Name: _____

Checkpoint 7C

Use the diagram to answer questions 1 through 4.

1) Explain why the four right triangles are similar.

Integrated Math 2

2) Fill in the chart below. Calculate each ratio to two decimal places.

	Sido	Cido		Trigonometric Ratios		
Triangle	Opposite to ∠A	Adjacent to ∠A	Hypotenuse	opposite hypotenuse	adjacent hypotenuse	opposite adjacent
$\triangle ABC$	BC = 1	AB = 1	AC = c	$\frac{BC}{AC} = \sqrt{2}$	$\frac{AB}{AC} =$	$\frac{BC}{AB} = 1$
$\triangle ADE$						
$\triangle AFG$						
∆AHI						

3) Describe the relationships of the trigonometric ratios in the table. Hint: Convert them to a decimal value.

4) Do you think the relationships you described in question 3 would change if angle A changed to a different measure?

5) Prove that sin(G) and sin(T) are equivalent.

6) Use $\triangle ABC \sim \triangle DEF$ to answer the following questions. If $\sin(A) = \frac{6}{7.5}$, choose the expression that is equivalent to $\sin(A)$: Is it $\cos(D)$ or $\cos(E)$? Explain.

7) Use $\Delta WCE \sim \Delta LMN$ to determine the value of the trigonometric expressions. a) $\sin(H)$ b) $\tan(H)$

8) Find the cosine ratios of the corresponding non-right angles for ΔKDL and ΔNGB . Compare the ratios.

9) Solve for the missing variable and determine if $cos(\angle EAB) = cos(\angle DAC)$.

10) Image a road where part of it rises 8 miles over a horizontal run of 120 miles.

a) Draw a diagram of this situation. Hint: It resembles a right triangle where the hypotenuse is the actual road.

b) What is the rise over a run of 50 miles if the slope remains constant?

c) Compare the slopes. Explain why these slopes are the same.

