{1}{3}\right)$ and $Q\left(\frac{1}{2}, \frac{2}{k}\right) .-\frac{2}{3}$

Teaching Tip Remind students that the slope of a line is the change in y divided by the change in x, or the rise over the run.

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 9.
- include any item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y INIERVENITON

FIND THE ERROR

One way to find the error is to substitute values for the variables. With $x=4, a=5$, and $b=3$, $\frac{x}{a}-\frac{x}{b}$ becomes $\frac{4}{5}-\frac{4}{3}$. Since the first fraction is less than 1 and the second is greater than 1 , the result must be negative, which means that the answer $\frac{x}{a-b}=\frac{4}{2}$ or 2 cannot be correct.

About the Exercises...

Organization by Objective

- LCM of Polynomials: 14-21
- Add and Subtract Rational Expressions: 22-49

Odd/Even Assignments

Exercises 14-43 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 15-37 odd, 50-61
Average: 15-43 odd, 49-61
Advanced: 14-42 even, 44-48, 50-58 (optional: 59-61)
All: Practice Quiz 1 (1-10)

Answers

3a. Since a, b, and c are factors of $a b c, a b c$ is always a common denominator of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
3b. If a, b, and c have no common factors, then abc is the LCD of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
3c. If a and b have no common factors and c is a factor of $a b$, then $a b$ is the LCD of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
3d. If a and c are factors of b, then b is the LCD of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
3e. Since $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=$ $\frac{b c}{a b c}+\frac{a c}{a b c}+\frac{a b}{a b c}$, the sum is always $\frac{b c+a c+a b}{a b c}$.
2. Sample answer:
2. OPEN ENDED Write two polynomials that have a LCM of $d^{3}-d$.
$d^{2}-d, d+1$
\star 3. Consider $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ if a, b, and c are real numbers. Determine whether each statement is sometimes, always, or never true. Explain your answer.
a. $a b c$ is a common denominator. always a-e. See margin for explanations.
b. $a b c$ is the LCD. sometimes
c. $a b$ is the LCD. sometimes
d. b is the LCD. sometimes
e. The sum is $\frac{b c+a c+a b}{a b c}$. always

Guided Practice

GUIDED PRACTICE KEY

Exercises \quad Examples

$4-6$	1,2
$7-11$	3,4
12	5
13	6

Find the LCM of each set of polynomials.
4. $12 y^{2}, 6 x^{2} 12 x^{2} y^{2}$
5. $16 a b^{3}, 5 b^{2} a^{2}, 20 a c$ $80 a b^{3} c^{2}$
6. $\begin{aligned} & x^{2}-2 x, x^{2}-4 \\ & x(x-2)(x+2)\end{aligned}$

Simplify each expression.
7. $\frac{2}{x^{2} y}-\frac{x}{y} \frac{2-x^{3}}{x^{2} y}$
8. $\frac{7 a}{15 b^{2}}+\frac{b}{18 a b} \frac{42 a^{2}+5 b^{2}}{90 a b^{2}}$
9. $\frac{5}{3 m}-\frac{2}{7 m}-\frac{1}{2 m} \frac{37}{42 m}$
10. $\frac{6}{d^{2}+4 d+4}+\frac{5}{d+2} \frac{5 d+16}{(d+2)^{2}}$
11. $\frac{a}{a^{2}-a-20}+\frac{2}{a+4} \frac{3 a-10}{(a-5)(a+4)}$
12. $\frac{x+\frac{x}{3}}{x-\frac{x}{6}} \frac{8}{5}$

Application
13. GEOMETRY Find the perimeter of the quadrilateral. Express in simplest form. $\frac{13 x^{2}+4 x-9}{2 x(x-1)(x+1)}$ units

太 indicates increased difficulty

Practice and Apply

Homework Help Find the LCM of each set of polynomials.

$\begin{gathered} \text { For } \\ \text { Exercises } \end{gathered}$	$\begin{gathered} \text { See } \\ \text { Examples } \end{gathered}$	14. $10 s^{2}, 35 s^{2} t^{2} 70 s^{2} t^{2}$	15. $36 x^{2} y, 20 x y z ~ 180 x^{2} y z$
14-21	1,2	16. $14 a^{3}, 15 b c^{3}, 12 b^{3} 420 a^{3} b^{3} c^{3}$	17. $9 p^{2} q^{3}, 6 p q^{4}, 4 p^{3} 36 p^{3} q^{4}$
$22-39$ $40-43$	3,4 5	18. $4 w-12,2 w-64(w-3)$	19. $x^{2}-y^{2}, x^{3}+x^{2} y x^{2}(x-y)(x+y)$
44-49	-	20. $\begin{aligned} & 2 t^{2}+t-3,2 t^{2}+5 t+3 \\ & (2 t+3)(t-1)(t+1) \end{aligned}$	21. $\begin{aligned} & n^{2}-7 n+12, n^{2}-2 n-8 \\ & (n-4)(n-3)(n+2) \end{aligned}$
Extra Practice See page 847.		Simplify each expression.	
		22. $\frac{6}{a b}+\frac{8}{a} \frac{6+8 b}{a b}$	23. $\frac{5}{6 v}+\frac{7}{4 v} \frac{31}{12 v}$
		24. $\frac{5}{r}+7 \frac{5+7 r}{r}$ 26. $\frac{3 x}{4 y^{2}}-\frac{y}{6 x} \frac{9 x^{2}-2 y^{2}}{12 x y^{2}}$	25. $\frac{2 x}{3 y}+5 \frac{2 x+15 y}{3 y}$ 27. $\frac{5}{a^{2} b}-\frac{7 a}{5 b^{2}} \frac{25 b-7 a^{3}}{5 a^{2} b^{2}}$
		28. $\frac{3}{4 q}-\frac{2}{5 q}-\frac{1}{2 q}-\frac{3}{20 q}$	29. $\frac{11}{9}-\frac{7}{2 w}-\frac{6}{5 w} \frac{110 w-423}{90 w}$
		30. $\frac{7}{y-8}-\frac{6}{8-y} \frac{13}{y-8}$	31. $\frac{a}{a-4}-\frac{3}{4-a} \frac{a+3}{a-4}$
		32. $\frac{m}{m^{2}-4}+\frac{2}{3 m+6} \frac{5 m-4}{3(m+2)(m-2)}$	33. $\frac{y}{y+3}-\frac{6 y}{y^{2}-9} \frac{y(y-9)}{(y+3)(y-3)}$

482 Chapter 9 Rational Expressions and Equations
35.
$\frac{-8 d+20}{(d-4)(d+4)(d-2)}$
36. $\frac{-4 h+15}{(h-4)(h-5)^{2}}$
37. $\frac{x^{2}-6}{(x+2)^{2}(x+3)}$
39. $\frac{2 y^{2}+y-4}{(y-1)(y-2)}$
34. $\frac{5}{x^{2}-3 x-28}+\frac{7}{2 x-14} \frac{7 x+38}{2(x-7)(x+4)}$ 35. $\frac{d-4}{d^{2}+2 d-8}-\frac{d+2}{d^{2}-16}$
36. $\frac{1}{h^{2}-9 h+20}-\frac{5}{h^{2}-10 h+25}$
38. $\frac{m^{2}+n^{2}}{m^{2}-n^{2}}+\frac{m}{n-m}+\frac{n}{m+n} \mathbf{0}$
40. $\frac{\frac{1}{b+2}+\frac{1}{b-5}}{\frac{2 b^{2}-b-3}{b^{2}-3 b-10}} \frac{1}{b+1}$
\star 42. Write $\left(\frac{2 s}{2 s+1}-1\right) \div\left(1+\frac{2 s}{1-2 s}\right)$ in simplest form. $\frac{2 s-1}{2 s+1}$
\star 43. What is the simplest form of $\left(3+\frac{5}{a+2}\right) \div\left(3-\frac{10}{a+7}\right) ? \frac{a+7}{a+2}$

ELECTRICITY For Exercises 44 and 45, use the the

 following information.In an electrical circuit, if two resistors with resistance R_{1} and R_{2} are connected in parallel as shown, the relationship between these resistances and the resulting combination resistance R is $\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}}$.

44. If R_{1} is x ohms and R_{2} is 4 ohms less than twice x ohms, write an expression for $\frac{1}{R} \cdot \frac{3 x-4}{2 x(x-2)}$
45. Find the effective resistance of a 30 -ohm resistor and a 20 -ohm resistor that are connected in parallel. 12 ohms

BICYCLING For Exercises 46-48, use the following information.

Jalisa is competing in a 48 -mile bicycle race. She travels half the distance at one rate. The rest of the distance, she travels 4 miles per hour slower.
46. If x represents the faster pace in miles per hour, write an expression that represents the time spent at that pace. $\frac{24}{h}$
47. Write an expression for the amount of time spent at the slower pace. $\frac{24}{x-4} h$
48. Write an expression for the amount of time Jalisa needed to complete the race. $\frac{48(x-2)}{x(x-4)} h$
49. MAGNETS For a bar magnet, the magnetic field strength H at a point P along the axis of the magnet is $H=\frac{m}{2 L(d-L)^{2}}-\frac{m}{2 L(d+L)^{2}}$. Write a simpler expression for H.

50. CRITICAL THINKING Find two rational expressions whose sum is $\frac{2 x-1}{(x+1)(x-2)}$. Sample answer: $\frac{1}{x+1}, \frac{1}{x-2}$
www.algebra2.com/self_check_quiz
Lesson 9-2 Adding and Subtracting Rational Expressions 483

Enrichment, p. 528

Superellipses
The circle and the ellipse are members of an interesting family of curves that were first studied by the French physicist and mathem
Lamé (1795-1870). The general equation for the family is $\left|\frac{x}{a}\right|^{n}+\left|\frac{y}{b}\right|^{n}=1$, with $a \neq 0, b \neq 0$, and $n>0$.
For even values of n greater than 2 , the curves are called superellipses.

1. Consider two curves that are not superellipses. Consider two curves that are not superellipses.
Graph each equation on the grid athe righ.
State the type of curve produced ach time. State the type of curve produced each time. a. $\left|\frac{x}{2}\right|^{2}+\left|\frac{y}{2}\right|^{2}=1$ circle b. $\left|\frac{x}{3}\right|^{2}+\left|\frac{y}{2}\right|^{2}=1$ ellipse

Study Guide and Intervention, p. 523 (shown) and p. 524

LCM of Polynomials To find the least common multiple of two or more polynomials, factor each expression. appears as a factor.

Examper Find the LCM of $16 p^{2} q^{3} r$,	Example 2 Find the LCM of
$40 p q^{4} r^{2}$, and $15 p^{3} r^{4}$.	$3 m^{2}-3 m-6$ and $4 m^{2}+12 m-40$.
${ }^{16 p^{2} q^{3} r_{r}=2^{4} \cdot p^{2} \cdot q^{3} \cdot}$	$3 m^{2}-3 m-6=3(m+1)(m-2)$
40 pq ${ }^{4} r^{2}=2^{3} \cdot 5 \cdot p \cdot q^{4}$.	$4 m^{2}+12 m-40=4(m-2)(m+5$
155 ${ }^{3} r^{4}=3 \cdot 5 \cdot p^{3} \cdot r^{4}$	$\mathrm{LCM}=12(m+1)(m-2)(m+5)$
$\begin{aligned} \text { LCM } & =2^{4} \cdot 3 \cdot 5 \cdot p^{3} \cdot q^{4} \cdot r^{4} \\ & =240 p^{8} q^{4} \cdot r^{4} \end{aligned}$	
Exercises	
Find the LCM of each set of polynomials.	
1. $14 a b^{2}, 42 b c^{3}, 18 a^{2} c$	2. $8 c d f^{3}, 28 c^{2} f, 35 d^{4} f^{2}$ $280 c^{2} d^{4} f^{3}$
3. $65 x^{4} y, 10 x^{2} y^{2}, 26 y^{4}$ $130 x^{4} y^{4}$	4. $11 m n^{5}, 18 m^{2} n^{3}, 20 m n^{4}$
5. $15 a^{4} b, 50 a^{2} b^{2}, 40 b^{8}$ $600 a^{4} b^{8}$	6. $24 p^{7} q, 30 p^{2} q^{2}, 45 p q^{3}$ $360 p^{7} q^{3}$
$\text { 7. } 39 b^{2} c^{2}, 52 b^{4} c, 12 c^{3}$	8. $12 x y^{4}, 42 x^{2} y, 30 x^{2} y^{3}$ $420 x^{2} y^{4}$
$\begin{aligned} & \text { 9. } 56 s t v^{2}, 24 s^{2} v^{2}, 70 t^{3} v^{3} \\ & 840 s^{2} t^{3} v^{3} \end{aligned}$	$\begin{gathered} \text { 10. } x^{2}+3 x, 10 x^{2}+25 x-15 \\ 5 x(x+3)(2 x-1) \end{gathered}$
11. $9 x^{2}-12 x+4,3 x^{2}+10 x-8$ $(3 x-2)^{2}(x+4)$	12. $22 x^{2}+66 x-220,4 x^{2}-16$ $44(x-2)(x+2)(x+5)$
$\begin{aligned} & \text { 13. } 8 x^{2}-36 x-20,2 x^{2}+2 x-60 \\ & 4(x-5)(x+6)(2 x+1) \end{aligned}$	$\begin{aligned} & \text { 14. } 5 x^{2}-125,5 x^{2}+24 x-5 \\ & 5(x-5)(x+5)(5 x-1) \end{aligned}$
$\begin{aligned} & \text { 15. } 3 x^{2}-18 x+27,2 x^{3}-4 x^{2}-6 x \\ & 6 x(x-3)^{2}(x+1) \end{aligned}$	$\begin{aligned} & \text { 16. } 45 x^{2}-6 x-3,45 x^{2}-5 \\ & 15(5 x+1)(3 x-1)(3 x+1) \end{aligned}$
$\begin{aligned} & \text { 17. } x^{3}+4 x^{2}-x-4, x^{2}+2 x-3 \\ & (x-1)(x+1)(x+3)(x+4) \end{aligned}$	$\begin{aligned} & \text { 18. } 54 x^{3}-24 x, 12 x^{2}-26 x+12 \\ & 6 x(3 x+2)(3 x-2)(2 x-3) \end{aligned}$

Reading to Learn Mathematics, p. 527

ELL

Pre-Activity How is subtraction of rational expressions used in photography? Read the introduction to Lesson $9-2$ at the top of page 479 in your textbook. A person is standing 5 feet from a camera that has a lens with a focal
length of 3 feet. Write an equation that you could solve to find how far the film should be from the lens to get a perfectly focused photograph $\frac{1}{q}=\frac{1}{3}-\frac{1}{5}$

Reading the Lesson

1. a. In work with rational expressions, LCD stands for least common denominator and LCM stands for least common multiple_The LCD is the LCM
of the denominators.
b. To find the LCM of two or more numbers or polynomials, factor each number or polynomial. The LCM contains each factor th greatest number of times it appears as a factor 2. To add $\frac{x^{2}-3}{x^{2}-5 x+6}$ and $\frac{x-4}{x^{3}-4 x^{2}+4 x}$, you should first factor the denominator of each fraction. Then use the factorizations to find the LCM of $x^{2}-5 x+6$ and $x^{3}-4 x^{2}+4 x$. This is the LCD for the two fractions.
2. When you add or subtract fractions, you often need to rewrite the fractions as equivalent
fractions. You do this so that the resulting equivalent fractions will each have a denominator equal to the LCD of the original fractions.
3. To add or subtract two fractions that have the same denominator, you add or subtract their numerators and keep the same denominator.
as a fraction in simplest form.

Helping You Remember

6. Some students have trouble remembering whether a common denominator is needed to add and subtract rational expressions or tom multiply and divide them. How can
knowledge of working with fractions in arithmetic help you remember this? Sample answer: In arithmetic, a common denominator is needed to add
and subtract fractions, but not to multiply and divide them. The situation and subtract fractions, but not to multiply and divide them. The situation
is the same for rational expressions.

4 Assess

Open-Ended Assessment

Writing Have students write their own problems of the types in this lesson by beginning with an answer and working backward to create a problem.

Tips
for New Teachers

Intervention

The skills for combining and simplifying done in this lesson are used extensively in algebra. Take time to clear up student errors and misconceptions before proceeding.

Getting Ready for

Lesson 9-3
PREREQUISITE SKILL Students will graph rational functions using asymptotes in Lesson 9-3. In previous course material, students graphed hyperbolas by using asymptotes and will apply these skills to graphing rational functions. Use Exercises 59-61 to determine your students' familiarity with graphing hyperbolas.

Assessment Options

Practice Quiz 1 The quiz provides students with a brief review of the concepts and skills in Lessons 9-1 and 9-2. Lesson numbers are given to the right of exercises or instruction lines so students can review concepts not yet mastered.
Quiz (Lessons 9-1 and 9-2) is available on p. 567 of the Chapter 9 Resource Masters.

How is subtraction of rational expressions used in photography? Include the following in your answer:

- an explanation of how to subtract rational expressions, and
- an equation that could be used to find the distance between the lens and the film if the focal length of the lens is 10 centimeters and the distance between the lens and the object is 60 centimeters.

Standardized
Test Practice
(A) (B) C D
52. For all $t \neq 5, \frac{t^{2}-25}{3 t-15}=\mathbf{B}$
(A) $\frac{t-5}{3}$.
(B) $\frac{t+5}{3}$.
(C) $t-5$.
(D) $t+5$.
(E) $\frac{t-5}{t-3}$.
53. What is the sum of $\frac{x-y}{5}$ and $\frac{x+y}{4}$? C
(A) $\frac{9 x+9 y}{20}$
(B) $\frac{x+9 y}{20}$
(C) $\frac{9 x+y}{20}$
(D) $\frac{9 x-y}{20}$
(E) $\frac{x-9 y}{20}$

Maintain Your Skills

Mixed Review Simplify each expression. (Lesson 9-1)
54. $\frac{9 x^{2} y^{3}}{(5 x y z)^{2}} \div \frac{(3 x y)^{3}}{20 x^{2} y} \frac{4}{15 x y z^{2}}$
55. $\frac{5 a^{2}-20}{2 a+2} \cdot \frac{4 a}{10 a-20} \frac{a(a+2)}{a+1}$

Solve each system of inequalities by graphing. (Lesson 8-7) 56-57. See pp. 519A-519D.
56. $9 x^{2}+y^{2}<81$
57. $(y-3)^{2} \geq x+2$
$x^{2}+y^{2} \geq 16$
$x^{2} \leq y+4$
58. GARDENS Helene Jonson has a rectangular garden 25 feet by 50 feet. She wants to increase the garden on all sides by an equal amount. If the area of the garden is to be increased by 400 square feet, by how much should each dimension be increased? (Lesson 6-4) 2.5 ft

Getting Ready for the Next Lesson

PREREQUISITE SKILL Draw the asymptotes and graph each hyperbola. (To review graphing hyperbolas, see Lesson 8-5.) 59-61. See pp. 519A-519D.
59. $\frac{x^{2}}{16}-\frac{y^{2}}{20}=1$
60. $\frac{y^{2}}{49}-\frac{x^{2}}{25}=1$
61. $\frac{(x+2)^{2}}{16}-\frac{(y-5)^{2}}{25}=1$

Practice Quiz 1

Lessons 9-1 and 9-2
Simplify each expression. (Lesson 9-1)

1. $\frac{t^{2}-t-6}{t^{2}-6 t+9} \frac{t+2}{t-3}$
2. $\frac{3 a b^{3}}{8 a^{2} b} \cdot \frac{4 a c}{9 b^{4}} \frac{c}{6 b^{2}}$
3. $-\frac{4}{8 x} \div \frac{16}{x y^{2}}-\frac{y^{2}}{32}$
4. $\frac{48}{6 a+42} \cdot \frac{7 a+49}{16} \frac{7}{2}$
5. $\frac{w^{2}+5 w+4}{6} \div \frac{w+1}{18 w+24}$
6. $\frac{\frac{x^{2}+x}{x+1}}{\frac{x}{x-1}} x-1$
Simplify each expression. (Lesson 9-2)
7. $\frac{4 a+2}{a+b}+\frac{1}{-b-a} \frac{4 a+1}{a+b}$
8. $\frac{2 x}{5 a b^{3}}+\frac{4 y}{3 a^{2} b^{2}} \frac{6 a x+20 b y}{15 a^{2} b^{3}}$
9. $\frac{5}{n+6}-\frac{4}{n-1} \frac{n-29}{(n+6)(n-1)}$
10. $\frac{x-5}{2 x-6}-\frac{x-7}{4 x-12} \frac{1}{4}$
[^1]
What Youill Learn

Vocabulary

- rational function
continuity
asymptote point discontinuity

Study Tip
Look Back
To review asymptotes, see Lesson 8-5.

- Determine the vertical asymptotes and the point discontinuity for the graphs of rational functions.
- Graph rational functions.

How can rational functions be used when buying a group gift?

A group of students want to get their favorite teacher, Mr. Salgado, a retirement gift. They plan to get him a gift certificate for a weekend package at a lodge in a state park. The certificate costs $\$ 150$. If c represents the cost for each student and s represents the number of students, then $c=\frac{150}{s}$.

1 Focus

5-Minute Check
 Transparency 9-3 Use as a

 quiz or review of Lesson 9-2.Mathematical Background notes are available for this lesson on p. 470 D .

Building on Prior Knowledge

In Chapter 7, students learned to graph polynomial equations. In this lesson, they will apply the same skills to graphing rational functions.

How can rational functions group gift?

Ask students:

- What does the cost for one student depend on? the number of students who participate
- What happens to the value of c as the value of s increases? It decreases.

Key Concept			Vertical Asymptotes
Property	Words	Example	Model
Vertical Asymptote	If the rational expression of a function is written in simplest form and the function is undefined for $x=a$, then $x=a$ is a vertical asymptote.	For $f(x)=\frac{x}{x-3}$, $x=3$ is a vertical asymptote.	

Workbook and Reproducible Masters

Chapter 9 Resource Masters

- Study Guide and Intervention, pp. 529-530
- Skills Practice, p. 531
- Practice, p. 532
- Reading to Learn Mathematics, p. 533
- Enrichment, p. 534
- Assessment, pp. 567, 569

Graphing Calculator and

Spreadsheet Masters, p. 43
Teaching Algebra With Manipulatives Masters, p. 273

Resource Manager

Transparencies

5-Minute Check Transparency 9-3
Answer Key Transparencies

[^2]
2 Teach

VERTICAL ASYMPTOTES AND POINT DISCONTINUITY

In-Class Example

Determine the equations of any vertical asymptotes and the values of x for any holes in the graph of
$f(x)=\frac{x^{2}-4}{x^{2}+5 x+6}$.
$x=-3$ is a vertical asymptote and $x=-2$ represents a hole in the graph.

GRAPH RATIONAL FUNCTIONS

Teaching Tip Suggest that students choose a large unit on their grid paper and estimate points to the nearest tenth. Point out that they will probably not be able to see the shape of the graph as a whole unless they use a graphing calculator or computer program.

Key Concept
Point Discontinuity

Example 1 Vertical Asymptotes and Point Discontinuity

Determine the equations of any vertical asymptotes and the values of x for any holes in the graph of $f(x)=\frac{x^{2}-1}{x^{2}-6 x+5}$.
First factor the numerator and denominator of the rational expression.
$\frac{x^{2}-1}{x^{2}-6 x+5}=\frac{(x-1)(x+1)}{(x-1)(x-5)}$
The function is undefined for $x=1$ and $x=5$. Since $\frac{(x-1)(x+1)}{(x-1)(x-5)}=\frac{x+1}{x-5}$,
$x=5$ is a vertical asymptote, and $x=1$ represents a hole in the graph.

GRAPH RATIONAL FUNCTIONS You can use what you know about vertical asymptotes and point discontinuity to graph rational functions.
Example 2 Graph with a Vertical Asymptote
Graph $f(x)=\frac{x}{x-2}$.
The function is undefined for $x=2$. Since $\frac{x}{x-2}$ is in simplest form, $x=2$ is a vertical asymptote. Draw the vertical asymptote. Make a table of values. Plot the points and draw the graph.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-50	0.96154
-30	0.9375
-20	0.90909
-10	0.83333
-2	0.5
-1	0.33333
0	0
1	-1
3	3
4	2
5	1.6667
10	1.25
20	1.1111
30	1.0714
50	1.0417

As $|x|$ increases, it appears that the y values of the function get closer and closer to 1. The line with the equation $f(x)=1$ is a horizontal asymptote of the function.

Unlocking Misconceptions

Asymptotes Students should understand that a graph continues to approach an asymptote and gets closer and closer to that value, but never reaches it. This is an abstract mathematical idea that cannot be represented accurately with any form of visual illustration.

As you have learned, graphs of rational functions may have point discontinuity rather than vertical asymptotes. The graphs of these functions appear to have holes. These holes are usually shown as circles on graphs.

Example 3 Graph with Point Discontinuity

Graph $f(x)=\frac{x^{2}-9}{x+3}$.
Notice that $\frac{x^{2}-9}{x+3}=\frac{(x+3)(x-3)}{x+3}$ or $x-3$.
Therefore, the graph of $f(x)=\frac{x^{2}-9}{x+3}$ is the graph of $f(x)=x-3$ with a hole at $x=-3$.

Many real-life situations can be described by using rational functions.

Algebra Activity

Rational Functions

The density of a material can be expressed as $D=\frac{m}{V}$, where m is the mass of the material in grams and V is the volume in cubic centimeters. By finding the volume and density of 200 grams of each liquid, you can draw a graph of the function $D=\frac{200}{V}$.

Collect the Data

- Use a balance and metric measuring cups to find the volumes of 200 grams of different liquids such as water, cooking oil, isopropyl alcohol, sugar water, and salt water.
- Use $D=\frac{m}{V}$ to find the density of each liquid.

Analyze the Data

1. Graph the data by plotting the points (volume, density) on a graph. Connect the points. See pp. 519A-519D.
2. From the graph, find the asymptotes. $x=0, y=0$

In the real world, sometimes values on the graph of a rational function are not meaningful.

Example 4 Use Graphs of Rational Functions

TRANSPORTATION A train travels at one velocity V_{1} for a given amount of time t_{1} and then another velocity V_{2} for a different amount of time t_{2}. The average velocity is given by $V=\frac{V_{1} t_{1}+V_{2} t_{2}}{t_{1}+t_{2}}$.
a. Let t_{1} be the independent variable and let V be the dependent variable. Draw the graph if $V_{1}=60$ miles per hour, $V_{2}=40$ miles per hour,
 and $t_{2}=8$ hours.
The function is $V=\frac{60 t_{1}+40(8)}{t_{1}+8}$ or $V=\frac{60 t_{1}+320}{t_{1}+8}$. The vertical asymptote is $t_{1}=-8$. Graph the vertical asymptote and the function. Notice that the horizontal asymptote is $V=60$.

Algebra Activity

Materials: balance, metric measuring cups, different liquids, graph paper

- Choose liquids that are quite different in density. If you make sugar or salt water, dissolve as much of the substance as you can in it.
- Differences in volume for each 200 grams will be easier to read if you use the smallest measuring cup that holds the amount.
$3 \operatorname{Graph} f(x)=\frac{x^{2}-4}{x-2}$.

Teaching Tip Since the discontinuity is only one point (and a mathematical point has no dimensions), suggest that students draw a circle on their graphs to indicate the discontinuity.

4 TRANSPORTATION Use the situation and formula given in Example 4.
a. Draw the graph if $V_{1}=50$ miles per hour, $V_{2}=30$ miles per hour, and $t_{2}=1$ hour.

b. What is the V-intercept of the graph? 30
c. What values of t_{1} and V are meaningful in the context of the problem? Positive values of t_{1} and values of V between 30 and 50 are meaningful.

Intervention

To make sure the situation in Example 4 is meaningful, ask a student to explain the situation as a story without using letter names for variables. For example, the story might begin "A train travels 40 miles per hour as it goes through towns. Eight hours of its total trip are spent going through towns."

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 9.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

About the Exercises..

Organization by Objective

- Vertical Asymptotes and Point Discontinuity: 16-21
- Graph Rational Functions: 22-45, 47-50

Odd/Even Assignments

Exercises 16-39 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 17-39 odd, 46, 51-66
Average: 17-39 odd, 40-42, 46-66
Advanced: 16-38 even, 40-62 (optional: 63-66)

Answer

2. Each of the graphs is a straight line passing through $(-5,0)$ and $(0,5)$. However, the graph of $f(x)=\frac{(x-1)(x+5)}{x-1}$ has a hole at $(1,6)$, and the graph of $g(x)=x+5$ does not have a hole.
b. What is the V-intercept of the graph?

The V-intercept is 40 .
c. What values of t_{1} and V are meaningful in the context of the problem? In the problem context, time and velocity are positive values. Therefore, only values of t_{1} greater than 0 and values of V between 40 and 60 are meaningful

Check for Understanding

Concept Check

1. Sample answer:
$f(x)=\frac{1}{(x+5)(x-2)}$

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
4,5	1
$6-11$	2,3
$12-15$	4

1. OPEN ENDED Write a function whose graph has two vertical asymptotes located at $x=-5$ and $x=2$.
2. Compare and contrast the graphs of $f(x)=\frac{(x-1)(x+5)}{x-1}$ and $g(x)=x+5$. See margin.
3. Describe the graph at the right. Include the equations of any asymptotes, the x values of any holes, and the x - and y-intercepts. $x=2$ and $y=0$ are asymptotes of the graph. The y-intercept is 0.5 and there is no x-intercept because $y=0$ is an asymptote.

Determine the equations of any vertical asymptotes and the values of x for any holes in the graph of each rational function.
4. $f(x)=\frac{3}{x^{2}-4 x+4}$ asymptote: $x=2$
5. $f(x)=\frac{x-1}{x^{2}+4 x-5}$
asymptote: $x=-5$; hole: $x=1$
Graph each rational function. 6-11. See pp. 519A-519D.
6. $f(x)=\frac{x}{x+1}$
7. $f(x)=\frac{6}{(x-2)(x+3)}$
8. $f(x)=\frac{x^{2}-25}{x-5}$
9. $f(x)=\frac{x-5}{x+1}$
10. $f(x)=\frac{4}{(x-1)^{2}}$
11. $f(x)=\frac{x+2}{x^{2}-x-6}$

Application
MEDICINE For Exercises 12-15, use the following information. For certain medicines, health care professionals may use Young's Rule,
$C=\frac{y}{y+12} \cdot D$, to estimate the proper dosage for a child when the adult dosage is
known. In this equation, C represents the child's dose, D represents the adult dose, and y represents the child's age in years.
12. Use Young's Rule to estimate the dosage of amoxicillin for an eight-year-old child if the adult dosage is 250 milligrams. 100 mg
13. Graph $C=\frac{y}{y+12}$. See pp. 519A-519D.
14. Give the equations of any asymptotes and y-and C-intercepts of the graph. $y=-12, C=1 ; 0 ; 0$
15. What values of y and C are meaningful in the context of the problem? $y>0$ and $0<C<1$
488 Chapter 9 Rational Expressions and Equations

D A I L Y
INIERVENTION

Differentiated Instruction

Visual/Spatial Have students graph one of the examples from the lesson with colors on a large sheet of posterboard, to clearly show how a graph approaches but never reaches an asymptote or how a graph may have a hole in it for a certain value of the variable. Display the results in the classroom.

太 indicates increased difficulty

Practice and Apply

Homework Help
For

Exercises | See |
| :---: |
| Examples |

Extra Practice See page 849 .
19. asymptote:
$x=-1$; hole: $x=5$
22. $f(x)=\frac{1}{x}$
23. $f(x)=\frac{3}{x}$
24. $f(x)=\frac{1}{x+2}$
25. $f(x)=\frac{-5}{x+1}$
26. $f(x)=\frac{x}{x-3}$
27. $f(x)=\frac{5 x}{x+1}$
28. $f(x)=\frac{-3}{(x-2)^{2}}$
29. $f(x)=\frac{1}{(x+3)^{2}}$
30. $f(x)=\frac{x+4}{x-1}$
31. $f(x)=\frac{x-1}{x-3}$
32. $f(x)=\frac{x^{2}-36}{x+6}$
33. $f(x)=\frac{x^{2}-1}{x-1}$
34. $f(x)=\frac{3}{(x-1)(x+5)}$
35. $f(x)=\frac{-1}{(x+2)(x-3)}$
36. $f(x)=\frac{x}{x^{2}-1}$
37. $f(x)=\frac{x-1}{x^{2}-4}$
38. $f(x)=\frac{6}{(x-6)^{2}}$
39. $f(x)=\frac{1}{(x+2)^{2}}$
$(x-6)^{2}$

More About.

History

Mathematician Maria Gaetana Agnesi was one of the greatest scholars of all time. Born in Milan, Italy, in 1718 , she mastered Greek, Hebrew, and several modern languages by the age of 11 .
Source: A History of Mathematics

Determine the equations of any vertical asymptotes and the values of x for any holes in the graph of each rational function.
16. $f(x)=\frac{2}{x^{2}-5 x+6}$ asymptotes:
18. $f(x)=\frac{x+3}{x^{2}+7 x+12}$ asymptote: $x=$
19. $f(x)=\frac{x-5}{x^{2}-4 x-5}$
20. $f(x)=\frac{x^{2}-8 x+16}{x-4}$ hole: $\boldsymbol{x}=4$
21. $f(x)=\frac{x^{2}-3 x+2}{x-1}$ hole: $\boldsymbol{x}=1$
17. $f(x)=\frac{4}{x^{2}+2 x-8}$
asymptotes:
$x=-4, x=2$

Graph each rational function. 22-39. See pp. 519A-519D.

- HISTORY For Exercises 40-42, use the following information.

In Maria Gaetana Agnesi's book Analytical Institutions, Agnesi discussed the characteristics of the equation $x^{2} y=a^{2}(a-y)$, whose graph is called the "curve of Agnesi." This equation can be expressed as $y=\frac{a^{3}}{x^{2}+a^{2}}$.
40. Graph $f(x)=\frac{a^{3}}{x^{2}+a^{2}}$ if $a=4$. See pp. 519A-519D.
41. Describe the graph.
42. Make a conjecture about the shape of the graph of $f(x)=\frac{a^{3}}{x^{2}+a^{2}}$ if $a=-4$. Explain your reasoning. See pp. 519A-519D.
41. The graph is bell-shaped with a horizontal asymptote at $f(x)=0$.

AUTO SAFETY For Exercises 43-45, use the following information.
When a car has a front-end collision, the objects in the car (including passengers) keep moving forward until the impact occurs. After impact, objects are repelled. Seat belts and airbags limit how far you are jolted forward. The formula for the velocity at which you are thrown backward is $V_{f}=\frac{\left(m_{1}-m_{2}\right) v_{i}}{m_{1}+m_{2}}$, where m_{1} and m_{2} are masses of the two objects meeting and v_{i} is the initial velocity. 43. See pp. 519A-519D.
43. Let m_{1} be the independent variable, and let V_{f} be the dependent variable. Graph the function if $m_{2}=7$ kilograms and $v_{i}=5$ meters per second.
44. Give the equation of the vertical asymptote and the $m_{1}-$ and V_{f}-intercepts of the graph. $m_{1}=-7 ; 7 ;-5$
45. Find the value of V_{f} when the value of m_{1} is 5 kilograms. about $-0.83 \mathrm{~m} / \mathrm{s}$
46. Sample answers: $f(x)=\frac{x+2}{(x+2)(x-3)}, f(x)=\frac{2(x+2)}{(x+2)(x-3)}, f(x)=\frac{5(x+2)}{(x+2)(x-3)}$
46. CRITICAL THINKING Write three rational functions that have a vertical asymptote at $x=3$ and a hole at $x=-2$.
wwww.algebra2.com/self_check_quiz
Lesson 9-3 Graphing Rational Functions 489

Enrichment, p. 534

Graphing with Addition of y-Coordinates Equations of parabolas, ellipses, and hyperbolas that are
"tipedo with respect to thex and dy-axes are more difificult
to graph than the equations you have been studying. Often, however, you can use the graphs of two simpler equations to graph a more complicated ofuation. For
example, the raph of of the ellipse in the diagram at the example, the graph of the ellipse in the diagram at the
right is obtained by adding the y-cordinate of ach point right is obtained by adding the y-coordinate of each poir
on the circle and the y-coordinate of the corresponding
point of the line.

Study Guide and Intervention,

p. 529 (shown) and p. 530

Vertical Asymptotes and Point Discontinuity

Rational Function	an equation of the torm $f(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomial expressions and $q(x) \neq 0$
Vertical Asymptote of the Graph of a of the Graph of a Rational Function	An asymptote is a line that the graph of a function approaches, but never crosses. If the simplified form of the related rational expression is undefined for $x=a$, then $x=a$ is a vertical asymptote.
Point Discontinuity of the Graph of a Rational Function	Point discontinuity is like a hole in a graph. If the original related expression is undefined for $x=a$ but the simplified expression is defined for $x=a$, then there is a hole in the graph at $x=$ a.

Example Determine the equations of any vertical asymptotes and the values of x for any holes in the graph of $f(x)=\frac{4 x^{2}+x-3}{x^{2}-1}$.		
First factor the numerator and the denominator of the rational expression.$f(x)=\frac{4 x^{2}+x-3}{x^{2}-1}=\frac{(4 x-3)(x+1)}{(x+1)(x-1)}$		
The function is undefined for $x=1$ and $x=-1$. Since $\frac{(4 x-3)(x+1)}{(x+1)(x-1)}=\frac{4 x-3}{x-1}, x=1$ is a vertical asymptote. The simplified expression is defined for $x=-1$, so this value represents a hole in the graph.		
Exercises		
Determine the equations of any vertical asymptotes and the values of x for any holes in the graph of each rational function.		
$\begin{aligned} & \text { 1. } f(x)=\frac{4}{x^{2}+3 x-10} \\ & \text { asymptotes: } x=2, \\ & x=-5 \end{aligned}$	$\begin{aligned} & \text { 2. } f(x)=\frac{2 x^{2}-x-10}{2 x-5} \\ & \text { hole: } x=\frac{5}{2} \end{aligned}$	$\begin{aligned} & \text { 3. } f(x)=\frac{x^{2}-x-12}{x^{2}-4 x} \\ & \text { asymptoe: } x=0 ; \\ & \text { hole } x=4 \end{aligned}$
$\begin{aligned} & \text { 4. } f(x)=\frac{3 x-1}{3 x^{2}+5 x-2} \\ & \text { asymptote: } x=-2 \text {; } \\ & \text { hole: } x=\frac{1}{3} \end{aligned}$	$\begin{aligned} & \text { 5. } f(x)=\frac{x^{2}-6 x-7}{x^{2}+6 x-7} \\ & \text { aystotes: } x=1, \\ & x=-7 \end{aligned}$	$\begin{aligned} & \text { 6. } f(x)=\frac{3 x^{2}-5 x-2}{x+3} \\ & \text { asymptote: } x=-3 \end{aligned}$
$\begin{aligned} & \text { 7. } f(x)=\frac{x+1}{x^{2}-6 x+5} \\ & \text { aysmotes: } x=1, \\ & x=5 \end{aligned}$	8. $f(x)=\frac{2 x^{2}-x-3}{2 x^{2}+3 x-9}$ asymptote: $x=-3$; hole: $x=\frac{3}{2}$	9. $f(x)=\frac{x^{3}-2 x^{2}-5 x+6}{x^{2}-4 x+3}$ holes: $x=1, x=3$

Skills Practice, P. 531 and Practice, p. 532 (shown)

10. PAINTING Working alone, Tawa can give the shed a coat of paint
in 6 hours. It takes her father x hours working alone to give the in 6 hours. It takes her father x hours working alone to give the
shed a coat of paint. The equation $f(x)=\frac{6+x}{6 x}$ describes the shed a coat of paint.
portion of the job tawa equation her father working together can complete in 1 hour. Graph $f(x)=\frac{6+x}{6 x}$ for $x \geq 0, y \geq 0$. If Tawa's father can complete the job in 4 hours alone, what portion of the
job can they complete together in 1 hour? $\frac{5}{12}$

11. LIGHT The relationship between the illumination an object
receives from a light source of I foot-candles and the souare of receives from a light source of I foot-candles and the square
the distance d in feet of the object from the source can be modeled by $I(d)=\frac{4500}{d^{2}}$. Graph the function $I(d)=\frac{4500}{d^{2}}$ for $0 \leq I \leq 80$ and $0 \leq d \leq 8$. What is the illumination in foot-candles that the object receives -at a dist
from the light source? 11.25 foot-candles

Reading to Learn

$$
\text { Mathematics, p. } 533
$$

Reading the Lesson

1. Which of the following are rational functions? A and C
$\begin{array}{lll}\text { A. } f(x)=\frac{1}{x-5} & \text { B. } g(x)=\sqrt{x} & \text { C. } h(x)=\frac{x^{2}-25}{x^{2}+6 x+9}\end{array}$
2. a. Graphs of rational functions may have breaks in continuity. These may occur as vertical asymptotes or as point discontinuities

Graph I has a point discontinuity at $x=-2$ Graph II has a vertical asymptote at $x=\underline{-2}$. Match each function with its graph above. $f(x)=\frac{x}{x+2}$ II $\quad g(x)=\frac{x^{2}-4}{x+2}$ I

Helping You Remember
3. One way to remember something new is to see how it is related to something you already
know. How can knowing that divisison by zero is undefined help you to remember how to find the places where a rational function has a point discontinuity or an asymptote Sample answer: A point discontinity or vertical asymptote occurs
where the function is undefined, that is, where the denominator of the
related rational expression is equal to where the function is undefined, that is, where the denominator of the
related rational expression is equal to 0 . Therefore, set the denominator
equal to zero and solve for the variable.

4 Assess

Open-Ended Assessment

Writing Have students write their own examples of rational functions and graph them, showing discontinuities.

Getting Ready for

Lesson 9-4
BASIC SKILL Students will write and solve direct, joint, and inverse variation problems in Lesson 9-4. This will include students writing and solving proportions that relate the values in the variation. Use Exercises 63-66 to determine your students' familiarity with solving proportions.

Assessment Options

Quiz (Lesson 9-3) is available on p. 567 of the Chapter 9 Resource Masters.
Mid-Chapter Test (Lessons 9-1
through 9-3) is available on p. 569 of the Chapter 9 Resource Masters.

Answers

47.

51. A rational function can be used to determine how much each person owes if the cost of the gift is known and the number of people sharing the cost is s. Answers should include the following.

BASKETBALL For Exercises 47-50, use the following information.
Zonta plays basketball for Centerville High School. So far this season, she has made 6 out of 10 free throws. She is determined to improve her free-throw percentage. If she can make x consecutive free throws, her free-throw percentage can be determined using $P(x)=\frac{6+x}{10+x}$.
47. Graph the function. See margin.
48. the part in the first 48. What part of the graph is meaningful in the context of the problem? quadrant
49. It represents her original free-throw percentage of 60%.
50. $y=1$; this represents 100\% which she cannot achieve because she has already missed 4 free throws.

Standardized
Test Practice
\star 49. Describe the meaning of the y-intercept.
*50. What is the equation of the horizontal asymptote? Explain its meaning with respect to Zonta's shooting percentage.
51. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How can rational functions be used when buying a group gift?
Include the following in your answer:

- a complete graph of the function $c=\frac{150}{s}$ with asymptotes, and
- an explanation of why only part of the graph is meaningful in the context of the problem.

52. Which set is the domain of the function graphed at the right? A
(A) $\{x \mid x \neq 0,2\}$
(B) $\{x \mid x \neq-2,0\}$
(C) $\{x \mid x<4\}$
(D) $\{x \mid x>-4\}$

53. Which set is the range of the function $y=\frac{x^{2}+8}{2}$? B
(A) $\{y \mid y \neq \pm 2 \sqrt{2}\}$
(B) $\{y \mid y \geq 4\}$
(C) $\{y \mid y \geq 0\}$
(D) $\{y \mid y \leq 0\}$

Maintain Your Skills

\quad Mixed Rev
54. $\frac{3 m+4}{m+n}$
55. $\frac{3 x-16}{(x+3)(x-2)}$
56. $\frac{5(w-2)}{(w+3)^{2}}$

Simplify each expression. (Lessons 9-2 and 9-1)
54. $\frac{3 m+2}{m+n}+\frac{4}{2 m+2 n}$
55. $\frac{5}{x+3}-\frac{2}{x-2}$
56. $\frac{2 w-4}{w+3} \div \frac{2 w+6}{5}$

Find the coordinates of the center and the radius of the circle with the given equation. Then graph the circle. (Lesson 8-3) 57-58. See margin for graphs.
57. $(x-6)^{2}+(y-2)^{2}=25(6$
(6, 2); 5
58. $x^{2}+y^{2}+4 x=9(-2,0) ; \sqrt{13}$
59. ART Joyce Jackson purchases works of art for an art gallery. Two years ago, she bought a painting for $\$ 20,000$, and last year, she bought one for $\$ 35,000$. If paintings appreciate 14% per year, how much are the two paintings worth now? (Lesson 7-1) \$65,892

Solve each equation by completing the square. (Lesson 6-4)
60. $x^{2}+8 x+20=0$
61. $x^{2}+2 x-120=0$
62. $x^{2}+7 x-17=0$
$-4 \pm 2 i$
$-12,10$
$-7 \pm 3 \sqrt{13}$
2
BASIC SKILL Solve each proportion.

Getting Ready for
63. $\frac{16}{v}=\frac{32}{9} 4.5$
64. $\frac{7}{25}=\frac{a}{5} 1.4$
65. $\frac{6}{15}=\frac{8}{s} 20$
66. $\frac{b}{9}=\frac{40}{30} 12$

490 Chapter 9 Rational Expressions and Equations

- Only the portion in the first quadrant is significant in the real world because there cannot be a negative number of people nor a negative amount of money owed for the gift.

57.

58.

Graphing Calculator Investigation

Graphing Rational Functions

A TI-83 Plus graphing calculator can be used to explore the graphs of rational functions. These graphs have some features that never appear in the graphs of polynomial functions.

- Enter the equation in the $Y=$ list.

By looking at the equation, we can determine that if $x=0$, the function is undefined. The equation of the vertical asymptote is $x=0$. Notice what happens to the y values as x grows larger and as x gets smaller. The y values approach 4 . So, the equation for the horizontal asymptote is $y=4$.

$[-10,10]$ scl: 1 by $[-10,10]$ scl: 1

Example 2 Graph $y=\frac{x^{2}-16}{x+4}$ in the window $[-5,4.4]$ by $[-10,2]$ with scale factors of 1 .

- Because the function is not continuous, put the calculator in dot mode.
KEYSTROKES: MODE $\boldsymbol{\nabla} \quad \boldsymbol{\nabla} \quad \boldsymbol{\nabla} \quad \boldsymbol{\nabla} \quad \boldsymbol{\square}$ ENTER
This graph looks like a line with a break in continuity at
 $x=-4$. This happens because the denominator is 0 when
$x=-4$. Therefore, the function is undefined when $x=-4$.
If you TRACE along the graph, when you come to $x=-4$, you will see that there is no corresponding y value.

Exercises 1-6. See pp. 519A-519D for graphs.

Use a graphing calculator to graph each function. Be sure to show a complete graph. Draw the graph on a sheet of paper. Write the x-coordinates of any points of discontinuity and/or the equations of $\begin{array}{lll}\text { any asymptotes. 2. } x=-2, y=1 & \text { 4. } x=2, y=\frac{2}{3} & \text { 5. } x=1, y=4\end{array}$

1. $f(x)=\frac{1}{x} \quad x=0, y=0$
2. $f(x)=\frac{x}{x+2}$
3. $f(x)=\frac{2}{x-4} x=4, y=0$
4. $f(x)=\frac{2 x}{3 x-6}$
5. $f(x)=\frac{4 x+2}{x-1}$
6. $f(x)=\frac{x^{2}-9}{x+3}$ point discontinuity at $x=-3$
7. Which graph(s) has point discontinuity? 6
8. Describe functions that have point discontinuity. See margin.
wwww.algebra2.com/other_calculator_keystrokes

A Follow-Up of Lesson 9-3

Getting Started

Graphing Window For the examples, students should use the settings shown below the diagrams. For all the exercises, a good window is $[-10,10]$ scl: 1 by $[-10,10]$ scl: 1 .
Graph Style Students may find it instructive to experiment with the graph style. They can begin by using the usual line style. This is the style when the icon to the left of the equation on the $Y=$ list is a backslash. The best alternate style to use is path style. The icon for this style is a small numeral 0 with a short minus sign attached to the left side of the 0 .

Teach

Suggest that students try graphing Example 2 in Connected mode as well as Dot mode. Ask them which way makes it easier to see the discontinuity.

Assess

Ask: How can you use the graphing calculator to check the exact value where a discontinuity occurs? Use TRACE to find where there is no y value.

Answer

8. rational functions where a value of the function is not defined, but the rational expression in simplest form is defined for that value

Direct, Joint, and Inverse Variation

1 Focus

5-Minute Check
Transparency 9-4 Use as a quiz or review of Lesson 9-3.

Mathematical Background notes are available for this lesson on p. 470D.

How
 is variation used to find the total cost given the unit cost?

Ask students:

- If the number of students increases, what happens to the value of the total spending? It increases.
- If the number of students decreases, what happens to the value of the total spending? It decreases.

What Youll Learn

- Recognize and solve direct and joint variation problems.
- Recognize and solve inverse variation problems.

> How is variation used
direct variation constant of variation
joint variation inverse variation

Vocabulary

DIRECT VARIATION AND JOINT VARIATION The relationship given by $t=149 \mathrm{~s}$ is an example of direct variation. A direct variation can be expressed in the form $y=k x$. The k in this equation is a constant and is called the constant of variation.
Notice that the graph of $t=149 \mathrm{~s}$ is a straight line through the origin. An equation of a direct variation is a special case of an equation written in slope-intercept form, $y=m x+b$. When $m=k$ and $b=0, y=m x+b$ becomes $y=k x$. So the slope of a direct variation equation is its constant of variation.
To express a direct variation, we say that y varies directly as x. In other words, as x increases, y increases or decreases at a constant rate.

Key Concept

y varies directly as x if there is some nonzero constant k such that $y=k x$.
k is called the constant of variation.

If you know that y varies directly as x and one set of values, you can use a proportion to find the other set of corresponding values.

$$
\begin{array}{lll}
y_{1}=k x_{1} & \text { and } & y_{2}=k x_{2} \\
\frac{y_{1}}{x_{1}}=k & \frac{y_{2}}{x_{2}} & =k
\end{array}
$$

Therefore, $\frac{y_{1}}{x_{1}}=\frac{y_{2}}{x_{2}}$.

Resource Manager

Workbook and Reproducible Masters

Chapter 9 Resource Masters

- Study Guide and Intervention, pp. 535-536
- Skills Practice, p. 537
- Practice, p. 538
- Reading to Learn Mathematics, p. 539
- Enrichment, p. 540

Graphing Calculator and

 Spreadsheet Masters, p. 44 School-to-Career Masters, p. 18Science and Mathematics Lab Manual,
pp. 123-126

Transparencies

5-Minute Check Transparency 9-4
Real-World Transparency 9
Answer Key Transparencies
Technology
Interactive Chalkboard

Using the properties of equality, you can find many other proportions that relate these same x and y values.

Example 1 Direct Variation

If y varies directly as x and $y=12$ when $x=-3$, find y when $x=16$.
Use a proportion that relates the values.

$\frac{y_{1}}{x_{1}}$	$=\frac{y_{2}}{x_{2}}$		Direct proportion
$\frac{12}{-3}$	$=\frac{y_{2}}{16}$		$y_{1}=12, x_{1}=-3$, and $x_{2}=16$
$16(12)$	$=-3\left(y_{2}\right)$		Cross multiply.
192	$=-3 y_{2}$		Simplify.
-64	$=y_{2}$		Divide each side by -3.
When x	$=16$, the value of y is -64.		

Another type of variation is joint variation. Joint variation occurs when one quantity varies directly as the product of two or more other quantities.

Key Concept

y varies jointly as x and z if there is some number k such that $y=k x z$, where $k \neq 0, x \neq 0$, and $z \neq 0$.

If you know y varies jointly as x and z and one set of values, you can use a proportion to find the other set of corresponding values.

$$
\begin{aligned}
y_{1} & =k x_{1} z_{1} & \text { and } & y_{2}
\end{aligned}=k x_{2} z_{2} g 子 \begin{array}{lrl}
\frac{y_{1}}{x_{1} z_{1}} & =k & \frac{y_{2}}{x_{2} z_{2}}
\end{array}
$$

Therefore, $\frac{y_{1}}{x_{1} z_{1}}=\frac{y_{2}}{x_{2} z_{2}}$.

Example 2 Joint Variation

Suppose y varies jointly as x and z. Find y when $x=8$ and $z=3$, if $y=16$ when $z=2$ and $x=5$.
Use a proportion that relates the values.

$$
\begin{array}{rlrl}
\frac{y_{1}}{x_{1} z_{1}} & =\frac{y_{2}}{x_{2} z_{2}} & & \text { Joint variation } \\
\frac{16}{5(2)} & =\frac{y_{2}}{8(3)} & & y_{1}=16, x_{1}=5, z_{1}=2, x_{2}=8, \text { and } z_{2}=3 \\
8(3)(16) & =5(2)\left(y_{2}\right) & & \text { Cross multiply. } \\
384 & =10 y_{2} & & \text { Simplify. } \\
38.4 & =y_{2} & & \text { Divide each side by } 10 . \\
\text { When } x & =8 \text { and } z=3, \text { the value of } y \text { is } 38.4 .
\end{array}
$$

INVERSE VARIATION Another type of variation is inverse variation. For two quantities with inverse variation, as one quantity increases, the other quantity decreases. For example, speed and time for a fixed distance vary inversely with each other. When you travel to a particular location, as your speed increases, the time it takes to arrive at that location decreases.
wwww.algebra2.com/extra_examples

Online Lesson Plans

USA TODAY Education's Online site offers resources and interactive features connected to each day's newspaper. Experience TODAY, USA TODAY's daily lesson plan, is available on the site and delivered daily to subscribers. This plan provides instruction for integrating USA TODAY graphics and key editorial features into your mathematics classroom. Log on to wwww.education.usatoday.com.

DIRECT VARIATION AND JOINT VARIATION

In-Class Examples

Power
 Point ${ }^{\circledR}$

1 If y varies directly as x and $y=-15$ when $x=5$, find y when $x=3 .-9$

2 Suppose y varies jointly as x and z. Find y when $x=10$ and $z=5$, if $y=12$ when $z=8$ and $x=3$. 25

Teaching Tip Discuss with students what happens to the constant of variation in the proportions used to solve these examples.别

3 If a varies inversely as b and $a=-6$ when $b=2$, find a when $b=-7 . \frac{12}{7}$

4 SPACE The next closest planet to the Sun after Mercury is Venus, which is about 67 million miles away. How much larger would the diameter of the Sun appear on Venus than on Earth? about 1.39 times as large as it appears from Earth

Teaching Tip To understand the situation in the problem, some students may find it useful to make a sketch showing the relative distances from the Sun to Earth, Mercury, and Venus.
y varies inversely as x if there is some nonzero constant k such that

$$
x y=k \text { or } y=\frac{k}{x} \text {. }
$$

Suppose y varies inversely as x such that $x y=6$ or $y=\frac{6}{x}$. The graph of this equation is shown at the right. Note that in this case, k is a positive value 6 , so as the values of x increase, the values of y decrease.
Just as with direct variation and joint variation, a proportion can be used with inverse variation to solve problems where some quantities are known. The following proportion is only one of several that can be
 formed.

$$
\begin{aligned}
x_{1} y_{1} & =k \text { and } x_{2} y_{2}=k \\
x_{1} y_{1} & =x_{2} y_{2} \quad \text { Substitution Property of Equality } \\
\frac{x_{1}}{y_{2}} & =\frac{x_{2}}{y_{1}} \quad \text { Divide each side by } y_{1} y_{2}
\end{aligned}
$$

Example 3 Inverse Variation

If r varies inversely as t and $r=18$ when $t=-3$, find r when $t=-11$.
Use a proportion that relates the values.

$$
\begin{aligned}
\frac{r_{1}}{t_{2}} & =\frac{r_{2}}{t_{1}} & & \text { Inverse variation } \\
\frac{18}{-11} & =\frac{r_{2}}{-3} & & r_{1}=18, t_{1}=-3, \text { and } t_{2}=-11 \\
18(-3) & =-11\left(r_{2}\right) & & \text { Cross multiply. } \\
-54 & =-11 r_{2} & & \text { Simplify. } \\
4 \frac{10}{11} & =r_{2} & & \text { Divide each side by }-11 .
\end{aligned}
$$

When $t=-11$, the value of r is $4 \frac{10}{11}$.

Example 4 Use Inverse Variation

- SPACE The apparent length of an object is inversely proportional to one's distance from the object. Earth is about 93 million miles from the Sun. Use the information at the left to find how much larger the diameter of the Sun would appear on Mercury than on Earth.

Explore You know that the apparent diameter of the Sun varies inversely with the distance from the Sun. You also know Mercury's distance from the Sun and Earth's distance from the Sun. You want to determine how much larger the diameter of the Sun appears on Mercury than on Earth.
Plan Let the apparent diameter of the Sun from Earth equal 1 unit and the apparent diameter of the Sun from Mercury equal m. Then use a proportion that relates the values.

D A I L Y INIERVENTION
 Unlocking Misconceptions

Direct and Inverse Variation Help students understand the difference between the two types of variation by using the example of gas in the tank of a car, distance, and driving time. The amount of distance increases as the driving time increases (direct). The amount of gas decreases as the driving time increases (inverse).

Solve

$$
\begin{array}{rlrl}
\frac{\text { distance from Mercury }}{\text { apparent diameter from Earth }} & =\frac{\text { distance from Earth }}{\text { apparent diameter from Mercury }} & & \text { Inverse variation } \\
\frac{36 \text { million miles }}{1 \text { unit }} & =\frac{93 \text { million miles }}{m \text { units }} & & \text { Substitution } \\
(36 \text { million miles })(m \text { units }) & =(93 \text { million miles })(1 \text { unit }) & & \text { Cross multiply. } \\
m & =\frac{(93 \text { million miles })(1 \text { unit })}{36 \text { million miles }} & & \text { Divide each side by } \\
m & \approx 2.58 \text { million miles. } \\
& & \text { Simplify. }
\end{array}
$$

Examine Since distance between the Sun and Earth is between 2 and 3 times the distance between the Sun and Mercury, the answer seems reasonable. From Mercury, the diameter of the Sun will appear about 2.58 times as large as it appears from Earth.

Check for Understanding

Concept Check

1. Determine whether each graph represents a direct or an inverse variation.
a.

inverse
b.
 direct

Compare and contrast $y=5 x$ and $y=-5 x$.
3. OPEN ENDED Describe two quantities in real life that vary directly with each other and two quantities that vary inversely with each other. See margin.

State whether each equation represents a direct, joint, or inverse variation. Then name the constant of variation
4. $a b=20$ inverse; 20
5. $\frac{y}{x}=-0.5$ direct; -0.5
6. $A=\frac{1}{2} b h$ joint; $\frac{1}{2}$

Find each value.
7. If y varies directly as x and $y=18$ when $x=15$, find y when $x=20$. 24
8. Suppose y varies jointly as x and z. Find y when $x=9$ and $z=-5$, if $y=-90$ when $z=15$ and $x=-6 .-45$
9. If y varies inversely as x and $y=-14$ when $x=12$, find x when $y=21$. - 8

Application

12. about 150 ft

SWIMMING For Exercises 10-13, use the following information. When a person swims underwater, the pressure in his or her ears varies directly with the depth at which he or she is swimming.
10. Write an equation of direct variation that represents this situation. $P=0.43 d$

11. Find the pressure at 60 feet. 25.8 psi
12. It is unsafe for amateur divers to swim where the water pressure is more than 65 pounds per square inch. How deep can an amateur diver safely swim?
13. Make a table showing the number of pounds of pressure at various depths of water. Use the data to draw a graph of pressure versus depth. See margin.

Differentiated Instruction

Auditory/Musical Have students find various kinds of variation in the sounds made by musical instruments. Suggest that they investigate the length and size of guitar strings relative to their vibrations, and the length and diameter of the columns of air used in wind and brass instruments for various notes.

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 9 .
- write the names and some examples from their lives for direct, joint, and inverse variation.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

Answers

3. Sample answers: wages and hours worked, total cost and number of pounds of apples purchased; distances traveled and amount of gas remaining in the tank, distance of an object and the size it appears
4.

Depth (ft)	Pressure (psi)
0	0
1	0.43
2	0.86
3	1.29
4	1.72

Study Guide and Intervention, p. 535 (shown) and p. 536			
Direct Variation and Joint Variation			
Direct Varation			
Joint Varation	y varies jinity as x and $z i$ there is some number k such that $y=k$ kz, where $x \geqslant 0$ and $z \neq 0$.		
each valu			
	directly as x and $y=16$, find x when $y=20$. Direct proportion $y_{1}-16, x_{1}-4$, and $y_{2}-20$ 4) Cross multiply. Simplify. x is 5 when y is 20 .	b. If \boldsymbol{y} varies joi when $x=2$ a $x=4$ and $z=$ $\frac{y_{1}}{x_{1} z_{1}}=\frac{y_{2}}{x_{2} z_{2}}$ $\frac{10}{2 \cdot 4}=\frac{y_{2}}{4 \cdot 3}$ $120=8 y_{2}$ $y_{2}=15$ The value of y	ntly as x and z and $y=10$ and $z=4$, find y when 3. \qquad $y_{1}-10, x_{1}-2, z_{1}-4, x_{2}-4$, and $z_{2}-3$ Simplity. Divide each side by 8 . is 15 when $x=4$ and $z=3$.
Exercises			
Find each valu			
1. If y varies directly as x and $y=9$ when $x=6$, find y when $x=8.12$		2. If y varies directly as x and $y=16$ when $x=36$, find y when $x=54$. 24	
3. If y varies directly as x and $x=15$when $y=5$, find x when $y=9.27$		4. If y varies directly as x and $x=33$ when $y=22$, find x when $y=32.48$	
5. Suppose y varies jointly as x and z. Find y when $x=5$ and $z=3$, if $y=18$ when $x=3$ and $z=2.45$		6. Suppose y varies jointly as x and z. Find ywhen $x=6$ and $z=8$, if $y=6$ when $x=4$ and $z=2.36$	
$\begin{aligned} & \text { 7. Suppose } y \text { varies jointly as } x \text { and } z \text {. } \\ & \text { Find } y \text { when } x=4 \text { and } z=111 \text {, if } y=60 \\ & \text { when } x=3 \text { and } z=5.176 \end{aligned}$		8. Suppose y varies jointly as x and z. Find y when $x=5$ and $z=2$, if $y=84$ when $x=4$ and $z=7.30$	
9. If y varies directly as x and $y=14$ when $x=35$, find y when $x=12$. 4.8		10. If y varies directly as x and $x=200$ when $y=50$, find x when $y=1000.4000$	
11. If y varies directly as x and $y=39$ when $x=52$, find y when $x=22$. 16.5		12. If y varies directly as x and $x=60$ when $y=75$, find x when $y=42.33 .6$	
13. Suppose y varies jointly as x and z. Find y when $x=6$ and $z=11$, if $y=120$ when $x=5$ and $z=12.132$		14. Suppose y varies jointly as x and z. Find y when $x=5$ and $z=10$, if $y=12$ when $x=8$ and $z=6.12 .5$	
15. Suppose y varies jointly as x and z. Find y when $x=7$ and $z=18$, if$y=351$ when $x=6$ and $z=13$. 567		$\begin{aligned} & \text { 16. Suppose } y \text { varies jointly as } x \text { and } z \text {. Find } y \\ & \text { when } x=5 \text { and } z=27 \text {, if } y=480 \text { when } \\ & x=9 \text { and } z=20.360 \end{aligned}$	
Skills Practice, p. 537 and Practice, p. 538 (shown)			
State whether each equation represents a direct, joint, or inverse variation. Then name the constant of variation.			
1. $u=8 . w_{z}$ joint; $82 . p=4$ direct; 4 3. $L=\frac{5}{k}$ inverse; $5 \quad 4 . x y=4.5$ inverse; 4.5			
5. $\frac{C}{d}=\pi$ direct; π	$\begin{gathered} \text { 6. } 2 d=m n \\ \text { joint } ; \frac{1}{2} \end{gathered}$	$\begin{array}{ll} \text { 7. } \frac{1.25}{g}=h & 8 . y=\frac{3}{4 x} \\ \text { inverse; } 1.25 & \text { inverse; } \frac{3}{4} \end{array}$	
Find each value. 9. If y varies directly as x and $y=8$ when $x=2$, find y when $x=6.24$			
10. If y varies directly as x and $y=-16$ when $x=6$, find x when $y=-4$. 1.5			
11. If y varies directly as x and $y=132$ when $x=11$, find y when $x=33.396$			
12. If y varies directly as x and $y=7$ when $x=1.5$, find y when $x=4 . \frac{56}{3}$			
13. If y varies jointly as x and z and $y=24$ when $x=2$ and $z=1$, find y when $x=12$ and $z=2.288$			
14. If y varies jointly as x and z and $y=60$ when $x=3$ and $z=4$, find y when $x=6$ and $z=8.240$			
15. If y varies jointly as x and z and $y=12$ when $x=-2$ and $z=3$, find y when $x=4$ and $z=-1.8$			
16. If y varies inversely as x and $y=16$ when $x=4$, find y when $x=3 . \frac{64}{3}$			
17. If y varies inversely as x and $y=3$ when $x=5$, find x when $y=2.5$. 6			
18. If y varies inversely as x and $y=-18$ when $x=6$, find y when $x=5$. -21.6			
19. If y varies directly as x and $y=5$ when $x=0.4$, find x when $y=37.5$. 3			
20. GASES The volume V of a gas varies inversely as its pressure P. If $V=80$ cubic centimeters when $P=2000$ millimeters of mercury, find V when $P=320$ millimeters of mercury. $500 \mathrm{~cm}^{3}$			
21. SPRINGS The length S that a spring will stretch varies directly with the weight F that is attached to the spring. If a spring stretches 20 inches with 25 pounds attached, how far will it stretch with 15 pounds attached? 12 in.			
22. GEOMETRY The area A of a trapezoid varies jointly as its height and the sum of its bases. If the area is 480 square meters when the height is 20 meters and the bases are 28 meters and 20 meters, what is the area of a trits bases are 10 meters and 15 meters? $100 \mathrm{~m}^{2}$			
Reading to Learn Mathematics, p. 539			
Pre-Activity How is variation used to find the total cost given the unit cost? Read the introduction to Lesson $9-4$ at the top of page 492 in your textbook. - For each additional student who enrolls in a public college, the total high-tech spending will \qquad increase (increase/decrease) by \$149 - For each decrease in enrollment of 100 students in a public college, the total high-tech spending will \qquad decrease (increase/decrease) by \$14,900			

Reading the Lesson

1. Write an equation to represent each of the following variation statements. Use k as the
constant of variation.
a. m varies inversely as n. $m=\frac{k}{n}$
b. s varies directly as r. $s=k r$
c. t varies jointly as p and q. $t=k p q$

Helping You Remember

3. How can your knowledge of the equation of the slope-intercept form of the equation of a Sample answer: The graph of an equation expressing direct variation is a
line. The slope-intercept form of the equation of a line is $y=m x+b$ in line. The slope-intercept form of the equation of a line is $y=m x+b$. In
direct variation, if one of the quantities is 0 , the other quantity is also 0 ,
so $b=0$ and the line goes throug the origin. The equation of a line direct variation, if one of the quantities is 0 , the other quantity in als.
so $b=0$ and the line goes through the origin. The equation of a line
through the origin is $y=m x$ where m is the slope. This is the same as through the origin is $y=m x$, where m is the
the equation for direct variation with $k=m$.

Practice and Apply

Homework Help Exercises Examples 14-37 $\quad 1-3$ 38-53 $\vdots \quad 4$

Extra Practice

 See page 848.

Travel Agent Travel agents give advice and make arrangements for transportation, accommodations, and recreation. For international travel, they also provide information on customs and currency exchange.

Online Research For information about a career as a travel agent, visit:
www.algebra2.com/ careers

State whether each equation represents a direct, joint, or inverse variation. Then name the constant of variation. 14. direct; 1.5 16. inverse; -18
14. $\frac{n}{m}=1.5$
15. $a=5 b c$ joint; 5
16. $v w=-18$
17. $3=\frac{a}{b}$ direct; 3
18. $p=\frac{12}{q}$
19. $\begin{aligned} & y=-7 x \\ & \text { direct; }-7\end{aligned}$
20. $V=\frac{1}{3} B h$
joint; $\frac{1}{3}$
21. $\frac{2.5}{t}=s$ inverse; 2.5
22. CHEMISTRY Boyle's Law states that when a sample of gas is kept at a constant temperature, the volume varies inversely with the pressure exerted on it. Write an equation for Boyle's Law that expresses the variation in volume V as a function of pressure $P . V=\frac{\boldsymbol{k}}{\boldsymbol{P}}$
23. CHEMISTRY Charles' Law states that when a sample of gas is kept at a constant pressure, its volume V will increase as the temperature t increases. Write an equation for Charles' Law that expresses volume as a function. $V=k t$
24. GEOMETRY How does the circumference of a circle vary with respect to its radius? What is the constant of variation? directly; 2π
25. TRAVEL A map is scaled so that 3 centimeters represents 45 kilometers. How far apart are two towns if they are 7.9 centimeters apart on the map? 118.5 km

Find each value.

26. If y varies directly as x and $y=15$ when $x=3$, find y when $x=12$. 60
27. If y varies directly as x and $y=8$ when $x=6$, find y when $x=15$. 20
28. Suppose y varies jointly as x and z. Find y when $x=2$ and $z=27$, if $y=192$ when $x=8$ and $z=6.216$
29. If y varies jointly as x and z and $y=80$ when $x=5$ and $z=8$, find y when $x=16$ and $z=2.64$
30. If y varies inversely as x and $y=5$ when $x=10$, find y when $x=2$. 25
31. If y varies inversely as x and $y=16$ when $x=5$, find y when $x=20.4$
32. If y varies inversely as x and $y=2$ when $x=25$, find x when $y=40$. 1.25
33. If y varies inversely as x and $y=4$ when $x=12$, find y when $x=5$. 9.6
34. If y varies directly as x and $y=9$ when x is -15 , find y when $x=21 .-12.6$
35. If y varies directly as x and $x=6$ when $y=0.5$, find y when $x=10.0 .83$
\star 36. Suppose y varies jointly as x and z. Find y when $x=\frac{1}{2}$ and $z=6$, if $y=45$ when $x=6$ and $z=10.2 \frac{1}{4}$
36. If y varies jointly as x and z and $y=\frac{1}{8}$ when $x=\frac{1}{2}$ and $z=3$, find y when $x=6$ and $z=\frac{1}{3} \cdot \frac{1}{6}$
37. WORK Paul drove from his house to work at an average speed of 40 miles per hour. The drive took him 15 minutes. If the drive home took him 20 minutes and he used the same route in reverse, what was his average speed going home? 30 mph
38. WATER SUPPLY Many areas of Northern California depend on the snowpack of the Sierra Nevada Mountains for their water supply. If 250 cubic centimeters of snow will melt to 28 cubic centimeters of water, how much water does 900 cubic centimeters of snow produce? $100.8 \mathrm{~cm}^{3}$

496 Chapter 9 Rational Expressions and Equations

496 Chapter 9 Rational Expressions and Equations
40. RESEARCH According to Johannes Kepler's third law of planetary motion, the ratio of the square of a planet's period of revolution around the Sun to the cube of its mean distance from the Sun is constant for all planets. Verify that this is true for at least three planets. See students' work.

More About.

Biology
In order to sustain itself in its cold habitat, a Siberian tiger requires 20 pounds of meat per day.
Source: Wildife Fact File
49. The sound will be heard $\frac{1}{4}$ as intensely.
50. 0.02; $\boldsymbol{C}=\frac{0.02 P_{1} P_{2}}{d^{2}} \star 5$
54. Sample answer: If the average student spends $\$ 2.50$ for lunch in the school cafeteria, write an equation to represent the amount s students will spend for lunch in d days. How much will 30 students spend in a week?
$a=2.50 s d ; \$ 375$

- BIOLOGY For Exercises 41-43, use the information at the left.

41. Write an equation to represent the amount of meat needed to sustain s Siberian tigers for d days. $m=20$ sd
42. Is your equation in Exercise 41 a direct, joint, or inverse variation? joint
43. How much meat do three Siberian tigers need for the month of January? 1860 lb

LAUGHTER For Exercises 44-46, use the following information.

According to The Columbus Dispatch, the average American laughs 15 times per day.
44. Write an equation to represent the average number of laughs produced by m household members during a period of d days. $\ell=15 \mathrm{md}$
45. Is your equation in Exercise 44 a direct, joint, or inverse variation? joint
46. Assume that members of your household laugh the same number of times each day as the average American. How many times would the members of your household laugh in a week? See students' work.

ARCHITECTURE For Exercises 47-49, use the following information.

When designing buildings such as theaters, auditoriums, or museums architects have to consider how sound travels. Sound intensity I is inversely proportional to the square of the distance from the sound source d.
\star 47. Write an equation that represents this situation. $I=\frac{k}{d^{2}}$
\star 48. If d is the independent variable and I is the dependent variable, graph the equation from Exercise 47 when $k=16$. See margin.
\star 49. If a person in a theater moves to a seat twice as far from the speakers, compare the new sound intensity to that of the original.

TELECOMMUNICATIONS For Exercises 50-53, use the following information. It has been found that the average number of daily phone calls C between two cities is directly proportional to the product of the populations P_{1} and P_{2} of two cities and inversely proportional to the square of the distance d between the cities. That is, $C=\frac{k P_{1} P_{2}}{d^{2}}$.
50. The distance between Nashville and Charlotte is about 425 miles. If the average number of daily phone calls between the cities is 204,000, find the value of k and write the equation of variation. Round to the nearest hundredth.

ڤ 51. Nashville is about 680 miles from Tampa. Find the average number of daily phone calls between them. about 127,572 calls
\star 52. The average daily phone calls between Indianapolis and Charlotte is 133,380. Find the distance between Indianapolis and Charlotte. about 601 mi
\star 53. Could you use this formula to find the populations or the average number of phone calls between two adjoining cities? Explain. no; $\boldsymbol{d} \neq 0$
54. CRITICAL THINKING Write a real-world problem that involves a joint variation. Solve the problem.
www.algebra2.com/self_check_quiz
Lesson 9-4 Direct, Joint, and Inverse Variation 497

About the Exercises... Organization by Objective
 - Direct Variation and Joint Variation: 23-29, 34-37, 39-46

- Inverse Variation: 22, 30-33, 38, 47-49

Odd/Even Assignments

Exercises 14-39 are structured so that students practice the same concepts whether they are assigned odd or even problems.
Alert! Exercise 40 requires reference materials for planetary data.

Assignment Guide

Basic: 15-35 odd, 39, 41-43, 54-73
Average: 15-39 odd, 44-49, 54-73
Advanced: 14-40 even, 44-67
(optional: 68-73)
All: Practice Quiz 2 (1-5)

Answer
48.

Teacher to Teacher

Susan Nelson

Spring H.S., Spring, TX
"I have my students do a data gathering activity called Rotations where we have the student do a regression for the diameter of a lid versus the number of rotations it takes to move across a fixed length of masking tape."

4 Assess

Open-Ended Assessment

Modeling Have students write equations for various variations in their life (time spent studying, hours of sleep, and so on). Ask them to write examples and explain them.

Intervention

Make sure that students understand the essential differences between direct and inverse variation. For example, ask them if the number of candles on a birthday cake varies directly or indirectly with the age of the birthday person. Then ask how the length of the candle remaining varies with the time the candle has burned.

Getting Ready for
 Lesson 9-5
 PREREQUISITE SKILL In Lesson
 Getting Ready for the Next Lesson

$9-5$, students will identify equa-
tions and graphs as different types of functions. Use Exercises 68-73 to determine your students' familiarity with identifying equations as step, constant, absolute value, or piecewise functions.

Assessment Options

Practice Quiz 2 The quiz provides students with a brief review of the concepts and skills in Lessons 9-3 and 9-4. Lesson numbers are given to the right of exercises or instruction lines so students can review concepts not yet mastered.

Standardized
Test Practice

- $B<\infty$

How is variation used to find the total cost given the unit cost?
Include the following in your answer:

- an explanation of why the equation for the total cost is a direct variation, and
- a problem involving unit cost and total cost of an item and its solution.

56. If the ratio of $2 a$ to $3 b$ is 4 to 5 , what is the ratio of $5 a$ to $4 b$? D
(A) $\frac{4}{3}$
(B) $\frac{3}{4}$
(C) $\frac{9}{8}$
(D) $\frac{3}{2}$
57. Suppose b varies inversely as the square of a. If a is multiplied by 9 , which of the following is true for the value of b ? C
(A) It is multiplied by $\frac{1}{3}$.
(B) It is multiplied by $\frac{1}{9}$.
(C) It is multiplied by $\frac{1}{81}$.
(D) It is multiplied by 3 .

Maintain Your Skills

Mixed Review
Determine the equations of any vertical asymptotes and the values of x for any holes in the graph of each rational function. (Lesson 9-3)
58. $f(x)=\frac{x+1}{x^{2}-1}$
59. $f(x)=\frac{x+3}{x^{2}+x-12}$
60. $f(x)=\frac{x^{2}+4 x+3}{x+3}$
asymp.: $x=1$; hole: $x=-1 \quad$ asymp.: $x=-4, x=3$
hole: $x=-3+3$

Simplify each expression. (Lesson 9-2)
62. $\frac{t^{2}-2 t-2}{(t+2)(t-2)}$
61. $\frac{3 x}{x-y}+\frac{4 x}{y-x} \frac{x}{y-x}$
62. $\frac{t}{t+2}-\frac{2}{t^{2}-4}$
63. $\frac{m-\frac{1}{m}}{1+\frac{4}{m}-\frac{5}{m^{2}}} \frac{m(m+1)}{m+5}$
64. ASTRONOMY The distance from Earth to the Sun is approximately $93,000,000$ miles. Write this number in scientific notation. (Lesson 5-1) 9.3×10^{7}

State the slope and the y-intercept of the graph of each equation. (Lesson 2-4)
65. $y=0.4 x+1.2$ 0.4; 1.2 66. $2 y=6 x+143 ; 7$
67. $3 x+5 y=15-\frac{3}{5} ; 3$

PREREQUISITE SKILL Identify each function as \mathbf{S} for step, C for constant, A for absolute value, or \mathbf{P} for piecewise. (To review special functions, see Lesson 2-6.)
68. $h(x)=\frac{2}{3} \mathrm{C}$
69. $g(x)=3|x| \mathbf{A}$
70. $f(x)=\llbracket 2 x \rrbracket \mathbf{S}$
71. $f(x)=\left\{\begin{array}{r}1 \text { if } x>0 \\ -1 \text { if } x \leq 0\end{array} \mathbf{P}\right.$
72. $h(x)=|x-2| \mathbf{A}$
73. $g(x)=-3 \mathbf{C}$

Practice Quiz 2
Lessons 9-3 and 9-4
Graph each rational function. (Lesson 9-3) 1-2. See pp. 519A-519D.

1. $f(x)=\frac{x-1}{x-4}$
2. $f(x)=\frac{-2}{x^{2}-6 x+9}$

Find each value. (Lesson 9-4)
3. If y varies inversely as x and $x=14$ when $y=7$, find x when $y=2$. 49
4. If y varies directly as x and $y=1$ when $x=5$, find y when $x=22$. 4.4
5. If y varies jointly as x and z and $y=80$ when $x=25$ and $z=4$, find y when $x=20$ and $z=7.112$

498 Chapter 9 Rational Expressions and Equations

Answer

55. A direct variation can be used to determine the total cost when the cost per unit is known. Answers should include the following.

- Since the total cost T is the cost per unit u times the number of units n or $T=u n$, the relationship is a direct variation. In this equation u is the constant of variation.
- Sample answer: The school store sells pencils for 20¢ each. John wants to buy 5 pencils. What is the total cost of the pencils? (\$1.00)

9-5 Classes of Functions

What You'll Learn

- Identify graphs as different types of functions
- Identify equations as different types of functions.

can graphs of functions be How used to determine a person's weight on a different planet?

The purpose of the 2001 Mars Odyssey Mission is to study conditions on Mars. The findings will help NASA prepare for a possible mission with human explorers The graph at the right compares a person's weight on Earth with his or her weight on Mars. This graph represents a direct variation, which you studied in the previous lesson.

IDENTIFY GRAPHS In this book, you have studied several types of graphs representing special functions. The following is a summary of these graphs.

9-5
 Lesson Notes

1 Focus

5-Minute Check

Transparency 9-5 Use as a quiz or review of Lesson 9-4.

Mathematical Background notes are available for this lesson on p. 470D.

Building on Prior Knowledge

In previous course material, students have learned about different kinds of functions. In this lesson, students will revisit different functions and group them into logical categories based on their characteristics.

How
 can graphs of functions be used to determine a person's weight on a different planet?

Ask students:

- According to the graph, what is the approximate weight on Mars of a person who weighs 50 pounds on Earth? about 20 lb
- According to the graph, what is the approximate weight on Earth of a person who would weigh 30 pounds on Mars? about 75 lb

Workbook and Reproducible Masters
 Chapter 9 Resource Masters

- Study Guide and Intervention, pp. 541-542
- Skills Practice, p. 543
- Practice, p. 544
- Reading to Learn Mathematics, p. 545
- Enrichment, p. 546
- Assessment, p. 568

Resource Manager

Transparencies

5-Minute Check Transparency 9-5
Answer Key Transparencies

[^3]
2 Teach

IDENTIFY GRAPHS

In-Class Example

1 Identify the type of function represented by each graph.
a.

absolute value function
b.

quadratic function

IDENTIFY EQUATIONS

In-Class Example

Power Point ${ }^{\circ}$

SHIPPING CHARGES A chart gives the shipping rates for an Internet company. They charge $\$ 3.50$ to ship less than 1 pound, $\$ 3.95$ for 1 pound and over up to 2 pounds, and $\$ 5.20$ for 2 pounds and over up to 3 pounds. Which graph depicts these rates? c , the step or greatest integer function
a.

b.

C.

Concept Summary
Square Root Function

If an equation includes an expression inside the radical sign, the function is a square root function. Its graph is a curve that starts at a point and continues in only one direction.

Rational Function

The general equation for a rational function is $y=\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial functions. Its graph has one or more asymptotes and/or holes.

Inverse Variation Function

The inverse variation function $y=\frac{a}{x}$ is a special case of the rational function where $p(x)$ is a constant and $q(x)=x$. Its graph has two asymptotes, $x=0$ and $y=0$.

Example 1 Identify a Function Given the Graph

Identify the type of function represented by each graph.
a.

The graph has a starting point and curves in one direction. The graph represents a square root function.
b.

The graph appears to be a direct variation since it is a straight line passing through the origin. However, the hole indicates that it represents a rational function.

IDENTIFY EQUATIONS If you can identify an equation as a type of function, you can determine the shape of the graph.

Example 2 Match Equation with Graph

ROCKETRY Emily launched a toy rocket from ground level. The height above the ground level h, in feet, after t seconds is given by the formula $h(t)=-16 t^{2}+80 t$. Which graph depicts the height of the rocket during its flight?
a.

b.

c.

The function includes a second-degree polynomial. Therefore, it is a quadratic function, and its graph is a parabola. Graph b is the only parabola. Therefore, the answer is graph \mathbf{b}.

500 Chapter 9 Rational Expressions and Equations

Teacher to Teacher

Deedee S. Adams
Oxford H.S., Oxford, AL
"I have my students play Simon Says by having them all stand and graph different types of functions with their arms. Students sit down if they don't illustrate the correct graph."

Chapter 7 Study Guide and Review

7-2 Graphing Polynomial Functions

$\begin{array}{l:l}\text { See pages } \\ 355-358 & \text { Concept Summary }\end{array}$

- The Location Principle: Since zeros of a function are located at x-intercepts, there is also a zero between each pair of these zeros.
- Turning points of a function are called relative maxima and relative minima.

Example Graph $f(x)=x^{4}-2 x^{2}+10 x-2$ by making a table of values.
Make a table of values for several values of x and plot the points. Connect the points with a smooth curve.

x	$f(x)$
-3	31
-2	-14
-1	-13
0	-2
1	7
2	26

Exercises For Exercises 13-18, complete each of the following.
a. Graph each function by making a table of values.
b. Determine consecutive values of x between which each real zero is located.
c. Estimate the x-coordinates at which the relative maxima and relative minima occur. See Example 1 on page 353. 13-18. See margin.
13. $h(x)=x^{3}-6 x-9$
14. $f(x)=x^{4}+7 x+1$
15. $p(x)=x^{5}+x^{4}-2 x^{3}+1$
16. $g(x)=x^{3}-x^{2}+1$
17. $r(x)=4 x^{3}+x^{2}-11 x+3$
18. $f(x)=x^{3}+4 x^{2}+x-2$

7-3 Solving Equations Using Quadratic Techniques

See pages 360-364.

Concept Summary

- Solve polynomial equations by using quadratic techniques.

Example
Solve $x^{3}-3 x^{2}-54 x=0$
$x^{3}-3 x^{2}-54 x=0 \quad$ Original equation
$x\left(x^{2}-3 x-54\right)=0$
Factor out the GCF.
$x(x-9)(x+6)=0$
Factor the trinomial.
$x=0$ or $x-9=0$ or $x+6=0 \quad$ Zero Product Property
19. $\frac{5}{3},-3,0 \quad x=0$
$x=9$
$x=-6$
20. $-8,0,5$
21. $4,-2 \pm$
$2 i \sqrt{3}$
23. $2,-2$

Exercises Solve each e
19. $3 x^{3}+4 x^{2}-15 x=0$
20. $m^{4}+3 m^{3}=40 m^{2}$
21. $a^{3}-64=0$
22. $r+9 \sqrt{r}=-8 \varnothing$
23. $x^{4}-8 x^{2}+16=0$
24. $x^{\frac{2}{3}}-9 x^{\frac{1}{3}}+20=064,125$

Chapter 7 Study Guide and Review 401

NIIERVENION

Differentiated Instruction

Interpersonal Have students work with a partner or in small groups to do quick sketches of graphs and identify the type of function the graph could represent. Have each group make a list of the identifying characteristics of the graph; then ask groups to exchange and compare their lists.

3 Identify the type of function represented by each equation. Then graph the equation.
a. $y=-3$ constant function

b. $y=\sqrt{9 x}$ square root function

3 Practice/Apply

Study Notebook

Have students-

- add the definitions/examples of the vocabulary terms to their Vocabulary Builder worksheets for Chapter 9 .
- add sketches to illustrate each special function graph.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

Answer

1. Sample answer:

This graph is a rational function. It has an asymptote at $x=-1$.

Lesson 9-5 Classes of Functions

About the Exercises...

Organization by Objective

- Identify Graphs: 13-22
- Identify Equations: 23-34

Odd/Even Assignments

Exercises 13-30 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 13-29 odd, 31-33, 37-61
Average: 13-29 odd, 31-33, 37-61
Advanced: 14-30 even, 31-55 (optional: 56-61)

Answers

9.

10.

11.

9-11. See margin for Identify the type of function represented by each equation. Then graph the graphs.

equation.

9. $y=x$ identity or direct variation
10. $y=-x^{2}+2$
quadratic
11. $y=|x+2|$ absolute value

Application 12. GEOMETRY Write the equation for the area of a circle. Identify the equation as a type of function. Describe the graph of the function. $A=\pi r^{2}$; quadratic; the graph is a parabola.

* indicates increased difficulty

Practice and Apply

Homework Help

For Exercises	See Examples
$13-18$	1
$19-22$,	2
$31-36$	
$23-30$	3

Extra Practice
See page 848.

Weh can use functions
You determine the
relationship between
primary and secondary
earthquake waves.
Visit www.algebra2.
com/webquest to
continue work on your
WebQuest project.
16.
absolute value

direct variation
13.

14.

square root
17.

quadratic
15.

rational
18.

constant

Match each graph with an equation at the right.
19.

20.

22.

a
21.
g

23-30. See pp. 519A519D for graphs.
23. constant
24. direct variation
25. square root
26. inverse variation or rational
27. rational
28. greatest integer
29. absolute value
30. quadratic equation.
23. $y=-1.5$
24. $y=2.5 x$
25. $y=\sqrt{9 x}$
26. $y=\frac{4}{x}$
27. $y=\frac{x^{2}-1}{x-1}$
28. $y=3 \llbracket x \rrbracket$
29. $y=|2 x|$
30. $y=2 x^{2}$
35.

36. The graph is similar to the graph of the greatest integer function because both graphs look like a series of steps. In the graph of the postage rates, the solid dots are on the right and the circles are on the left. However, in the greatest integer function, the circles are on the right and the solid dots are on the left.

02 Chapter 9 Rational Expressions and Equations

Architecture

The Gateway Arch is 630 feet high and is the tallest monument in the United States.
Source: World Book Encyclopedia

HEALTH For Exercises 31-33, use the following information
A woman painting a room will burn an average of 4.5 Calories per minute.
31. Write an equation for the number of Calories burned in m minutes. $C=4.5 \mathrm{~m}$
32. Identify the equation in Exercise 31 as a type of function. direct variation
33. Describe the graph of the function. a line slanting to the right and passing through the origin
-34. ARCHITECTURE The shape of the Gateway Arch of the Jefferson National Expansion Memorial in St. Louis, Missouri, resembles the graph of the function $f(x)=-0.00635 x^{2}+4.0005 x-0.07875$, where x is in feet. Describe the shape of the Gateway Arch. similar to a parabola

MAIL For Exercises 35 and 36, use the following information. In 2001, the cost to mail a first-class letter was $34 \not \subset$ for any weight up to and including 1 ounce. Each additional ounce or part of an ounce added $21 \not \subset$ to the cost.
\star 35. Make a graph showing the postal rates to mail any letter from 0 to 8 ounces. See pp. 519A-519D
$\star 36$. Compare your graph in Exercise 35 to the graph of the greatest integer function. See pp. 519A-519D.
37. CRITICAL THINKING Identify each table of values as a type of function.
a.

x	$f(x)$
-5	7
-3	5
-1	3
0	2
1	3
3	5
5	7
7	9

absolute value
b.

x	$f(x)$
-5	24
-3	8
-1	0
0	-1
1	0
3	8
5	24
7	48

quadratic

c. | x | $f(x)$ |
| :---: | :---: |
| -1.3 | -1 |
| -1.7 | -1 |
| 0 | 1 |
| 0.8 | 1 |
| 0.9 | 1 |
| 1 | 2 |
| 1.5 | 2 |
| 2.3 | 3 |

greatest integer
d.

\boldsymbol{x}	$\boldsymbol{f}(\boldsymbol{x})$
-5	undefined
-3	undefined
-1	undefined
0	0
1	1
4	2
9	3
16	4

square root
38. WRITING IN MATH

Answer the question that was posed at the beginning of the lesson. See pp. 519A-519D.
How can graphs of functions be used to determine a person's weight on a different planet?

Include the following in your answer:

- an explanation of why the graph comparing weight on Earth and Mars represents a direct variation function, and
- an equation and a graph comparing a person's weight on Earth and Venus if a person's weight on Venus is 0.9 of his or her weight on Earth.

Standardized Test Practice

39. The curve at the right could be part of the graph of which function? C
(A) $y=\sqrt{x}$
(B) $y=x^{2}-5 x+4$
(C) $x y=4$
(D) $y=-x+20$
www.algebra2.com/self_check_quiz

Lesson 9-5 Classes of Functions 503

Study Guide and Intervention,

equation. $7 . y=-3$

constant
. BUSINESS A startup company uses the function $P=1.3 x^{2}+3 x-7$ to predict tst profit or loss during its first 7 years of operation. Describe
The grap is U -shaped; it is a parabola.
11. PARKING A parking lot charges $\$ 10$ to park for the first day or part of a day. After that
it charges an add of parking for $6 \frac{1}{2}$ days. The grap part of a day. Describe the graph and find the cas greatest integer function, but with open circles on the left and closed

Reading to Learn
Mathematics, p. 545

ELL

Pre-Activity $\begin{gathered}\text { How can graphs of functions be used to determine a person's } \\ \text { weight on a different planet? }\end{gathered}$ Read the introduction to Lesson $9-5$ at the top of page 499 in your textbook Based on the graph, estimate the weight on Mars of a child who weighs
40 pounds on Earth. 40 pounds on Earth.
about 15 pounds
Although the graph does not extend far enough to the right to read it
directly from the graph, use the weight you found deve directly from the graph, use the weight you found above and your
knowledge that this graph represents direct variation to estimate th knowledge that enis graph represents direct variation to estimat
weight on Mars of a woman who weighs 120 pounds on Earth.
about 45 pounds

Reading the Lesson

Helping You Remember
2. How can the symbolic definition of absolute value that you learned in Lesson 1.4 help
you to remember the graph of the function $f(x)|=|x|$? Sample answer: Using the you to remember the graph of the function $f(x)=|x|$? Sample answer: Using the
definition of absoute value, $f(x)=x$ if $x \geq 0$ and $f(x)=-x$ if $x<0$. Therefore, the graph is made up of pieces of two lines, one with slope 1
and one with slope -1 , meeting at the origin. This forms a V-shaped graph with "vertex" at the origin.

Lesson 9-5 Classes of Functions

4 Assess

Open-Ended Assessment

Modeling Have students use string on a coordinate grid to model some of the nine different types of functions in this lesson. Ask them to give an example of an equation that might have that sort of graph.

Intervention

 Help students associate the graphs and their functions by grouping the 9 types into 2 groups, those which involve straight lines and those which involve curves.
Getting Ready for
 Lesson 9-6

PREREQUISITE SKILL Students will solve rational equations in Lesson 9-6. These equations often contain fractions that are simplified by finding the LCD. Use Exercises 56-61 to determine your students' familiarity with finding LCMs of polynomials.

Assessment Options

Quiz (Lessons 9-4 and 9-5) is available on p. 568 of the Chapter 9 Resource Masters.

Answers

45. $(8,-1) ;\left(8,-\frac{7}{8}\right) ; x=8$;

$$
y=-1 \frac{1}{8} ; \text { up } ; \frac{1}{2}^{\prime} \text { unit }
$$

46. $\left(-3 \frac{1}{4}, 1\right),\left(-2 \frac{1}{4}, 1\right) ; y=1$;
$x=-4 \frac{1}{4} ;$ right; 4 units
40. If $g(x)=\llbracket x \rrbracket$, which of the following is the graph of $g\left(\frac{x}{2}\right)+2$? \mathbf{D}
(A)

(c)

(B)

(D)

Maintain Your Skills

Mixed Review 41. If x varies directly as y and $y=\frac{1}{5}$ when $x=11$, find x when $y=\frac{2}{5}$. (Lesson 9-4)
Graph each rational function. (Lesson 9-3) 42-44. See pp. 519A-519D.
42. $f(x)=\frac{3}{x+2}$
43. $f(x)=\frac{8}{(x-1)(x+3)}$
44. $f(x)=\frac{x^{2}-5 x+4}{x-4}$

Identify the coordinates of the vertex and focus, the equations of the axis of symmetry and directrix, and the direction of opening of the parabola with the given equation. Then find the length of the latus rectum and graph the parabola. (Lesson 8-2) 45-47. See margin.
45. $\frac{1}{2}(y+1)=(x-8)^{2}$
46. $x=\frac{1}{4} y^{2}-\frac{1}{2} y-3$
47. $3 x-y^{2}=8 y+31$

Find each product, if possible. (Lesson 4-3)
48. $\left[\begin{array}{rrr}-25 & 23 & -54 \\ 66 & -26 & 57\end{array}\right]$
48. $\left[\begin{array}{rr}3 & -5 \\ 2 & 7\end{array}\right] \cdot\left[\begin{array}{rrr}5 & 1 & -3 \\ 8 & -4 & 9\end{array}\right]$
49. $\left[\begin{array}{rrr}4 & -1 & 6 \\ 1 & 5 & -8\end{array}\right] \cdot\left[\begin{array}{rr}1 & 3 \\ 9 & -6\end{array}\right]$ impossible

Solve each system of equations by using either substitution or elimination.
(Lesson 3-2)
50. $3 x+5 y=-4$
51. $\begin{aligned} & 3 a-2 b=-3 \\ & 3 a+b=3\left(\frac{1}{3}, 2\right)\end{aligned}$
52. $3 s-2 t=10$
$2 x-3 y=29(7,-5)$
$4 s+t=6(2,-2)$

Determine the value of r so that a line through the points with the given coordinates has the given slope. (Lesson 2-3)
53. $(r, 2),(4,-6)$; slope $=\frac{-8}{3} 1 \quad$ 54. $(r, 6),(8,4)$; slope $=\frac{1}{2} 12$
56. $60 a^{3} b^{2} c^{2}$
57. $45 x^{3} y^{3}$
58. 15($d-2$)

Getting Ready for the Next Lesson
55. Evaluate $[(-7+4) \times 5-2] \div 6$. (Lesson 1-1) $-\frac{17}{6}$

PREREQUISITE SKILL Find the LCM of each set of polynomials. (To review least common multiples of polynomials, see Lesson 9-2.)
56. $15 a b^{2} c, 6 a^{3}, 4 b c^{2}$
57. $9 x^{3}, 5 x y^{2}, 15 x^{2} y^{3}$
58. $5 d-10,3 d-6$
59. $x^{2}-y^{2}, 3 x+3 y$
60. $a^{2}-2 a-3, a^{2}-a-6$
61. $2 t^{2}-9 t-5, t^{2}+t-30$ $(a-3)(a+1)(a+2)$
$(t-5)(t+6)(2 t+1)$

$$
\begin{aligned}
& \text { 47. }(5,-4) ;\left(5 \frac{3}{4},-4\right) ; y=-4 \\
& x=4 \frac{1}{4} ; \text { right; } 3 \text { units }
\end{aligned}
$$

Solving Rational Equations and Inequalities

What You'll Learn

- Solve rational equations.
- Solve rational inequalities.

How are rational equations used to solve problems involving unit price?

The Coast to Coast Phone Company advertises $5 \not \subset$ a minute for long-distance calls. However, it also charges a monthly fee of $\$ 5$. If the customer has x minutes in long distance calls last month, the bill in cents will be $500+5 x$. The actual cost per minute is $\frac{500+5 x}{x}$. To find how many long-distance minutes a person would need to make the actual cost per minute 6ϕ, you would need to solve the equation $\frac{500+5 x}{x}=6$.

SOLVE RATIONAL EQUATIONS The equation $\frac{500+5 x}{x}=6$ is an example of a rational equation. In general, any equation that contains one or more rational expressions is called a rational equation.

Rational equations are easier to solve if the fractions are eliminated. You can eliminate the fractions by multiplying each side of the equation by the least common denominator (LCD). Remember that when you multiply each side by the LCD, each term on each side must be multiplied by the LCD.

Example 1 Solve a Rational Equation

Solve $\frac{9}{28}+\frac{3}{z+2}=\frac{3}{4}$. Check your solution.
The LCD for the three denominators is $28(z+2)$.

$$
\begin{aligned}
& \frac{9}{28}+\frac{3}{z+2}=\frac{3}{4} \\
& 28(z+2)\left(\frac{9}{28}+\frac{3}{z+2}\right)=28(z+2)\left(\frac{3}{4}\right) \\
& \frac{1}{28}(z+2)\left(\frac{9}{28}\right)+28\left(z+\frac{1}{+}-2\right)\left(\frac{3}{z+2}\right)={ }^{7} 8(z+2)\left(\frac{3}{4}\right) \\
& (9 z+18)+84=21 z+42 \\
& 9 z+102=21 z+42 \\
& 60=12 z \\
& 5=z \\
& \text { Original equation } \\
& \text { Multiply each side by } 28(z+2) \text {. } \\
& \text { Distributive Property } \\
& \text { Simplify. } \\
& \text { Simplify. } \\
& \text { Subtract } 9 z \text { and } 42 \text { from each side. } \\
& \text { Divide each side by } 12 \text {. }
\end{aligned}
$$

Lesson 9-6 Solving Rational Equations and Inequalities 505

Workbook and Reproducible Masters
 Chapter 9 Resource Masters

- Study Guide and Intervention, pp. 547-548
- Skills Practice, p. 549
- Practice, p. 550
- Reading to Learn Mathematics, p. 551
- Enrichment, p. 552
- Assessment, p. 568

1 Focus

5-Minute Check

Transparency 9-6 Use as a quiz or review of Lesson 9-5.

Mathematical Background notes are available for this lesson on p. 470D.

Building on Prior Knowledge

In Chapter 1, students reviewed techniques for solving linear equations and inequalities. In this lesson, students will apply those same techniques to solving rational equations and inequalities.

How are rational equations used to solve problems

 involving unit price?Ask students:

- Why does the equation use 500 instead of 5 for the monthly fee? The fee and the per minute cost are both expressed in cents.
- If a person makes 100 minutes of calls for a given month, how much did the monthly fee add to the per minute cost for these calls? The fee adds 5 cents per minute.

Resource Manager

Transparencies

5-Minute Check Transparency 9-6
Answer Key Transparencies

SOLVE RATIONAL EQUATIONS

In-Class Examples

1 Solve $\frac{5}{24}+\frac{2}{3-x}=\frac{1}{4}$. Check your solution. $x=-45$
Teaching Tip Discuss with students that, when checking a solution, it is not possible to simply substitute the solution for the variable and then multiply both sides of the equation by the LCD because the truth of the equation is being tested; it cannot be assumed.

2 Solve
$\frac{p^{2}-p+1}{p+1}=\frac{p^{2}-7}{p^{2}-1}+p$.
Check your solution. $p=2$
Teaching Tip Remind students that solutions must always be checked in the original equation, rather than in any of the steps of the solution.

CHECK

$$
\begin{array}{rll}
\frac{9}{28}+\frac{3}{z+2}=\frac{3}{4} & \text { Original equation } \\
\frac{9}{28}+\frac{3}{5+2} \stackrel{?}{=} \frac{3}{4} & z=5 \\
\frac{9}{28}+\frac{3}{7} \stackrel{?}{=} \frac{3}{4} & \text { Simplify. } \\
\frac{9}{28}+\frac{12}{28} \stackrel{?}{=} \frac{3}{4} & \text { Simplify. } \\
\frac{3}{4} & =\frac{3}{4} \checkmark & \text { The solution is correct. }
\end{array}
$$

The solution is 5 .

When solving a rational equation, any possible solution that results in a zero in the denominator must be excluded from your list of solutions.

Example 2 Elimination of a Possible Solution

Solve $r+\frac{r^{2}-5}{r^{2}-1}=\frac{r^{2}+r+2}{r+1}$. Check your solution.
The LCD is $\left(r^{2}-1\right)$.

$$
\begin{aligned}
& r+\frac{r^{2}-5}{r^{2}-1}=\frac{r^{2}+r+2}{r+1} \\
& \left(r^{2}-1\right)\left(r+\frac{r^{2}-5}{r^{2}-1}\right)=\left(r^{2}-1\right)\left(\frac{r^{2}+r+2}{r+1}\right) \\
& \left(r^{2}-1\right) r+\left(r^{2}-1\right)\left(\frac{r^{2}-5}{x^{2}-1}\right)=\left(r^{2}-1\right)\left(\frac{r^{2}+r+2}{r+1}\right) \quad \text { Distributive Property } \\
& \left(r^{3}-r\right)+\left(r^{2}-5\right)=(r-1)\left(r^{2}+r+2\right) \quad \text { Simplify. } \\
& r^{3}+r^{2}-r-5=r^{3}+r-2 \quad \text { Simplify. } \\
& r^{2}-2 r-3=0 \quad \text { Subtract }\left(r^{3}+r-2\right) \text { from each side } \\
& (r-3)(r+1)=0 \\
& r-3=0 \quad \text { or } \quad r+1=0 \\
& r=3 \quad r=-1 \\
& \text { Original equation } \\
& \text { Multiply each side by the LCD, } \\
& \text { (} r^{2}-1 \text {). } \\
& \text { Distributive Property } \\
& \text { Subtract }\left(r^{3}+r-2\right) \text { from each side } \\
& \text { Factor. } \\
& \text { Zero Product Property } \\
& \text { CHECK } r+\frac{r^{2}-5}{r^{2}-1}=\frac{r^{2}+r+2}{r+1} \text { Original equation } \\
& 3+\frac{3^{2}-5}{3^{2}-1} \stackrel{?}{=} \frac{3^{2}+3+2}{3+1} \quad r=3 \\
& 3+\frac{4}{8} \stackrel{?}{=} \frac{14}{4} \quad \text { Simplify. } \\
& \frac{7}{2}=\frac{7}{2} \\
& r+\frac{r^{2}-5}{r^{2}-1}=\frac{r^{2}+r+2}{r+1} \quad \text { Original equation } \\
& -1+\frac{(-1)^{2}-5}{(-1)^{2}-1} \stackrel{?}{=} \frac{(-1)^{2}+(-1)+2}{-1+1} \quad r=-1 \\
& -1+\frac{-4}{0} \stackrel{?}{=} \frac{2}{0} \quad \text { Simplify. }
\end{aligned}
$$

Example 3 Work Problem

\therefore TUNNELS When building the Chunnel, the English and French each started drilling on opposite sides of the English Channel. The two sections became one in 1990. The French used more advanced drilling machinery than the English. Suppose the English could drill the Chunnel in 6.2 years and the French could drill it in 5.8 years. How long would it have taken the two countries to drill the tunnel?

In 1 year, the English could complete $\frac{1}{6.2}$ of the tunnel.
In 2 years, the English could complete $\frac{1}{6.2} \cdot 2$ or $\frac{2}{6.2}$ of the tunnel.
In t years, the English could complete $\frac{1}{6.2} \cdot t$ or $\frac{t}{6.2}$ of the tunnel.
Likewise, in t years, the French could complete $\frac{1}{5.8} \cdot t$ or $\frac{t}{5.8}$ of the tunnel.
Together, they completed the whole tunnel
Tunnels.
The Chunnel is a tunnel under the English Channel that connects England with France. It is 32 miles long with 23 miles of the tunne under water.
Source: www.pbs.org

Solve the equation.

$$
\begin{aligned}
\frac{t}{6.2}+\frac{t}{5.8} & =1 & & \text { Original equation } \\
17.98\left(\frac{t}{6.2}+\frac{t}{5.8}\right) & =17.98(1) & & \text { Multiply each side by } 17.98 \\
17.98\left(\frac{t}{6.2}\right)+17.98\left(\frac{t}{5.8}\right) & =17.98 & & \text { Distributive Property } \\
2.9 t+3.1 t & =17.98 & & \text { Simplify. } \\
6 t & =17.98 & & \text { Simplify. } \\
t & \approx 3.00 \quad & & \text { Divide each side by } 6 .
\end{aligned}
$$

It would have taken about 3 years to build the Chunnel.

Rate problems frequently involve rational equations.

Example 4 Rate Problem

NAVIGATION The speed of the current in the Puget sound is 5 miles per hour. A barge travels 26 miles with the current and returns in $10 \frac{2}{3}$ hours. What is the speed of the barge in still water?
WORDS The formula that relates distance, time, and rate is $d=r t$ or $\frac{d}{r}=t$.
VARIABLES Let r be the speed of the barge in still water. Then the speed of the barge with the current is $r+5$, and the speed of the barge against the current is $r-5$.

EQUATION $\underbrace{\begin{array}{c}\text { Time going with } \\ \text { the current }\end{array}}_{\frac{26}{r+5}} \underbrace{\text { plus }} \underbrace{\begin{array}{c}\text { time going against } \\ \text { the current }\end{array}}_{\frac{26}{r-5}} \underbrace{\text { equals }}_{=} \underbrace{\text { total time. }}_{10 \frac{2}{3}}$

3 MOWING LAWNS Tim and Ashley mow lawns together. Tim working alone could complete the job in 4.5 hours, and Ashley could complete it alone in 3.7 hours. How long does it take to complete the job when they work together? about 2 h

Teaching Tip Suggest to students that when the problem involves completing part of a job and working together, students think about what part of the work gets done in one day, or one year-whatever is one unit of the time.

4 SWIMMING Janine swims for 5 hours in a stream that has a current of 1 mile per hour. She leaves her dock and swims upstream for 2 miles and then back to her dock. What is her swimming speed in still water? about $1.5 \mathrm{mi} / \mathrm{h}$

Teaching Tip Make sure that students understand the difference between the solutions to the quadratic equation (of which there are two) and the solution to the problem (of which there is only one).

SOLVE RATIONAL INEQUALITIES

In-Class Example

Power

Point ${ }^{\text {® }}$
5 Solve $\frac{1}{3 s}+\frac{2}{9 s}<\frac{2}{3} . s<0$ or
$s>\frac{5}{6}$ Teaching Tip Suggest that students also verify whether the boundary indicated by the solution of the equation is or is not in the solution set of the inequality.

Study Tip

Look Back
To review the Quadratic
Formula, see Lesson 6-5.

Solve the equation.

$$
\begin{array}{rlrl}
\frac{26}{r+5}+\frac{26}{r-5} & =10 \frac{2}{3} & & \text { Original equation } \\
3\left(r^{2}-25\right)\left(\frac{26}{r+5}+\frac{26}{r-5}\right) & =3\left(r^{2}-25\right)\left(10 \frac{2}{3}\right) & & \text { Multiply each side } \\
\text { by } 3\left(r^{2}-25\right) . \\
3\left(\frac{(r-5)}{\left(r^{2}-25\right)\left(\frac{26}{r+5}\right)+3\left(\frac{\left.r^{2}-25\right)}{1}-25\right)\left(\frac{26}{r-5}\right)}\right. & =3\left(r^{2}-25\right)\left(\frac{32}{3}\right) & & \text { Distributive Property } \\
(78 r-390)+(78 r+390) & =32 r^{2}-800 & & \text { Simplify. } \\
156 r & =32 r^{2}-800 & & \text { Simplify. } \\
0 & =32 r^{2}-156 r-800 & & \begin{array}{l}
\text { Subtract } 156 r \text { from } \\
\text { each side. }
\end{array} \\
0 & =8 r^{2}-39 r-200 & & \text { Divide each side by } 4 .
\end{array}
$$

Use the Quadratic Formula to solve for r.
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Quadratic Formula
$r=\frac{-(-39) \pm \sqrt{(-39)^{2}-4(8)(-200)}}{2(8)} \quad x=r, a=8, b=-39$, and $c=-200$
$r=\frac{39 \pm \sqrt{7921}}{16} \quad$ Simplify.
$r=\frac{39 \pm 89}{16} \quad$ Simplify.
$r=8$ or -3.125 Simplify.
Since the speed must be positive, the answer is 8 miles per hour.

SOLVE RATIONAL INEQUALITIES Inequalities that contain one or more rational expressions are called rational inequalities. To solve rational inequalities, complete the following steps.
Step 1 State the excluded values.
Step 2 Solve the related equation.
Step 3 Use the values determined in Steps 1 and 2 to divide a number line into regions. Test a value in each region to determine which regions satisfy the original inequality.

Example 5 Solve a Rational Inequality

Solve $\frac{1}{4 a}+\frac{5}{8 a}>\frac{1}{2}$.
Step 1 Values that make a denominator equal to 0 are excluded from the domain. For this inequality, the excluded value is 0 .

Step 2 Solve the related equation.

$$
\begin{aligned}
\frac{1}{4 a}+\frac{5}{8 a} & =\frac{1}{2} & & \text { Related equation } \\
8 a\left(\frac{1}{4 a}+\frac{5}{8 a}\right) & =8 a\left(\frac{1}{2}\right) & & \text { Multiply each side by } 8 a . \\
2+5 & =4 a & & \text { Simplify. } \\
7 & =4 a & & \text { Add. } \\
1 \frac{3}{4} & =a & & \text { Divide each side by } 4 .
\end{aligned}
$$

Step 3 Draw vertical lines at the excluded value and at the solution to separate the number line into regions.

Now test a sample value in each region to determine if the values in the region satisfy the inequality.

$$
\begin{array}{rrrr}
\text { Test } a=-1 . & \text { Test } a=1 . & \text { Test } a=2 . \\
\frac{1}{4(-1)}+\frac{5}{8(-1)} \stackrel{?}{>} \frac{1}{2} & \frac{1}{4(1)}+\frac{5}{8(1)} \stackrel{?}{>} \frac{1}{2} & \frac{1}{4(2)}+\frac{5}{8(2)} \stackrel{?}{>} \frac{1}{2} \\
-\frac{1}{4}-\frac{5}{8} \stackrel{?}{>} \frac{1}{2} & \frac{1}{4}+\frac{5}{8} \stackrel{?}{>} \frac{1}{2} & \frac{1}{8}+\frac{5}{16} \stackrel{?}{>} \frac{1}{2} \\
-\frac{7}{8} \ngtr \frac{1}{2} & \frac{7}{8}>\frac{1}{2} & \frac{7}{16} \ngtr \frac{1}{2} \\
a<0 \text { is not a solution. } & 0<a<1 \frac{3}{4} \text { is a solution. } & a>1 \frac{3}{4} \text { is not a solution. }
\end{array}
$$

The solution is $0<a<1 \frac{3}{4}$.

Check for Understanding

Concept Check

1. Sample answer:
$\frac{1}{5}+\frac{2}{a+2}=1$
2. $2(x+4) ;-4$
3. Jeff; when Dustin multiplied by 3a, he forgot to multiply the 2 by 3 a.

Guided Practice

GUIDED PRACTICE KEY	
Exercises	Examples
$4-9$	$1,2,5$
10	3,4

Application

1. OPEN ENDED Write a rational equation that can be solved by first multiplying each side by $5(a+2)$.
2. State the number by which you would multiply each side of $\frac{x}{x+4}+\frac{1}{2}=1$ in order to solve the equation. What value(s) of x cannot be a solution?
3. FIND THE ERROR Jeff and Dustin are solving $2-\frac{3}{a}=\frac{2}{3}$.

$$
\begin{array}{rlrl}
\text { Jeff } & \text { Dustin } \\
2-\frac{3}{a} & =\frac{2}{3} & 2-\frac{3}{a} & =\frac{2}{3} \\
6 a-9 & =2 a & 2-9 & =2 a \\
4 a & =9 & -7 & =2 a \\
a & =2.25 & -3.5 & =a
\end{array}
$$

Who is correct? Explain your reasoning.
Solve each equation or inequality. Check your solutions.
4. $\frac{2}{d}+\frac{1}{4}=\frac{11}{12} 3$
5. $t+\frac{12}{t}-8=02,6$
6. $\frac{1}{x-1}+\frac{2}{x}=0 \frac{2}{3}$
7. $\frac{12}{v^{2}-16}-\frac{24}{v-4}=3-6,-2$
8. $\frac{4}{c+2}>1-2<c<2$
9. $\frac{1}{3 v}+\frac{1}{4 v}<\frac{1}{2} \quad \mathrm{~V}<0$ or $\mathrm{V}>1 \frac{1}{7}$
10. WORK A bricklayer can build a wall of a certain size in 5 hours. Another bricklayer can do the same job in 4 hours. If the bricklayers work together, how long would it take to do the job? $2 \frac{2}{9} \mathrm{~h}$

Lesson 9-6 Solving Rational Equations and Inequalities 509

INIIERVENITON

Differentiated Instruction

Logical Have students think about the difference between "pure" mathematics, such as solving an equation, and "applied" mathematics, such as solving a real-world problem. Ask them to list some ways in which these two are alike and some ways in which they are different.

3 Practice/Apply

Study Notebook

Have students-

- complete the definitions/examples for the remaining terms on their Vocabulary Builder worksheets for Chapter 9 .
- add the steps for solving rational inequalities given in this lesson to their notebooks, along with an example from their work.
- write a list of cautions, or checks, that must be done as part of working with problems such as those in the lesson.
- include any other item(s) that they find helpful in mastering the skills in this lesson.

D A I L Y

INIERVENIION
 FIND THE ERROR

 Ask students what value of a can be excluded at the beginning of the problem. The value of a cannot be 0 .
About the Exercises... Organization by Objective
 - Solve Rational Equations:

11-14, 17, 18, 23-39

- Solve Rational Inequalities: 15, 16, 19-22

Odd/Even Assignments

Exercises 11-32 are structured so that students practice the same concepts whether they are assigned odd or even problems.

Assignment Guide

Basic: 11-27 odd, 31, 33, 40-54
Average: 11-33 odd, 37-54
Advanced: 12-32 even, 34-36, 38-54

夫 indicates increased difficulty

Practice and Apply

Homework Help

For Exercises	See Examples
$11-30$	$1,2,5$
$31-39$	3,4

Extra Practice See page 849 .
19. $t<0$ or $t>3$ 22. $p<0$ or $p>2 \frac{1}{2}$

Solve each equation or inequality. Check your solutions.
11. $\frac{y}{y+1}=\frac{2}{3} 2$
12. $\frac{p}{p-2}=\frac{2}{5}-\frac{4}{3}$
13. $s+5=\frac{6}{s}-6,1$
14. $a+1=\frac{6}{a}-3,2$
15. $\frac{7}{a+1}>7-1<a<0$ 16. $\frac{10}{m+1}>5-1<m<1$
17. $\frac{9}{t-3}=\frac{t-4}{t-3}+\frac{1}{4} 11$
18. $\frac{w}{w-1}+w=\frac{4 w-3}{w-1} 3$ 19. $5+\frac{1}{t}>\frac{16}{t}$
20. $7-\frac{2}{b}<\frac{5}{b} 0<b<1$
21. $\frac{2}{3 y}+\frac{5}{6 y}>\frac{3}{4} 0<y<2$ 22. $\frac{1}{2 p}+\frac{3}{4 p}<\frac{1}{2}$
23. $\frac{b-4}{b-2}=\frac{b-2}{b+2}+\frac{1}{b-2} 14$
24. $\frac{4 n^{2}}{n^{2}-9}-\frac{2 n}{n+3}=\frac{3}{n-3} \frac{3}{2}$
25. $\frac{1}{d+4}=\frac{2}{d^{2}+3 d-4}-\frac{1}{1-d} \varnothing$
26. $\frac{2}{y+2}-\frac{y}{2-y}=\frac{y^{2}+4}{y^{2}-4} \varnothing$
27. $\frac{3}{b^{2}+5 b+6}+\frac{b-1}{b+2}=\frac{7}{b+3} 7$
28. $\frac{1}{n-2}=\frac{2 n+1}{n^{2}+2 n-8}+\frac{2}{n+4} \frac{7}{3}$
大 29. $\frac{2 q}{2 q+3}-\frac{2 q}{2 q-3}=1 \frac{-3 \pm 3 \sqrt{2}}{2}$
30. $\frac{4}{z-2}-\frac{z+6}{z+1}=1 \frac{1 \pm \sqrt{145}}{4}$
31. NUMBER THEORY The ratio of 8 less than a number to 28 more than that number is 2 to 5 . What is the number? 32
32. NUMBER THEORY The sum of a number and 8 times its reciprocal is 6 . Find the number(s). 2 or 4
33. ACTIVITIES The band has 30 more members than the school chorale. If each group had 10 more members, the ratio of their membership would be 3:2. How many members are in each group? band, 80 members; chorale, 50 members

PHYSICS For Exercises 34 and 35, use the following information.
The distance a spring stretches is related to the mass attached to the spring. This is represented by $d=k m$, where d is the distance, m is the mass, and k is the spring constant. When two springs with spring constants k_{1} and k_{2} are attached in a series, the resulting spring constant k is found by the equation $\frac{1}{k}=\frac{1}{k_{1}}+\frac{1}{k_{2}}$.
34. If one spring with constant of 12 centimeters per gram is attached in a series with another spring with constant of 8 centimeters per gram, find the resultant spring constant. $4.8 \mathrm{~cm} / \mathrm{g}$
35. If a 5 -gram object is hung from the series of springs, how far will the springs stretch? 24 cm

36. CYCLING On a particular day, the wind added 3 kilometers per hour to Alfonso's rate when he was cycling with the wind and subtracted 3 kilometers per hour from his rate on his return trip. Alfonso found that in the same amount of time he could cycle 36 kilometers with the wind, he could go only 24 kilometers against the wind. What is his normal bicycling speed with no wind? $15 \mathrm{~km} / \mathrm{h}$

510 Chapter 9 Rational Expressions and Equations

Enrichment, p. 552

Limits
Sequunces of numbers with a rational expression for the general term often
approach some number as a finite limitit. For example, the reciprocals of the
approach some number as a a finite limit. For example, the reciprocals of the
positive tineers approach oas n gets larger and larger This is written using
the notation shown below The posite integers approacho as n gets larger and larger. This is written using
the notation shown below The sybol onstand for infinity and $n \rightarrow \infty$ means
that n is getting larger and larger, or n n goos to on infinity"
1, $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots, \frac{1}{n}, \ldots \quad \lim _{n \rightarrow \infty} \frac{1}{n}=0$

Example Find $\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}}$
It is not immediately apparent whether the sequence approaches a limit or
not. But notice what happens if we divide the numerator and denominator of
the general term by n.

510 Chapter 9 Rational Expressions and Equations

Career Choices

Chemist
Many chemists work for manufacturers developing products or doing quality control to ensure the products meet industry and government standards.

Online Research For information about a career as a chemist, visit: www.algebra2. com/careers
37. CHEMISTRY Kiara adds an 80% acid solution to 5 milliliters of solution that is 20% acid. The function that represents the percent of acid in the resulting solution is $f(x)=\frac{5(0.20)+x(0.80)}{5+x}$, where x is the amount of 80% solution added. How much 80% solution should be added to create a solution that is 50% acid? 5 mL

STATISTICS For Exercises 38 and 39, use the following information.
A number x is the harmonic mean of y and z if $\frac{1}{x}$ is the average of $\frac{1}{y}$ and $\frac{1}{z}$.
\star 38. Find y if $x=8$ and $z=20.5$
\star 39. Find x if $y=5$ and $z=8$. 6.15
40. CRITICAL THINKING Solve for a if $\frac{1}{a}-\frac{1}{b}=c \cdot \frac{b}{b c+1}$
41. WRITING IN MATH Answer the question that was posed at the beginning of the lesson. See margin.
How are rational equations used to solve problems involving unit price? Include the following in your answer:

- an explanation of how to solve $\frac{500+5 x}{x}=6$, and
- the reason why the actual price per minute could never be 5ϕ.

Standardized Test Practice (A) (B) C (D)
42. If $T=\frac{4 s t}{s-t}$, what is the value of s when $t=5$ and $T=40$? B
(A) 20
(B) 10
(C) 5
(D) 2
43. Amanda wanted to determine the average of her 6 test scores. She added the scores correctly to get T, but divided by 7 instead of 6 . Her average was 12 less than the actual average. Which equation could be used to determine the value of T ? C
(A) $6 T+12=7 T$
(B) $\frac{T}{7}=\frac{T-12}{6}$
(C) $\frac{T}{7}+12=\frac{T}{6}$
(D) $\frac{T}{6}=\frac{T-12}{7}$

Maintain Your Skills

Mixed Review Identify the type of function represented by each equation. Then graph the equation. (Lesson 9-5) 44-46. See margin for graphs.
44. $y=2 x^{2}+1$ quad.
45. $y=2 \sqrt{x}$ sq. root
46. $y=0.8 x$ direct var.
47. If y varies inversely as x and $y=24$ when $x=9$, find y when $x=6$. (Lesson 9-4) 36
48. If y varies directly as x and $y=9$ when $x=4$, find y when $x=15$. (Lesson 9-4) 33.75
52. $\{x \mid x<-11$ or $x>3\}$
53. $\{x \mid 0 \leq x \leq 4\}$
54. $\left\{b \left\lvert\,-1 \frac{1}{2}<b<2\right.\right\}$

Find the distance between each pair of points with the given coordinates.
(Lesson 8-1)
49. $(-5,7),(9,-11)$
50. $(3,5),(7,3) 2 \sqrt{5}$
51. $(-1,3),(-5,-8) \sqrt{137}$
$2 \sqrt{130}$

Solve each inequality.
(Lesson 6-7)
52. $(x+11)(x-3)>0$
53. $x^{2}-4 x \leq 0$
54. $2 b^{2}-b<6$
www.algebra2.com/self_check_quiz
Lesson 9-6 Solving Rational Equations and Inequalities 511
41. If something has a general fee and cost per unit, rational equations can be used to determine how many units a person must buy in order for the actual unit price to be a given number. Answers should include the following.

- To solve $\frac{500+5 x}{x}=6$, multiply each side of the equation by x to eliminate the rational expression. Then subtract $5 x$ from each side. Therefore, $500=x$. A person would need to make 500 minutes of long distance minutes to make the actual unit price 66 .
- Since the cost is $5 \$$ per minute plus $\$ 5.00$ per month, the actual cost per minute could never be 5¢ or less.

4 Assess

Open-Ended Assessment

Writing Have students write their own real-world problems similar to some they have seen in this lesson, but using their own data. Then solve them.

Intervention
Make sure every student is clear about why some values must be excluded, even though they appear as solutions in the course of working a problem. Point out that multiplying each side of an equation by the variable may introduce extraneous roots.

Assessment Options

Quiz (Lesson 9-6) is available on p. 568 of the Chapter 9 Resource Masters.

Answers

44.

45.

46.

A Follow-Up of Lesson 9-6

Getting Started

Know Your Calculator To see the vertical asymptote for the graph of y_{1}, students should check to see that the calculator is in Connected mode.
Using Parentheses When students enter functions on the $Y=$ list, they should use parentheses around any numerator or denominator that is not a single number or variable.

Teach

After they enter the two equations, have students enter the CALC menu and select 5:Intersect. Then have them move the cursor and press ENTER to identify each of the graphs. In response to Guess?, move the cursor to an estimated point of intersection and press ENTER.

Assess

Ask students to describe some ways you can identify excluded values.

Solving Rational Equations by Graphing

You can use a graphing calculator to solve rational equations. You need to graph both sides of the equation and locate the point(s) of intersection. You can also use a graphing calculator to confirm solutions that you have found algebraically.

Example

Use a graphing calculator to solve $\frac{4}{x+1}=\frac{3}{2}$.

- First, rewrite as two functions, $y_{1}=\frac{4}{x+1}$ and $y_{2}=\frac{3}{2}$.
- Next, graph the two functions on your calculator.

Notice that because the calculator is in connected mode, a vertical line is shown connecting the two branches of the hyperbola. This line is not part of the graph.

$[-10,10]$ scl: 1 by $[-10,10]$ scl: 1

KEYSTRoKES: 2nd CALC 5
Select one graph and press ENTER. Select the other graph, press ENTER, and press ENTER again. The solution is $1 \frac{2}{3}$. Check this solution by substitution.

Exercises

Use a graphing calculator to solve each equation.

1. $\frac{1}{x}+\frac{1}{2}=\frac{2}{x} 2$
2. $\frac{1}{x-4}=\frac{2}{x-2} 6$
3. $\frac{4}{x}=\frac{6}{x^{2}} 1.5$
4. $\frac{1}{1-x}=1-\frac{x}{x-1}$
all real numbers except 1
5. $\frac{1}{x+4}=\frac{2}{x^{2}+3 x-4}-\frac{1}{1-x}$
6. $\frac{1}{x-1}+\frac{1}{x+2}=\frac{1}{2}-1,4$
no real solution

Solve each equation algebraically. Then, confirm your solution(s) using a graphing calculator.
11. $\frac{-3 \pm \sqrt{17}}{2}$ or
7. $\frac{3}{x}+\frac{7}{x}=91 \frac{1}{9}$
8. $\frac{1}{x-1}+\frac{2}{x}=0 \frac{2}{3}$
9. $1+\frac{5}{x-1}=\frac{7}{6} 31$
10. $\frac{1}{x^{2}-1}=\frac{2}{x^{2}+x-2} 0$
11. $\frac{6}{x^{2}+2 x}-\frac{x+1}{x+2}=\frac{2}{x}$
12. $\frac{3}{x^{2}+5 x+6}+\frac{x-1}{x+2}=\frac{7}{x+3} 7$
wwww.algebra2.com/other_calculator_keystrokes

9 Study Guide and Review

Vocabulary and Concept Check

asymptote (p. 485)

complex fraction (p. 475)
constant of variation (p. 492) continuity (p. 485)
direct variation (p. 492) inverse variation (p. 493) joint variation (p. 493) point discontinuity (p. 485)

rational equation (p. 505)

rational expression (p. 472)
rational function (p. 485)
rational inequality (p .508)

State whether each sentence is true or false. If false, replace the underlined word or number to make a true sentence.

1. The equation $y=\frac{x^{2}-1}{x+1}$ has a(n) asymptote at $x=-1$. false; point discontinuity
2. The equation $y=3 x$ is an example of a direct variation equation. true
3. The equation $y=\frac{x^{2}}{x+1}$ is a(n) polynomial equation. false; rational
4. The graph of $y=\frac{4}{x-4}$ has $\mathrm{a}(\mathrm{n}) \underline{\text { variation }}$ at $x=4$. false; asymptote
5. The equation $b=\frac{2}{a}$ is $\mathrm{a}(\mathrm{n})$ inverse variation equation. true
6. On the graph of $y=\frac{x-5}{x+2}$, there is a break in continuity at $x=\underline{2}$. false; -2

Lesson-by-Lesson Review

9-1 Multiplying and Dividing Rational Expressions
 \section*{See pages}

472-478.

Concept Summary

- Multiplying and dividing rational expressions is similar to multiplying and dividing fractions.
Examples
1 Simplify $\frac{3 x}{2 y} \cdot \frac{8 y^{3}}{6 x^{2}}$.
$\frac{3 x}{2 y} \cdot \frac{8 y^{3}}{6 x^{2}}=\frac{\frac{1}{3} \cdot \frac{1}{x} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 2 \cdot \frac{1}{y} \cdot y \cdot y}{2 \cdot \underset{1}{y} \cdot \underset{1}{2} \cdot \underset{1}{3} \cdot x \cdot x}$

$$
=\frac{2 y^{2}}{x}
$$

$$
2 \text { Simplify } \frac{p^{2}+7 p}{3 p} \div \frac{49-p^{2}}{3 p-21} . ~ \begin{aligned}
& \frac{p^{2}+7 p}{3 p} \div \frac{49-p^{2}}{3 p-21}=\frac{p^{2}+7 p}{3 p} \cdot \frac{3 p-21}{49-p^{2}} \\
&=\frac{1(7+p)}{3 p} \cdot \frac{-3(7-p)}{(7+p)(7-p)} \\
& 1=-1
\end{aligned}
$$

Exercises Simplify each expression. See Examples 4-7 on pages 474 and 475.
7. $\frac{-4 a b}{21 c} \cdot \frac{14 c^{2}}{22 a^{2}}-\frac{4 b c}{33 a}$
8. $\frac{a^{2}-b^{2}}{6 b} \div \frac{a+b}{36 b^{2}} 6 b(a-b)$ 9. $\frac{y^{2}-y-12}{y+2} \div \frac{y-4}{y^{2}-4 y-12}$
12.
$\frac{(x-2)(x+2)}{(x+3)^{2}}$
10. $\frac{\frac{x^{2}+7 x+10}{x+2}}{\frac{x^{2}+2 x-15}{x+2}} \frac{\boldsymbol{x}+2}{\boldsymbol{x}-3}$
11. $\frac{\overline{n^{2}-6 n+9}}{\frac{n+3}{2 n^{2}-18}} \frac{2}{n-3}$
$(y+3)(y-6)$
wwww.algebra2.com/vocabulary_review
Chapter 9 Study Guide and Review 513

FOLDABLES

Study Organizer

For more information about Foldables, see Teaching Mathematics with Foldables.

Suggest that students think of a concept map as a visual organizer that is related to a linear outline, but better shows interrelated ideas. Remind students that different people will organize, remember, and study differently, so they should make a Foldable that works well for them, rather than copying someone else's way of doing notes. Encourage students to refer to their Foldables while completing the Study Guide and Review and to use them in preparing for the Chapter Test.

Vocabulary and
 Concept Check

- This alphabetical list of vocabulary terms in Chapter 9 includes a page reference where each term was introduced.
- Assessment A vocabulary test/review for Chapter 9 is available on p .566 of the Chapter 9 Resource Masters.

Lesson-by-Lesson Review

For each lesson,

- the main ideas are summarized,
- additional examples review concepts, and
- practice exercises are provided.

Vocabulary PuzzleMaker

ELL The Vocabulary PuzzleMaker software improves students' mathematics vocabulary using four puzzle formatscrossword, scramble, word search using a word list, and word search using clues. Students can work on a computer screen or from a printed handout.

MindJogger Videoquizzes

(D)

ELL MindJogger Videoquizzes provide an alternative review of concepts presented in this chapter. Students work in teams in a game show format to gain points for correct answers. The questions are presented in three rounds.
Round 1 Concepts (5 questions)
Round 2 Skills (4 questions)
Round 3 Problem Solving (4 questions)

Answers

19.

20.

21.

22.

23

9-2 Adding and Subtracting Rational Expressions

479-484. Concept Summary

- To add or subtract rational expressions, find a common denominator.
- To simplify complex fractions, simplify the numerator and the denominator separately, and then simplify the resulting expression

Example Simplify $\frac{14}{x+y}-\frac{9 x}{x^{2}-y^{2}}$.

$$
\begin{aligned}
\frac{14}{x+y}-\frac{9 x}{x^{2}-y^{2}} & =\frac{14}{x+y}-\frac{9 x}{(x+y)(x-y)} & & \text { Factor the denominators. } \\
& =\frac{14(x-y)}{(x+y)(x-y)}-\frac{9 x}{(x+y)(x-y)} & & \text { The LCD is }(x+y)(x-y) . \\
& =\frac{14(x-y)-9 x}{(x+y)(x-y)} & & \text { Subtract the numerators. } \\
& =\frac{14 x-14 y-9 x}{(x+y)(x-y)} & & \text { Distributive Property } \\
& =\frac{5 x-14 y}{(x+y)(x-y)} & & \text { Simplify. }
\end{aligned}
$$

Exercises Simplify each expression. See Examples 3 and 4 on page 480. 14. $\frac{7}{5(x+1)}$
13. $\frac{x+2}{x-5}+6 \frac{7(x-4)}{x-5}$
14. $\frac{x-1}{x^{2}-1}+\frac{2}{5 x+5}$
15. $\frac{7}{y}-\frac{2}{3 y} \frac{19}{3 y}$
16. $\frac{7}{y-2}-\frac{11}{2-y} \frac{18}{y-2}$
17. $\frac{3}{4 b}-\frac{2}{5 b}-\frac{1}{2 b}-\frac{3}{20 b}$
18. $\frac{m+3}{m^{2}-6 m+9}-\frac{8 m-24}{9-m^{2}}$
$3\left(3 m^{2}-14 m+27\right)$

9-3 Graphing Rational Functions

$$
(m+3)(m-3)^{2}
$$

Concept Summary

- Functions are undefined at any x value where the denominator is zero.
- An asymptote is a line that the graph of the function approaches, but never crosses.

Example Graph $f(x)=\frac{5}{x(x+4)}$.

The function is undefined for $x=0$ and $x=-4$.
Since $\frac{5}{x(x+4)}$ is in simplest form, $x=0$ and $x=-4$ are vertical asymptotes. Draw the two asymptotes and sketch the graph.

19-24. See margin.
Exercises Graph each rational function. See Examples 2-4 on pages 486-488
19. $f(x)=\frac{4}{x-2}$
20. $f(x)=\frac{x}{x+3}$
21. $f(x)=\frac{2}{x}$
22. $f(x)=\frac{x-4}{x+3}$
23. $f(x)=\frac{5}{(x+1)(x-3)}$
24. $f(x)=\frac{x^{2}+2 x+1}{x+1}$

514 Chapter 9 Rational Expressions and Equations
24.

9-4 Direct, Joint, and Inverse Variation

Concept Summary

- Direct Variation: There is a nonzero constant k such that $y=k x$.
- Joint Variation: There is a number k such that $y=k x z$, where $x \neq 0$ and $z \neq 0$.
- Inverse Variation: There is a nonzero constant k such that $x y=k$ or $y=\frac{k}{x}$.

Example

If y varies inversely as x and $x=14$ when $y=-6$, find x when $y=-11$.

$\frac{x_{1}}{y_{2}}$	$=\frac{x_{2}}{y_{1}}$		Inverse variation
$\frac{14}{-11}$	$=\frac{x_{2}}{-6}$		$x_{1}=14, y_{1}=-6, y_{2}=-11$
$14(-6)$	$=-11\left(x_{2}\right)$		Cross multiply.
-84	$=-11 x_{2}$		Simplify.
$7 \frac{7}{11}$	$=x_{2}$		When $y=-11$, the value of x is $7 \frac{7}{11}$.

Exercises Find each value. See Examples 1-3 on pages 493 and 494.
25. If y varies directly as x and $y=21$ when $x=7$, find x when $y=-5$. $-1 \frac{2}{3}$
26. If y varies inversely as x and $y=9$ when $x=2.5$, find y when $x=-0.6$. -37.5
27. If y varies inversely as x and $x=28$ when $y=18$, find x when $y=63$. 8
28. If y varies directly as x and $x=28$ when $y=18$, find x when $y=63$. 98
29. If y varies jointly as x and z and $x=2$ and $z=4$ when $y=16$, find y when $x=5$ and $z=8.80$

9-5 Classes of Functions

See pages 499-504.

Concept Summary

The following is a list of special functions.

- constant function
- greatest integer function
- direct variation function
- absolute value function
- quadratic function
- square root function
- rational function
- inverse variation function

Examples Identify the type of function represented by each graph.

1

The graph has a parabolic shape, therefore it is a quadratic function.

2

The graph has a stair-step pattern, therefore it is a greatest integer function.

Exercises Identify the type of function represented by each graph. See Example 1 on page 500.
30.

square root
31.

absolute value
32.

direct variation

9-6 Solving Rational Equations and Inequalities

See pages
505-511

Concept Summary

- Eliminate fractions in rational equations by multiplying each side of the equation by the LCD.
- Possible solutions to a rational equation must exclude values that result in zero in the denominator.
- To solve rational inequalities, find the excluded values, solve the related equation, and use these values to divide a number line into regions. Then test a value in each region to determine which regions satisfy the original inequality.
Example Solve $\frac{1}{x-1}+\frac{2}{x}=0$.
The LCD is $x(x-1)$.

$$
\begin{aligned}
\frac{1}{x-1}+\frac{2}{x} & =0 & & \text { Original equation } \\
x(x-1)\left(\frac{1}{x-1}+\frac{2}{x}\right) & =x(x-1)(0) & & \text { Multiply each side by } x(x-1) . \\
x(x-1)\left(\frac{1}{x-1}\right)+x(x-1)\left(\frac{2}{x}\right) & =x(x-1)(0) & & \text { Distributive Property } \\
1(x)+2(x-1) & =0 & & \text { Simplify. } \\
x+2 x-2 & =0 & & \text { Distributive Property } \\
3 x-2 & =0 & & \text { Simplify. } \\
3 x & =2 & & \text { Add } 2 \text { to each side. } \\
x & =\frac{2}{3} & & \text { Divide each side by } 3 .
\end{aligned}
$$

Exercises Solve each equation or inequality. Check your solutions.
See Examples 1, 2, and 5 on pages 505, 506, 508, and 509.
33. $\frac{3}{y}+\frac{7}{y}=91 \frac{1}{9}$
34. $1+\frac{5}{y-1}=\frac{7}{6} 31$
35. $\frac{3 x+2}{4}=\frac{9}{4}-\frac{3-2 x}{6} 3$
36. $\frac{1}{r^{2}-1}=\frac{2}{r^{2}+r-2} \mathbf{0}$
37. $\frac{x}{x^{2}-1}+\frac{2}{x+1}=1+\frac{1}{2 x-2} 1 \frac{1}{2}$
38. $\frac{1}{3 b}-\frac{3}{4 b}>\frac{1}{6}-2 \frac{1}{2}<\boldsymbol{b}<0$
13.

(9) Practice Test

Vocabulary and Concepts

Match each example with the correct term.

1. $y=4 x z$ C
a. inverse variation equation
2. $y=5 x$ b
b. direct variation equation
3. $y=\frac{7}{x}$ a
c. joint variation equation

Skills and Applications

Simplify each expression.
4. $\frac{a^{2}-a b}{3 a} \div \frac{a-b}{15 b^{2}} 5 b^{2}$
5. $\frac{x^{2}-y^{2}}{y^{2}} \cdot \frac{y^{3}}{y-x}-y(x+y)$
6. $\frac{x^{2}-2 x+1}{y-5} \div \frac{x-1}{y^{2}-25}$
7. $\frac{\frac{x^{2}-1}{x^{2}-3 x-10}}{\frac{x^{2}+3 x+2}{x^{2}-12 x+35}} \frac{(x-1)(x-7)}{(x+2)^{2}}$
8. $\frac{x-2}{x-1}+\frac{6}{7 x-7} \frac{7 x-8}{7(x-1)}$
Identify the type of function represented by each graph.
inverse variation
9. $\frac{x}{x^{2}-9}+\frac{1}{2 x+6}$ $3(x-1)$ $2(x-3)(x+3)$
10.

11.

greatest integer

Graph each rational function. 12-13. See margin.
12. $f(x)=\frac{-4}{x-3}$
13. $f(x)=\frac{2}{(x-2)(x+1)}$

Solve each equation or inequality.
14. $\frac{2}{x-1}=4-\frac{x}{x-1} 2$
15. $\frac{9}{28}+\frac{3}{z+2}=\frac{3}{4} 5$
16. $5+\frac{3}{t}>-\frac{2}{t} t<-1$ or $t>0$
17. $x+\frac{12}{x}-8=02,6$
18. $\frac{5}{6}-\frac{2 m}{2 m+3}=\frac{19}{6}-1 \frac{1}{20}$
19. $\frac{x-3}{2 x}=\frac{x-2}{2 x+1}-\frac{1}{2} \pm \frac{\sqrt{6}}{2}$
20. If y varies inversely as x and $y=9$ when $x=-\frac{2}{3}$, find x when $y=-7$. $\frac{6}{7}$
21. If g varies directly as w and $g=10$ when $w=-3$, find w when $g=4 .-1 \frac{1}{5}$
22. Suppose y varies jointly as x and z. If $x=10$ when $y=250$ and $z=5$, find x when $y=2.5$ and $z=4.5 . \quad \frac{1}{9}$
23. AUTO MAINTENANCE When air is pumped into a tire, the pressure required varies inversely as the volume of the air. If the pressure is 30 pounds per square inch when the volume is 140 cubic inches, find the pressure when the volume is 100 cubic inches. $42 \mathrm{lb} / \mathrm{in}^{2}$
24. ELECTRICITY The current I in a circuit varies inversely with the resistance R.
a. Use the table at the right to write an equation relating the current and the resistance. $I=\frac{6}{R}$

\boldsymbol{I}	0.5	1.0	1.5	2.0	2.5	3.0	5.0
\boldsymbol{R}	12.0	6.0	4.0	3.0	2.4	2.0	1.2

25. STANDARDIZED TEST PRACTICE If $m=\frac{1}{x}, n=7 m, p=\frac{1}{n}, q=14 p$, and $r=\frac{1}{\frac{1}{2} q}$, find x. D
(A) r
(B) q
(C) p
(D) $\frac{1}{r}$
(E) $\frac{1}{q}$

Portfolio Suggestion

Introduction In this lesson, you have been working with several kinds of variation.
Ask Students Write an application problem for each of the three types of variations (direct, inverse, and joint), and show your steps for each problem. Then describe how your problems are modeled by each of the variations, and how your answers relate to the solutions for the problems.
wwww.algebra2.com/chapter_test

Assessment Options
Vocabulary Test A vocabulary test/review for Chapter 9 can be found on p. 566 of the Chapter 9 Resource Masters.

Chapter Tests There are six Chapter 9 Tests and an OpenEnded Assessment task available in the Chapter 9 Resource Masters.

Chapter 9 Tests			
Form	Type	Level	Pages
1	MC	basic	$553-554$
2A	MC	average	$555-556$
2B	MC	average	$557-558$
2C	FR	average	$559-560$
2D	FR	average	$561-562$
3	FR	advanced	$563-564$

$\mathrm{MC}=$ multiple-choice questions
$F R=$ free-response questions

Open-Ended Assessment

Performance tasks for Chapter 9 can be found on p .565 of the Chapter 9 Resource Masters. A sample scoring rubric for these tasks appears on p. A25.

TestCheck and Worksheet Builder

This networkable software has three modules for assessment.

- Worksheet Builder to make worksheets and tests.
- Student Module to take tests on-screen.
- Management System to keep student records. Test Practice

9) Stand

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.

1. Best Bikes has 5000 bikes in stock on May 1. By the end of May, 40 percent of the bikes have been sold. By the end of June, 40 percent of the remaining bikes have been sold. How many bikes remain unsold? C
(A) 1000
(B) 1200
(C) 1800
(D) 2000
2. In $\triangle A B C$, if $A B$ is equal to 8 , then $B C$ is equal to C

(A) $\frac{\sqrt{2}}{8}$.
(B) 4 .
(C) $4 \sqrt{2}$.
(D) 8 .
3. In the figure, the slope of $\overline{A C}$ is $-\frac{1}{3}$ and $m \angle C=30^{\circ}$. What is the length of $\overline{B C}$? D

(A) $\sqrt{10}$
(B) $2 \sqrt{10}$
(C) $3 \sqrt{10}$
(D) $4 \sqrt{10}$
4. Given that $-|2-4 k|=-14$, which of the following could be k ? B
(A) 5
(B) 4
(C) 3
(D) 2
5. In a hardware store, n nails cost c cents. Which of the following expresses the cost of k nails? B
(A) $n c k$
(B) $\frac{k c}{n}$
(C) $n+\frac{k}{c}$
(D) $n+\frac{c}{n}$
6. If $5 w+3 \leq w-9$, then \mathbf{D}
(A) $w \leq 3$.
(B) $w \geq 3$.
(C) $w \leq 12$.
(D) $w \leq-3$.
7. The graphs show a driver's distance d from a designated point as a function of time t. The driver passed the designated point at 60 mph and continued at that speed for 2 hours. Then she slowed to 50 mph for 1 hour. She stopped for gas and lunch for 1 hour and then drove at 60 mph for 1 hour. Which graph best represents this trip? B
(A)

(C)

(B)

(D)

8. Which equation has roots of $-2 n, 2 n$, and 2? D
(A) $2 x^{2}-8 x^{2}=0$
(B) $8 x^{2}-2 x^{2}=0$
(C) $x^{3}-2 x^{2}-4 n^{2} x-8 n^{2}=0$
(D) $x^{3}-2 x^{2}-4 n^{2} x+8 n^{2}=0$
9. What point is on the graph of $y-x^{2}=2$ and has a y-coordinate of 5? A
(A) $(-\sqrt{3}, 5)$
(B) $(\sqrt{7}, 5)$
(C) $(5, \sqrt{3})$
(D) $(3,5)$

518 Chapter 9 Standardized Test Practice

TestCheck and
 Worksheet Builder

Special banks of standardized test questions similar to those on the SAT, ACT, TIMSS 8, NAEP 8, and Algebra 1 End-of-Course tests can be found on this CD-ROM.

Part 2 Short Response/Grid In

Record your answers on the answer sheet provided by your teacher or on a sheet of paper.
10. In the figure, what is the equation of the circle Q that is circumscribed around the square $A B C D$? $(x+5)^{2}+y^{2}=18$

11. Find one possible value for k such that k is an integer between 20 and 40 that has a remainder of 2 when it is divided by 3 and that has a remainder of 2 when divided by 4 . 26 or 38
12. The coordinates of the vertices of a triangle are $(2,-4),(10,-4)$, and (a, b). If the area of the triangle is 36 square units, what is a possible value for b ? -13 or 5
13. If $(x+2)(x-3)=6$, what is a possible value of x ? -3 or 4
14. If the average of five consecutive even integers is 76 , what is the greatest of these integers? 80
15. In May, Hank's Camping Supply Store sold 45 tents. In June, it sold 90 tents. What is the percent increase in the number of tents sold? 100
16. If $2^{n-4}=64$, what is the value of n ? 10
17. If $x y=5$ and $x^{2}+y^{2}=20$, what is the value of $(x+y)^{2} ? 30$
18. If $\frac{2}{a}-\frac{8}{a^{2}}=\frac{-8}{a^{3}}$, then what is the value of a ? 2
19. If $\sqrt[x]{80}=2 \sqrt[x]{5}$, what is the value of x ? 4
20. What is the y-intercept of the graph of $3 x+2=4 y-6 ? 2$
www.algebra2.com/standardized_test

Part 3 Quantitative Comparison

Compare the quantity in Column A and the quantity in Column B. Then determine whether:

A the quantity in Column A is greater,
(B) the quantity in Column B is greater,
(C) the two quantities are equal, or
(D) the relationship cannot be determined from the information given.

Column A	Column B	
21.	the number of distinct prime factors of 105	the number of distinct prime factors of 189

$\begin{array}{ll}\text { 22. } & \frac{x}{y}=\frac{3}{7}\end{array}$

23.

D

24. $\quad 0<x<1$

A

25.

B

The
 Princeton Review

Test-Taking Tip
Questions 22-25 In quantitative comparison questions that involve variables, make sure you consider all of the possible values of the variables before you make a comparison. Consider positive and negative integers, positive and negative fractions, and 0 .

Page 477, Lesson 9-1
49. A rational expression can be used to express the fraction of a nut mixture that is peanuts. Answers should include the following.

- The rational expression $\frac{8+x}{13+x}$ is in simplest form because the numerator and the denominator have no common factors.
- Sample answer: $\frac{8+x}{13+x+y}$ could be used to represent the fraction that is peanuts if x pounds of peanuts and y pounds of cashews were added to the original mixture.

Page 484, Lesson 9-2

51. Subtraction of rational expressions can be used to determine the distance between the lens and the film if the focal length of the lens and the distance between the lens and the object are known. Answers should include the following.

- To subtract rational expressions, first find a common denominator. Then, write each fraction as an equivalent fraction with the common denominator. Subtract the numerators and place the difference over the common denominator. If possible, reduce the answer.
- $\frac{1}{q}=\frac{1}{10}-\frac{1}{60}$ could be used to determine the distance between the lens and the film if the focal length of the lens is 10 cm and the distance between the lens and the object is 60 cm .

56.

57.

59.

60.

61.

Page 487, Algebra Activity
1.

Pages 488-489, Lesson 9-3
6.

8.

10.

7.

9.

11.

13.

23.

25.

27.

31.

22.

24.

26.

28.

30.

32.

33.

35.

$f(x)=\frac{-1}{(x+2)(x-3)}$
37.

38.

39.

34.

$f(x)=\frac{3}{(x-1)(x+5)}$
36.

40.

42. Since $\frac{-64}{x^{2}+16}=-\left(\frac{64}{x^{2}+16}\right)$, the graph of $f(x)=\frac{-64}{x^{2}+16}$ would be a reflection of the graph of $f(x)=\frac{64}{x^{2}+16}$ over the x-axis.
43.

Page 491, Follow-Up of Lesson 9-3 Graphing Calculator Investigation
1.

3.

5.

2.

4.

6.

Page 498, Practice Quiz 2
1.

2.

Pages 502-504, Lesson 9-5
23.

24.

25.

27.

29.

28.

30.

38. A graph of the function that relates a person's weight on Earth with his or her weight on a different planet can be used to determine a person's weight on the other planet by finding the point on the graph that corresponds with the weight on Earth and determining the value on the other planet's axis. Answers should include the following.

- The graph comparing weight on Earth and Mars represents a direct variation function because it is a straight line passing through the origin and is neither horizontal nor vertical.
- The equation $V=0.9 E$ compares a person's weight on Earth with his or her weight on Venus.

42.

43.

44.

[^0]: For more information on Reading and Writing in Mathematics, see pp. T6-T7.

[^1]: 484 Chapter 9 Rational Expressions and Equations

[^2]: Technology
 Interactive Chalkboard

[^3]: - Technology

 Interactive Chalkboard

