

Examples:

1. If you take a car loan for $\$ 25000$ with an interest rate of 6.5% compounded quarterly, no payments required for the first five years, what will your balance be at the end of those five years?

$$
\begin{array}{rl}
A & ? \quad \rho=25,000 \quad r=0.065 \quad n=4 \\
A & =p\left(1+\frac{r}{n}\right)^{n t} \\
& =25,000\left(1+\frac{0.065}{4}\right)^{4.5} \quad t=5 \\
& \approx \$ 34,510.49
\end{array}
$$

December 16 2013.gwb - 3/6 - Tue Dec 172013 14:58:35

4. If $\$ 4000$ is invested in an account paying 3% interest compounded daily, what is the balance after 7 years?

$$
\begin{array}{rl}
A=? & P=4000 \quad r=0.03 \quad n=365 \quad t=7 \\
A & =P\left(1+\frac{r}{n}\right)^{n t} \\
& =4000\left(1+\frac{0.03}{365}\right)^{365.7} \\
& \approx 4934.67
\end{array}
$$

6. If you invest $\$ 6.16$ in an account paying 12% interest compounded continuously for 100 years, and that is all you have to leave your children as an inheritance, what will the final balance be that they receive? -Before you do the math, how would you feel about that being your inheritance?

$$
\begin{aligned}
& A=? \quad P=6.16 \quad r=0.12 \quad t=100 \\
& A=6.16 e^{0.12 \cdot 100} \approx 1,002,569.52 \quad \$ \text { WoW } \\
& \quad \text { Time and interest, baby! } \\
& \text { (commoved) }
\end{aligned}
$$

