Honors Advanced Algebra

DATE: _____

8.4 & 8.5 Graphs of Sinusoidal Functions (Target 6B)

Review of Prior Concepts

- From the parent function f(x) = x², describe the transformation of g(x) = (x - 1)² + 3 and give the domain and range of g(x).
- 2) From the parent function h(x) = e^x, describe the transformation of k(x) = e^{x+1} 3 and give the domain and range of k(x).

Vocabulary

- Sinusoidal Functions –
- Amplitude –
- Period –
- Phase Shift –
- Vertical Shift –

 $y = a \sin(bx + c) + d$ OR $y = a \cos(bx + c) + d$

Open the TI-Nspire document: Basic_Transformations.tns

Move to page 1.2

1. Drag the sliders to change the values of *a* in the function $f(x) = a \sin(bx)$.

- a) How does the value of *a* affect the shape of the graph?
- b) What happens to the graph if *a* is negative?
- c) How does the value of *b* affect the shape of the graph?

Conclusion:

For $a \neq 0$ and b > 0, the graph of $f(x) = a \sin(bx)$ has an amplitude of _____ and a period of _____.

Move to page 2.2

2. Drag the sliders to change the value of *d* in the function of f(x) = sin(x) + d.

How does the value of *d* affect the shape of the graph?

Conclusion:

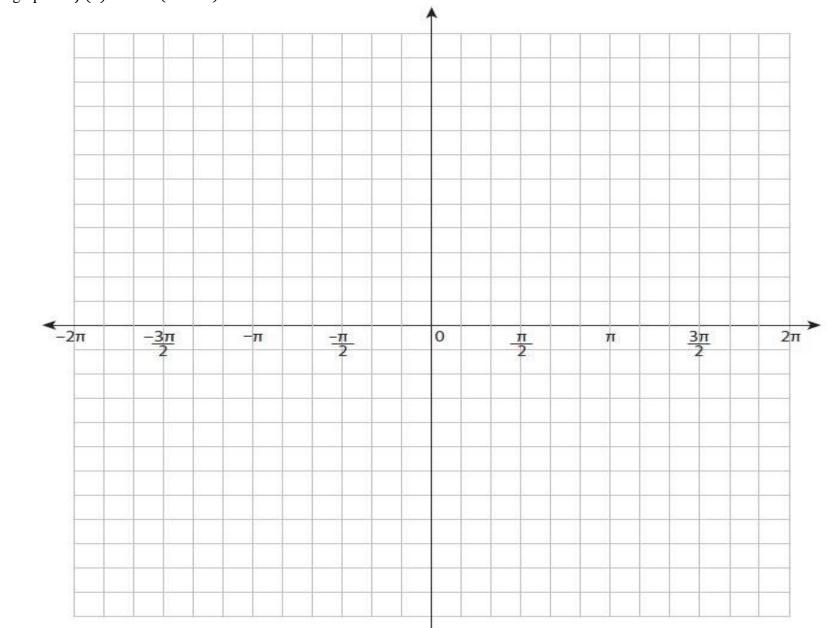
The graph of $f(x) = \sin(x) + d$ has a vertical shift of _____.

Move to page 3.2

3. Drag the sliders to change the value of c in the function of f(x) = sin(x + c). How does the value of c affect the shape of the graph?

Conclusion:

The graph of $f(x) = \sin(x + c)$ has a phase shift of _____.


Move to page 4.2

4. Drag the sliders to change the value of *a*, *b*, *c* and *d* in the function $f(x) = a \sin(bx + c) + d$. Which of the four parameters have an impact on the phase shift of the graph?

Conclusion:

The graph of $f(x) = a \sin(bx + c) + d$ has a phase shift of _____.

Transformation	General Form $f(x) = a \sin(bx + c) + d$ OR $f(x) = a \cos(bx + c) + d$	Example $f(x) = 3\sin(2x + \pi) - 4$
Amplitude		
Period		
Phase Shift		
Vertical Shift		

Sketch the graph of: $f(x) = 3\sin(2x + \pi) - 4$