

Given: NPRV is a parallelogram
Prove: $\frac{\mathrm{NW}}{\mathrm{SW}}=\frac{\mathrm{NO}}{\mathrm{ST}}$

$$
\begin{aligned}
& \text { statement } \\
& \text { (1) } N P R V \| \text { gram } \\
& \text { (2) } \overline{N P P \| \overline{V R}} \\
& \text { (3) } \angle O N W \cong \angle T S W \\
& \text { (4) } \angle N W O \cong \angle S W T \\
& \text { (5) } \triangle \overparen{\triangle W O \sim \triangle S W T} \\
& \text { (b) } \frac{N W}{S W}=\frac{N O}{S T}
\end{aligned}
$$

(1) Given
(2) II gram \Rightarrow Both pairs opposite sides parallel
(3) Il lines \Rightarrow alternate interior $\angle S \cong$
(4) Vertical $\angle s \cong$ (We could have replaced step 4 with another pair
(5) $\sim A A$ of $\cong \angle$ s. Po you know why?)
(6) Corresponding sides of \sim Us are proportional.

Given: $\overline{\mathrm{AB}} \| \overline{\mathrm{CD}}, \overline{\mathrm{BX}}$ and $\overline{\mathrm{PY}} \perp \overline{\mathrm{AC}}$
Prove: $B X \cdot Y C=P Y \cdot X A$

