\qquad

Trig Extended: Circular Functions Cont'd

Target 6C. Use the Pythagorean identity to find sine of theta, cosine of theta, or tangent of theta, and the quadrant of the angle.

Recall that on a coordinate plane, an angle may be generated by the rotation of two rays that share a fixed endpoint at the origin. One ray, called the initial side of the angle is fixed along the positive x-axis (it doesn't move). The other ray, called the terminal side of the angle, can rotate about the center.

Trigonometric Functions of θ in Standard Position

Let θ be an angle in standard position and let $P(x, y)$ be a point on the terminal side of θ. Using the Pythagorean Theorem, the distance r from the origin to P is given by $r=\sqrt{x^{2}+y^{2}}$. The trigonometric functions of an angle in standard position may be defined as follows:

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r} & \cos \theta=\frac{x}{r} & \tan \theta=\frac{y}{x}, x \neq 0 \\
\csc \theta=\frac{r}{y}, y \neq 0 & \sec \theta=\frac{r}{x}, x \neq 0 & \cot \theta=\frac{x}{y}, y \neq 0
\end{array}
$$

Evaluate Trigonometric Functions for a Given Point

Find the exact values of the six trigonometric functions of θ if the terminal side of θ contains the given point.

1. $(9,12)$
2. $(-4,3)$

Quadrantal Angles

If the terminal side of angle θ lies on one of the axes, θ is called a quadrantal angle. The quadrantal angles are $0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°. Notice that for these angles, either x or y is equal to zero. Since division by zero is undefined, two of the trigonometric values are undefined for each quadrant.
$\theta=0^{\circ}$ or 0 radians $\mid \quad \theta=90^{\circ}$ or $\frac{\pi}{2} \quad \theta=180^{\circ}$ or π radians $\mid \theta=270^{\circ}$ or $\frac{3 \pi}{2}$ radians

Quadrantal Angles Examples

Find the values of the six trigonometric functions for an angle in standard position with the given measure.
5. 270° at $(0,-2)$
6. 180° at $(-5,0)$

Reference Angles

To find the values of trig functions greater than 90° (or less than 0°), you need to know how to find the measures of reference angles. If θ is a non-quadrantal angle in standard position, its reference angle, alpha, is defined as the acute angle formed by the terminal side of θ and the x-axis. Below is the reference angle rule on the interval $\left(0^{\circ}, 360^{\circ}\right)$ or $(0,2 \pi)$. If the measure of θ is greater than 360° or less than 0°, its reference angle can be found by associating it with a co-terminal angle of positive measure between 0° and 360°.

	Quadrant I	Quadrant II		

Reference Angles Examples

Sketch each angle. The find its reference angle.
7. 300°
8. 480°
9. $-2 \pi / 3$

Find the angle that passes through the given point. Give your answer in radians and degrees.
10. $(1, \sqrt{3})$
11. $(-3,3)$

