

Quotient Property of Logarithms:
Use the N -spire to evaluate the logarithmic expressions below:
ia) $\log _{2}\left(\frac{16}{4}\right)=2$
lb) $\log _{2} 16 \Theta \log _{2} 4=\mathcal{L}$
aa) $\log _{3}\left(\frac{27}{9}\right)=1$
bb) $\log _{3} 27 \in \log _{3} 9=1$
Ba) $\log _{5}\left(\frac{15,625}{25}\right)=4$
3b) $\log _{5} 15,625 \forall \log _{5} 25=4$
Conclusion: The logarithm of a \qquad Quotient is the \qquad difference of the logarithms of numerator and denominator. In symbols, for all positive numbers m, n, and b, where $b \neq 1$,

$$
\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n
$$

Expand the following Logarithms:
5. $\log _{2} \frac{7}{x}$

$$
\log _{2} 7-\log _{2} x
$$

6. $\log _{6} \frac{2 a}{b} \underbrace{\log _{2} 2 a}-\log _{6} b$

$$
=\log _{3} 2+\log _{2} a-\log _{2} 6
$$

Condense the following Logarithms:
7. $\log _{3} 4-\log _{3} m$

$$
\log _{3} \frac{4}{m}
$$

8. $\log _{9} 15-\log _{9} 3$

$$
\log _{9} \frac{15}{3}=\log _{9} 5
$$

Power Property of Logarithms:
Use the N -spire to evaluate the logarithmic expressions below:

